To read this content please select one of the options below:

Development of an aeroelastic model based on system identification using boundary elements method

Rohollah Dehghani Firouz-Abadi (Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran)
Mohammad Reza Borhan Panah (Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 17 November 2021

Issue publication date: 10 February 2022

58

Abstract

Purpose

The purpose of this paper is to analyze the stability of aeroelastic systems using a novel reduced order aeroelastic model.

Design/methodology/approach

The proposed aeroelastic model is a reduced-order model constructed based on the aerodynamic model identification using the generalized aerodynamic force response and the unsteady boundary element method in various excitation frequency values. Due to the low computational cost and acceptable accuracy of the boundary element method, this method is selected to determine the unsteady time response of the aerodynamic model. Regarding the structural model, the elastic mode shapes of the shell are used.

Findings

Three case studies are investigated by the proposed model. In the first place, a typical two-dimensional section is introduced as a means of verification by approximating the Theodorsen function. As the second test case, the flutter speed of Advisory Group for Aerospace Research and Development 445.6 wing with 45° sweep angle is determined and compared with the experimental test results in the literature. Finally, a complete aircraft is considered to demonstrate the capability of the proposed model in handling complex configurations.

Originality/value

The paper introduces an algorithm to construct an aeroelastic model applicable to any unsteady aerodynamic model including experimental models and modal structural models in the implicit and reduced order form. In other words, the main advantage of the proposed method, further to its simplicity and low computational effort, which can be used as a means of real-time aeroelastic simulation, is its ability to provide aerodynamic and structural models in implicit and reduced order forms.

Keywords

Citation

Firouz-Abadi, R.D. and Borhan Panah, M.R. (2022), "Development of an aeroelastic model based on system identification using boundary elements method", Aircraft Engineering and Aerospace Technology, Vol. 94 No. 3, pp. 360-371. https://doi.org/10.1108/AEAT-01-2021-0025

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles