To read this content please select one of the options below:

Nonlinear aerodynamics of an unmanned aircraft in wind shear

Shawn S. Keshmiri (Department of Aerospace Engineering, University of Kansas, Lawrence, Kansas, USA)
Edward Lan (Department of Aerospace Engineering, University of Kansas, Lawrence, Kansas, USA)
Richard Hale (Department of Aerospace Engineering, University of Kansas, Lawrence, Kansas, USA)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 3 January 2017

322

Abstract

Purpose

The purpose of this paper is to evaluate the accuracy of linear and quasi-steady aerodynamic models of aircraft aerodynamic models when a small unmanned aerial system flies in the presence of strong wind and gust at a high angle of attack and a high sideslip angle.

Design/methodology/approach

Compatibility analysis were done to improve the quality of recorded flight test data. A robust method called fuzzy logic modeling is used to set up the aerodynamic models. The reduced frequency is used to represent the unsteadiness of the flow field according to Theodorsen’s theory. The work done by the aerodynamic moments on the motions is used as the criteria of stability.

Findings

In portions of flight, aircraft’s stability and control derivatives were unstable and nonlinear functions of airflow angles and angular rates. The roll angle had an important effect on unsteadiness of directional oscillatory damping derivatives. The pilot-induced oscillation and wing rock possibilities were investigated and dismissed so that the lateral directional oscillatory motion was classified as a nonlinear Dutch roll oscillation. Major modeling enhancements or real-time parameter identification are required for the control of a small unmanned aerial system in off-nominal conditions. The robustness tests of all-weather autopilot systems must be done with consideration of sign change.

Originality/value

Oscillatory damping derivatives were reconstructed using flight test data and the inadequacy of engineering level software in predicting this type of instability observed and demonstrated for a flight in the presence of wind shear and external disturbances.

Keywords

Acknowledgements

This research was supported by the Paul G. Allen Family Foundation (PGAFF), grant KUAE#40956, at the University of Kansas. The authors would like to thank PGAFF for their support.

Citation

Keshmiri, S.S., Lan, E. and Hale, R. (2017), "Nonlinear aerodynamics of an unmanned aircraft in wind shear", Aircraft Engineering and Aerospace Technology, Vol. 89 No. 1, pp. 39-51. https://doi.org/10.1108/AEAT-11-2014-0181

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles