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Abstract

Purpose –Confidence intervals play a crucial role in economics and finance, providing a credible range of values for
an unknown parameter along with a corresponding level of certainty. Their applications encompass economic
forecasting, market research, financial forecasting, econometric analysis, policy analysis, financial reporting,
investment decision-making, credit risk assessment and consumer confidence surveys. Signal-to-noise ratio (SNR)
finds applications in economics and finance across various domains such as economic forecasting, financial
modeling, market analysis and risk assessment. A high SNR indicates a robust and dependable signal, simplifying
the process of making well-informed decisions. On the other hand, a low SNR indicates a weak signal that could be
obscured by noise, so decision-making procedures need to take this into serious consideration. This research focuses
on the development of confidence intervals for functions derived from the SNR and explores their application in the
fields of economics and finance.
Design/methodology/approach – The construction of the confidence intervals involved the application of
various methodologies. For the SNR, confidence intervals were formed using the generalized confidence
interval (GCI), large sample andBayesian approaches. The difference between SNRswas estimated through the
GCI, large sample, method of variance estimates recovery (MOVER), parametric bootstrap and Bayesian
approaches. Additionally, confidence intervals for the common SNR were constructed using the GCI, adjusted
MOVER, computational and Bayesian approaches. The performance of these confidence intervals was
assessed using coverage probability and average length, evaluated through Monte Carlo simulation.
Findings – The GCI approach demonstrated superior performance over other approaches in terms of both
coverage probability and average length for the SNR and the difference between SNRs. Hence, employing the
GCI approach is advised for constructing confidence intervals for these parameters. As for the common SNR,
the Bayesian approach exhibited the shortest average length. Consequently, the Bayesian approach is
recommended for constructing confidence intervals for the common SNR.
Originality/value – This research presents confidence intervals for functions of the SNR to assess SNR
estimation in the fields of economics and finance.

Keywords Average length, Confidence interval, Coverage probability, Monte Carlo simulation,

Signal-to-noise ratio

Paper type Research paper

1. Introduction
Confidence intervals play a crucial role in economics and finance, providing a reliable range of
values for an unknown parameter along with a specified level of certainty. Here are diverse
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applications of confidence intervals in these fields. Economic forecasting: confidence
intervals are essential for projecting economic metrics like gross domestic product (GDP)
growth, inflation rates, and unemployment rates, providing a spectrum of values for the likely
actual figures. Market research: in finance, confidence intervals help gauge the potential
range of returns on investments. Analysts use them to convey confidence regarding future
stock prices or returns on financial instruments. Risk management: confidence intervals play
a pivotal role in evaluating and managing financial risk. They assist in approximating
potential losses in investment portfolios, enabling informed decisions by investors and
financial institutions. Financial forecasting: Confidence intervals are incorporated in financial
modeling to project future cash flows, interest rates, and other financial parameters,
enhancing the accuracy of predictions about the prospective financial performance of
companies. Econometric analysis: in econometrics, confidence intervals gauge the precision
of regression coefficients and other model parameters, which is crucial for determining the
statistical significance of relationships between economic variables. Policy analysis:
Economists use confidence intervals when scrutinizing the repercussions of policy
changes, estimating the impact of a tax policy on consumer spending, and providing a
confidence interval to convey associated uncertainty. Financial reporting: confidence
intervals find application in financial statement analysis to estimate the precision of financial
ratios, contributing to the assessment of the financial health and performance of companies.
Investment decision-making: Investors rely on confidence intervals to assess potential
returns and risks linked to diverse investment opportunities, aiding in making well-informed
decisions concerning asset allocation and portfolio management. Credit risk assessment: in
banking and finance, confidence intervals are used to evaluate credit risk, estimating the
potential range of default probabilities, and establishing suitable interest rates for loans.
Consumer confidence surveys: Confidence intervals are employed in the analysis and
interpretation of survey data, such as consumer confidence surveys, providing a measure of
uncertainty around reported confidence levels. In conclusion, confidence intervals serve as a
valuable tool in economics and finance, offering amethod to quantify and convey uncertainty
in various analyses and decision-making processes.

The signal-to-noise ratio (SNR) in the realms of economics and finance originates from signal
processing, representing the proportion of valuable information, termed the signal to irrelevant
or random background noise. In the context of economic and financial analysis, this concept is
commonly utilized to evaluate the information’s quality and the signal’s strength compared to
the surrounding noise. Within economic and financial analysis, the term signal denotes
meaningful and pertinent data or patterns, while noise pertains to random fluctuations or
inconsequential information. The SNR functions as a metric for assessing the clarity and
dependability of a signal amidst background noise. The applications of SNR in economics and
finance extendacross variousdomains, encompassing economic forecasting, financialmodeling,
market analysis, and risk assessment. A high SNR suggests a robust and dependable signal,
facilitating more straightforward decision-making. Conversely, a low SNR implies a weak
signal, potentially obscured by noise, necessitating careful consideration in decision-making
processes. In essence, comprehending and managing the SNR is paramount for extracting
meaningful insights and making informed decisions within economic and financial contexts.

Point estimation involves providing a single, specific value as an estimate for an unknown
parameter in a population. For example, estimate the population mean based on a sample
mean. Interval estimation, on the other hand, provides a range of values (an interval) within
which the true parameter is likely to lie. This is typically expressed as a confidence interval.
Interval estimation is often considered better than point estimation. This is because it
incorporates uncertainty, confidence level, decision-making, and robustness. To incorporate
uncertainty, interval estimation explicitly acknowledges the uncertainty inherent in
estimating population parameters from a sample. It provides a sense of the range of
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plausible values. For confidence level, confidence intervals come with a specified confidence
level (e.g., 95%). This indicates the proportion of intervals from repeated sampling that would
include the true parameter. It offers a clear indication of the reliability of the estimate. For
decision-making purposes, having a range of values is often more informative than a single
point. It allows decision-makers to consider a spectrum of possibilities. For robustness, point
estimates can be sensitive to outliers or extreme values in the data. Confidence intervals,
especially those based on robust methods, may be less affected by extreme observations.

A confidence interval for a parameter of interest is a statistical range that provides an
estimated range of values that is likely to include the true value of the parameter. It is
constructed based on the sample data and is associated with a certain level of confidence. The
confidence interval is a measure of the precision or uncertainty of the estimated parameter.
For example, if you are estimating the SNR of a population, a 95% confidence interval would
imply that if you were to take many samples and construct a confidence interval from each,
about 95% of those intervals would contain the true population SNR. Moreover, the
confidence interval for the difference between parameters of interest is a range of values that
is likely to contain the true difference between two population parameters. This type of
interval estimation is commonly used in statistical analysis, especially when comparing two
groups or assessing the impact of an intervention. In addition, the confidence interval for a
common parameter of interest is an interval estimate that provides a range of plausible values
for the true value of a parameter. This type of interval estimation is commonly used in
statistical analysis when dealing with a single population parameter.

2. Literature review
TheGeneralized Confidence Interval (GCI) approach is designed to be versatile across diverse
data types and statistical scenarios. It is not constrained by specific distributional
assumptions, making it applicable in situations where classical methods may not be
appropriate. The GCI has diverse applications in fields such as economics, finance, biology,
and any domain requiring statistical inference. This methodology utilizes the generalized
pivotal quantity (GPQ) to construct the confidence interval, enabling the estimation of
confidence intervals for complex parameters. However, it’s important to note that the
numerical simulation of the GCI approach relies solely on the maximum likelihood estimate.
Many researchers have undertaken comparisons between the GCI approach and alternative
methods for constructing confidence intervals, as evidenced in studies byWeerahandi (1993),
Krishnamoorthy and Lu (2003), Krishnamoorthy and Mathew (2003), Tian (2005), Chen and
Zhou (2006), Tian andWu (2007), Ye et al. (2010), Saothayanun and Thangjai (2018), Thangjai
andNiwitpong (2019), Thangjai andNiwitpong (2020a), andThangjai andNiwitpong (2020b).

Constructing confidence intervals using the large sample approach involves exploiting
asymptotic properties, particularly when dealing with a substantial volume of data. This
method relies on the Central Limit Theorem, which posits that the distribution of sample
means converges to a normal distribution as the sample size increases. Utilizing this principle
allows for the estimation of confidence intervals under the assumption of normality,
enhancing their applicability in extensive datasets. The large sample approach is
advantageous due to its simplicity in constructing the confidence interval using the exact
formula. However, a limitation is that it requires a large sample size for estimating the
confidence interval. Several scholars have evaluated the large sample approach in
comparison to alternative methods for constructing confidence intervals, as demonstrated
in the research conducted by Tian and Wu (2007), Saothayanun and Thangjai (2018),
Thangjai and Niwitpong (2019), and Thangjai and Niwitpong (2020b).

TheMOVER approach relies on the original confidence interval for a specific parameter of
interest to derive the final confidence interval. An advantage of the MOVER approach is its
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ease of computation using the exact formula. However, a drawback is that it can be
constructed with or without the initial confidence interval for a single parameter of interest.
Several researchers, including Zou and Donner (2008), Zou et al. (2009), Saothayanun and
Thangjai (2018), Thangjai and Niwitpong (2019), and Thangjai and Niwitpong (2020b), have
recommended the utilization of the MOVER approach in constructing confidence intervals.

The adjusted MOVER approach is inspired by the principles of both the large sample and
MOVER approaches. Its advantage lies in the straightforward application of the exact
formula for confidence interval computation, although a drawback is that it relies on the
initial confidence interval for a single parameter. Thangjai and Niwitpong (2020a) has delved
into the investigation of the adjusted MOVER approach.

The bootstrap approach involves approximating the sampling distribution of statistics by
iteratively resampling with replacements from the population. These multiple bootstrap
samples, drawn from the population on numerous occasions, function as representative
samples of the entire population. The bootstrap approach provides a simple and reasonably
accurate technique for constructing confidence intervals. However, a drawback is the
requirement for knowledge regarding the distribution of estimates around the true values
because the sampling distribution aligns with the data distribution, considering that the
estimates are derived from the data. Various researchers, including Chachi (2017) andThangjai
and Niwitpong (2020b), have advocated for the utilization of the bootstrap approach.

The computational approach is employed to formulate confidence intervals for intricate
parameters. This technique involves simulations and numerical computations utilizing the
maximumlikelihoodestimate. Scholarshave introduced the computational approach for confidence
intervals, as demonstrated in works by Pal et al. (2007) and Thangjai and Niwitpong (2020a).

The Bayesian approach employs posterior probability and facilitates comparison with
alternative methods for constructing credible intervals. The primary motivation for opting
for the Bayesian approach is the complexity of models that traditional methods may struggle
to address. It is essential to emphasize that, irrespective of the rationale behind adopting the
Bayesian approach, conducting a sensitivity analysis of priors is always crucial and should
be included. This comparison is substantiated by studies such as Rao andD’Cunha (2016) and
Ma and Chen (2018).

3. Methodology
The SNR can be described as the reciprocal of the coefficient of variation. The SNR is
calculated as the ratio of themean to the standard deviation. This paper discussed three parts
as follow: The SNR, the difference between SNRs, and the common SNR.

3.1 Confidence intervals for the SNR
Suppose that random sample X ¼ ðX1;X2; . . . ;XnÞ follows any distribution. Suppose that μ
and σ are population mean and population standard deviation of the distribution,
respectively. The SNR is defined as

θ ¼ μ
σ
: (1)

Let X and Sare sample mean and sample standard deviation of the distribution, respectively.
The estimator of the SNR is defined as

bθ ¼ X

S
: (2)
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3.1.1 GCI approach for SNR. The concept of GCI was introduced by Weerahandi (1993).
Let X ¼ ðX1;X2; :::;XnÞ be a random sample having a density function fðXjθ; υÞ, where θ is
the parameter of interest and υ is a nuisance parameter. Let x be the observed sample of X. A
generalized pivotal quantity RðX; x; θ; υÞ is considered and satisfies the following conditions:

(i) The distribution of RðX; x; θ; υÞ is free of all unknown parameters.

(ii) The observed value of RðX; x; θ; υÞ is the parameter of interest.

Condition (i) is imposed to guarantee that a subset of the sample space of the possible values
of RðX; x; θ; υÞ can be found at a given value of the confidence coefficient with no knowledge
of the parameters. Condition (ii) is imposed to ensure that such probability statements based
on the GPQ lead to confidence regions involving observed data x only. The GCI for θ is
computed using the percentiles of the GPQ. Let ½Rðα=2Þ;Rð1− α=2Þ� be a 100ð1− αÞ% two-
sided GCI for the parameter of interest, where Rðα=2Þ and Rð1− α=2Þdenote the 100ðα=2Þ-th
and the 100ð1− α=2Þ-th percentiles of RðX; x; θ; υÞ, respectively.

Following Saothayanun and Thangjai (2018). Let Rμ be the GPQ of μand let Rσ be the GPQ
of σ. The GPQ of θ is defined as

Rθ ¼ Rμ

Rσ
: (3)

The 100ð1− αÞ% two-sided confidence interval for the SNR based on the GCI approach is
given by

CIθ:GCI ¼ ½Lθ:GCI;Uθ:GCI� ¼ ½Rθðα=2Þ;Rθð1� α=2Þ�; (4)

where Rθðα=2Þ and Rθð1− α=2Þ denote the ðα=2Þ-th and ð1−α=2Þ-th quantiles of Rθ,
respectively.

The following algorithm is used to construct the GCI for the SNR.

Algorithm 1. For a given x and s
For g ¼ 1 to m
Compute Rμ

Compute Rσ

Compute Rθ

End g loop
Compute the ðα=2Þ-th quantiles of Rθ defined by Rθðα=2Þ
Compute the ð1− α=2Þ-th quantiles of Rθ defined by Rθð1− α=2Þ

3.1.2 Large sample approach for SNR. According to Saothayanun and Thangjai (2018) the
100ð1− αÞ% two-sided confidence interval for the SNR based on the large sample approach is
given by

CIθ:LS ¼ ½Lθ:LS;Uθ:LS� ¼ bθ � z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bθ� �r

;bθ þ z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bθ� �r� �

; (5)

where z1−α=2 denotes the ð1− α=2Þ-th quantile of a standard normal distribution andVarðbθÞ is
the variance of the estimator of SNR.

3.1.3 Bayesian approach for SNR. Bayes’ rule is utilized to revise the prior distribution,
resulting in the posterior distribution, which encompasses all relevant information regarding
the unknown parameters inferred from the observed data. The Bayesian approach provides a
framework for adjusting beliefs and making predictions based on new evidence or data. It is
grounded in Bayes’ theorem, which integrates prior probability and likelihood to compute the
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posterior probability. The prior distribution reflects uncertainty about parameters before
observing the data. In this study, we utilized Jeffreys’ independence prior.

Let σjx be the posterior distribution of σ. And let μjσ; x be the posterior distribution of μ
given σ. Let θBS be the posterior distribution using σjx and μjσ; x.

The 100ð1−αÞ% two-sided confidence interval for the SNR based on the Bayesian
approach is given by

CIθ:BS ¼ ½Lθ:BS;Uθ:BS�; (6)

where Lθ:BS and Uθ:BS are the lower and upper limits of the shortest 100ð1− αÞ% highest
posterior density interval of θBS, respectively.

The following algorithm is used to construct the Bayesian credible interval for the SNR.

Algorithm 2. For a given x and s
For g ¼ 1 to m
Compute σjx
Compute μjσ; x
Compute θBS
End g loop
Compute the shortest 100ð1− αÞ%highest posterior density interval of θBS

The following algorithm is used to evaluate the coverage probabilities and average lengths of
the confidence intervals for SNR.

Algorithm 3. For a given μ, σ, and θ
For h ¼ 1 to M
Generate x
Calculate x and s
Construct the confidence interval ½Lθ:GCI;Uθ:GCI�
Construct the confidence interval ½Lθ:LS;Uθ:LS�
Construct the confidence interval ½Lθ:BS;Uθ:BS�
If L≤ θ≤U, set p ¼ 1; else set p ¼ 0
Compute U−L
End h loop
Compute mean of p defined by the coverage probability
Compute mean of U−L defined by the average length

3.2 Confidence intervals for the difference between SNRs
Suppose that X ¼ ðX1;X2; :::;XnÞ follows any distribution with mean μX and standard
deviation σX. Similarly, let Y ¼ ðY1;Y2; :::;YmÞbe any distribution with mean μY and standard
deviation σY. Moreover, X and Y are independent. The single SNRs of X and Y are given by

θX ¼ μX
σX

and θY ¼ μY
σY

: (7)

The difference between of SNRs is defined as

δ ¼ θX � θY: (8)

Let Xand SX are sample mean and sample standard deviation of X, respectively. Moreover, let

Y and SY are sample mean and sample standard deviation of Y, respectively. Suppose that bθX
and bθY are the estimators of θX and θY, respectively, which are given
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bθX ¼ X

SX
andbθY ¼ Y

SY
: (9)

The difference between of SNRs is defined asbδ ¼ bθX � bθY: (10)

Suppose that VarðbθXÞ and VarðbθYÞ are the variances of bθX and bθY, respectively. The variance
of bδ ¼ bθX −bθY is

Var bδ� �
¼ Var bθX � bθY� �

¼ Var bθX� �
þ Var bθY� �

: (11)

3.2.1 GCI approach for the difference between SNRs.According to Thangjai andNiwitpong
(2019) andThangjai andNiwitpong (2020b). Let RμX be the GPQ of μX and let RσX be the GPQ of
σX. The GPQ of θX is defined as

RθX ¼
RμX

RσX

: (12)

Moreover, let RμY be the GPQ of μY and let RσY be the GPQ of σY. The GPQ of θY is defined as

RθY ¼
RμY

RσY

: (13)

Therefore, the difference between the GPQs of SNRs is

Rδ ¼ RθX � RθY: (14)

The 100ð1−αÞ%two-sided confidence interval for the difference between SNRs based on the
GCI approach is given by

CIδ:GCI ¼ ½Lδ:GCI;Uδ:GCI� ¼ ½Rδðα=2Þ;Rδð1� α=2Þ�; (15)

whereRδðα=2ÞandRδð1−α=2Þdenote the ðα=2Þ-th and ð1− α=2Þ-th quantiles ofRδ, respectively.

The following algorithm is used to construct the GCI for the difference between SNRs.

Algorithm 4. For a given x, y, sX and sY
For g ¼ 1 to m
Compute RμX, RσX, and RθX

Compute RμY, RσY, and RθY

Compute Rδ

End g loop
Compute the ðα=2Þ-th quantiles of Rδ defined by Rδðα=2Þ
Compute the ð1− α=2Þ-th quantiles of Rδ defined by Rδð1− α=2Þ

3.2.2 Large sample approach for the difference between SNRs. Following Thangjai and
Niwitpong (2019) and Thangjai and Niwitpong (2020b) using the central limit theorem, the
100ð1− αÞ% two-sided confidence interval for the difference between SNRs based on the
large sample approach is given by

CIδ:LS ¼ ½Lδ:LS;Uδ:LS� ¼ bδ� z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bδ� �r

;bδþ z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bδ� �r� �

; (16)

where z1−α=2 is the ð1−α=2Þ-th quantile of the standard normal distribution and VarðbδÞ is the
variance of the estimator of difference between SNRs.
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3.2.3 MOVER for the difference between SNRs. Let lX and uX be the lower and upper limits
of the confidence interval for SNR of X, respectively. Similarly, let lY and uY be the lower and
upper limits of the confidence interval for SNR of Y, respectively.

Following Zou and Donner (2008), Zou et al. (2009), Thangjai and Niwitpong (2019) and
Thangjai and Niwitpong (2020b), the 100ð1− αÞ% two-sided confidence interval for the
difference between the SNRs based on the MOVER approach is given by

CIδ:MOVER ¼ ½Lδ:MOVER;Uδ:MOVER�

¼ bθX � bθY �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθX � lX

� �2

þ uY � bθY� �2
r

;bθX � bθY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uX � bθX� �2

þ bθY � lY

� �2
r" #

:

(17)

3.2.4 Parametric bootstrap approach for the difference between SNRs. The parametric
bootstrap approach is a resampling approach based on independently sampling with a
replacement from existing sample data of the same sample size.

Let X* ¼ ðX*
1;X

*
2; :::;X

*
nÞ be sample with replacement from X ¼ ðX1;X2; :::;XnÞ with

sample size n and let x* ¼ ðx*
1; x

*
2; :::; x

*
nÞ be the observed values of X* ¼ ðX*

1;X
*
2; :::;X

*
nÞ.

Similarly, let Y* ¼ ðY*
1;Y

*
2; :::;Y

*
mÞbe the sample fromY ¼ ðY1;Y2; :::;YmÞwith replacement

sample size m and let y* ¼ ðy*
1; y

*
2; :::; y

*
mÞ be the observed values of Y* ¼ ðY*

1;Y
*
2; :::;Y

*
mÞ.

The re-sampled sample is called a bootstrap sample. The difference in SNRs from the
bootstrap sample is obtained by

δ* ¼ θ*X � θ*Y: (18)

An estimator of the difference of SNRs isbδ* ¼ bθ*X � bθ*Y: (19)

For replicate B times, there are totally B estimates of the difference of SNRs δ* from B
bootstrap sample.

The sampling distribution is constructed with these Bbootstrap statistics. The confidence
interval for the difference in SNRs is calculated using the distribution. Therefore, the
100ð1− αÞ% two-sided confidence interval for the difference between SNRs based on the
parametric bootstrap approach is given by

CIδ:PB ¼ ½Lδ:PB;Uδ:PB� ¼
hbδ� z1−α=2S

*;bδþ z1−α=2S
*
i
; (20)

where z1−α=2 is the ð1−α=2Þ-th quantile of the standard normal distribution and S* is the

standard deviation of bδ*.
The following algorithm is used to construct the parametric bootstrap confidence interval

for the difference between SNRs.

Algorithm 5. For a given x*, y*, s*X, and s*Y
For g ¼ 1 to m

Compute bθ*X
Compute bθ*Y
Compute bδ*
End g loop
Compute S*

Compute Lδ:PB and Uδ:PB
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3.2.5 Bayesian approach for the difference between SNRs. For x, let σXjx be the posterior
distribution of σX. And let μXjσX; xbe the posterior distribution of μX given σX. Let θX:BS be the
posterior distribution using σXjx and μXjσX; x. Similarly, for y, let σYjy be the posterior
distribution of σY. And let μYjσY; ybe the posterior distribution of μY given σY. Let θY:BS be the
posterior distribution using σYjy and μYjσY; y. Therefore, the posterior distribution of the
difference between SNRs is defined by

δBS ¼ θX:BS � θY:BS: (21)

The 100ð1−αÞ%two-sided confidence interval for the difference between SNRs based on the
Bayesian approach is given by

CIδ:BS ¼ ½Lδ:BS;Uδ:BS�; (22)

where Lδ:BS and Uδ:BS are the lower and upper limits of the shortest 100ð1−αÞ% highest
posterior density interval of δBS, respectively.

The following algorithm is used to construct the Bayesian credible interval for the
difference between SNRs.

Algorithm 6. For a given x, y, sX and sY
For g ¼ 1 to m
Compute σXjx, μXjσX; x, and θX:BS
Compute σYjy, μYjσY; y, and θY:BS
Compute δBS
End g loop
Compute the shortest 100ð1− αÞ%highest posterior density interval of δBS

The following algorithm is used to evaluate the coverage probabilities and average lengths of
the confidence intervals for the difference between SNRs.

Algorithm 7. For a given μX, μY, σX, σY and δ
For h ¼ 1 to M
Generate x and y
Calculate x, y, sX, and sY
Construct the confidence interval ½Lδ:GCI;Uδ:GCI�
Construct the confidence interval ½Lδ:LS;Uδ:LS�
Construct the confidence interval ½Lδ:MOVER;Uδ:MOVER�
Construct the confidence interval ½Lδ:PB;Uδ:PB�
Construct the confidence interval ½Lδ:BS;Uδ:BS�
If L≤ θ≤U, set p ¼ 1; else set p ¼ 0
Compute U−L
End h loop
Compute mean of p defined by the coverage probability
Compute mean of U−L defined by the average length

3.3 Confidence intervals for the common SNR
Consider k independent any distributions with a common SNR γ, let Xi ¼ ðXi1;Xi2; . . . ;XiniÞ
be a random sample of size n from i-th the distributionwithmean μi and standard deviation σi,

where i ¼ 1; 2; :::; k. Let θi be the SNR based on the i-th sample. Moreover, let bθi be the

maximum likelihood estimator of θi. Suppose that VarðbθiÞ is the variance of bθi.
According to Graybill and Deal (1959), the estimator of the common SNR γ is the weighted

average of SNR bθi based on k individual samples. The common SNR is defined by
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bγ ¼ Xk

i¼1

bθi
Vbar bθi� ��Xk

i¼1

1

Vbar bθi� �: (23)

3.3.1 GCI approach for the common SNR. Following Thangjai and Niwitpong (2020a). Let Rμi
be the GPQ for μi and let Rσi be the GPQ for σi. Therefore, the GPQ for θi is defined as

Rθi ¼
Rμi

Rσi

: (24)

The GPQ for the common SNR γ is a weighted average of the GPQ Rθi based on k individual
sample as

Rγ ¼
Xk

i¼1

Rθi

R
Var bθi� 	

,Xk

i¼1

1

R
Var bθi� 	; (25)

where R
VarðbθiÞ is VarðbθiÞwith μi replaced by Rμi and σi replaced by Rσi.

Therefore, the 100ð1−αÞ% two-sided confidence interval for the common SNR based on
the GCI approach is given by

CIγ:GCI ¼


Lγ:GCI;Uγ:GCI

� ¼ 

Rγðα=2Þ;Rγð1� α=2Þ�; (26)

where Rγðα=2Þ and Rγð1− α=2Þdenote the 100ðα=2Þ-th and 100ð1− α=2Þ-th percentiles of Rγ,
respectively.

The following algorithm is used to construct the GCI for the common SNR.

Algorithm 8. For a given xi and si
For g ¼ 1 to m
Compute Rμi, Rσi, and Rθi

Compute R
VarðbθiÞ

Compute Rγ

End g loop
Compute the ðα=2Þ-th quantiles of Rγ defined by Rγðα=2Þ
Compute the ð1− α=2Þ-th quantiles of Rγ defined by Rγð1−α=2Þ

3.3.2 Adjusted MOVER approach for the common SNR. According to Thangjai and

Niwitpong (2019) for i ¼ 1; 2; :::; k, the variance estimates for bθi at θi ¼ li and θi ¼ ui are the
average variance between these two variances given by

Vbar bθi� �
¼

Vbar bθli� �
þ Vbar bθui� �
2

¼ 1

2

bθi � li

� �2

z2α=2
þ

ui � bθi� �2

z2α=2

0B@
1CA: (27)

As documented byGraybill andDeal (1959), the common SNR isweighted average of the SNRbθi based on k individual samples. The common SNR is obtained by

bγ ¼ Xk

i¼1

bθi
Vbar bθi� �,Xk

i¼1

1

Vbar bθi� �; (28)

where bθi is computed by bμi=bσi and VbarðbθiÞ is defined as in Equation (27).
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According to Krishnamoorthy and Oral (2017), the lower and upper limits of the
confidence interval for the common SNR are given by

Lγ:AM ¼ bγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

ðbθi � liÞ2�
Vbar�bθli		2

,Xk

i¼1

1�
Vbar�bθli		2

vuut (29)

and

Uγ:AM ¼ bγ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

ðui � bθiÞ2�
Vbar�bθui		2

,Xk

i¼1

1�
Vbar�bθui		2

vuut ; (30)

where

Vbar bθli� �
¼

bθi � li

� �2

z2α=2

and

Vbar bθui� �
¼

ui � bθi� �2

z2α=2
:

Suppose that li and ui are the lower and upper limits of the confidence interval for the SNR.
Therefore, the 100ð1− αÞ%two-sided confidence interval for the common SNR based on the
adjusted MOVER approach is given by

CIγ:AM ¼ 

Lγ:AM;Uγ:AM

�
; (31)

where Lγ:AM is defined as in Equation (29) and Uγ:AM is defined as in Equation (30).

3.3.3 Computational approach for the common SNR. Following Thangjai and Niwitpong
(2020a) the computational approach, introduced by Pal et al. (2007), utilizes maximum
likelihood estimates. The common SNR, based on the maximum likelihood estimator, is
obtained by bγML ¼

Xk

i¼1

bθi
Vbar bθi� �,Xk

i¼1

1

Vbar bθi� �; (32)

where bθi ¼ bμi=bσi and VbarðbθiÞ is VarðbθiÞwith μi replaced by xi and σi replaced by si.

The restricted maximum likelihood estimates (RMLEs) of parameters are used to obtain
the computational approach. The maximum likelihood estimates of μi, σi and γ under
θ1 ¼ θ2 ¼ ::: ¼ θk ¼ γ provide the RMLEs of these parameters. The RMLE of μi is defined asbμiðRMLÞ ¼ Xi. The RMLE of σi is defined as bσiðRMLÞ ¼ Si. And the RMLE of γ is defined

as bθiðRMLÞ ¼ bμiðRMLÞ=bσiðRMLÞ.
Let XiðRMLÞ ¼ ðXi1ðRMLÞ;Xi2ðRMLÞ; :::;XiniðRMLÞÞ be artificial sample of size ni from any

distributions with mean bμiðRMLÞ and standard deviation bσiðRMLÞ. For i-th artificial sample, let

XiðRMLÞ and SiðRMLÞ be the mean and standard deviation of the sample from any distribution.
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Let xiðRMLÞ and siðRMLÞ be the observed values of XiðRMLÞ and SiðRMLÞ, respectively. The common
SNR based on k individual samples is obtained by

bγRML ¼
Xk

i¼1

bθiðRMLÞ

Vbar bθiðRMLÞ
� �,Xk

i¼1

1

Vbar bθiðRMLÞ
� �; (33)

where bθiðRMLÞ ¼ bμiðRMLÞ=bσiðRMLÞ and VbarðbθiðRMLÞÞ is VarðbθiÞ with μi replaced by xiðRMLÞ and σi
replaced by siðRMLÞ.

Therefore, the 100ð1−αÞ% two-sided confidence interval for the common SNR based on
the computational approach is given by

CIγ:CA ¼ 

Lγ:CA;Uγ:CA

� ¼ ½bγRMLðα=2Þ;bγRMLð1� α=2Þ�; (34)

wherebγRMLðα=2ÞandbγRMLð1−α=2Þdenote the 100ðα=2Þ-th and 100ð1− α=2Þ-th percentiles ofbγRML, respectively.
The following algorithm is used to construct the computational approach for the

common SNR.

Algorithm 9. For a given xi and si, where i ¼ 1; 2; :::; k, and common SNR γ
Compute bμiðRMLÞ ¼ xi and bσiðRMLÞ ¼ si
For g ¼ 1 to m
Generate xijðRMLÞ
Compute xiðRMLÞ and siðRMLÞ
Compute bγRML

End g loop
Compute the ðα=2Þ-th quantiles of bγRML defined by bγRMLðα=2Þ
Compute the ð1− α=2Þ-th quantiles of bγRML defined by bγRMLð1−α=2Þ

3.3.4 Bayesian approach for the common SNR. For i ¼ 1; 2; :::; k, let σijxi be the posterior
distribution of σi. And let μijσi; xi be the posterior distribution of μi given σi. Let θi be the
posterior distribution using σijxi and μijσi; xi. Let VarðθiÞ be the variance of θi using σijxi
and μijσi; xi.

The common SNR is defined by

γBS ¼
Xk

i¼1

θi
VarðθiÞ

,Xk

i¼1

1

VarðθiÞ: (35)

The 100ð1−αÞ%two-sided confidence interval for the common SNR based on the Bayesian
approach is given by

CIγ:BS ¼


Lγ:BS;Uγ:BS

�
; (36)

where Lγ:BS and Uγ:BS are the lower and upper limits of the shortest 100ð1− αÞ% highest
posterior density interval of γBS, respectively.

The following algorithm is used to construct the Bayesian credible interval for the
common SNR.

Algorithm 10. For a given xi and si
For g ¼ 1 to m
Compute σijxi, μijσi; xi, and θi
Compute VarðθiÞ
Compute γBS
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End g loop
Compute the shortest 100ð1− αÞ% highest posterior density interval
of γBS

The following algorithm is used to evaluate the coverage probabilities and average lengths of
the confidence intervals for the common SNR.

Algorithm 11. For a given μi, σi, and γ, where i ¼ 1; 2; :::; k
For h ¼ 1 to M
Generate xij, where i ¼ 1; 2; :::; k and j ¼ 1; 2; :::; ni
Calculate xi and si
Construct the confidence interval ½Lγ:GCI;Uγ:GCI�
Construct the confidence interval ½Lγ:AM;Uγ:AM�
Construct the confidence interval ½Lγ:CA;Uγ:CA�
Construct the confidence interval ½Lγ:BS;Uγ:BS�
If L≤ θ≤U, set p ¼ 1; else set p ¼ 0
Compute U−L
End h loop
Compute mean of p defined by the coverage probability
Compute mean of U−L defined by the average length

4. Simulation studies
A simulation study was conducted to assess the coverage probabilities and average lengths
of the confidence intervals using the R statistical program. The criteria for selecting the best-
performing confidence interval were a coverage probability greater than or equal to 1− αand
the shortest average length for each tested scenario.

For the SNR simulation study, the sample size, population mean, population standard
deviation, and population SNR were set. For each set of parameters, M random samples were
generated. For the GCI and Bayesian approach, m times of Rθ and θBS were obtained for each
of the random samples. In this simulation study, the sample sizes were n ¼ 30, 50, 100; the
population mean was μ ¼ 1; the SNR θ ¼ 1, 2, 5, 10; and the population standard deviation

was computed as σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðð1=θ2Þ þ 1Þ

q
.5,000 random samples were generated for each set

of parameters. For the GCI and Bayesian approaches, 2,500 Rθ’s and 2,500 θBS’s were obtained
for each of the random samples. Table 1 presents the coverage probabilities and average
lengths of the 95% two-sided confidence intervals for the SNR of the log-normal distribution,
utilizing the GCI, large sample, and Bayesian approaches. The findings indicate that the
coverage probabilities of all approaches closely align with the nominal confidence level of
0.95. Overall, the Bayesian approach emerged as the best approach, excelling in both
coverage probability and average length. Notably, the GCI approach outperforms the large
sample and Bayesian approaches in terms of both coverage probability and average length.

For the difference between SNRs simulation study, the sample sizes, population means,
population standard deviations, and population SNRs were set. For each set of parameters, M
random samples were generated. For the GCI, parametric bootstrap, and Bayesian

approaches, m times of Rδ, bδ*, δBS were obtained for each of the random samples. In this
simulation study, the sample sizes were ðn;mÞ ¼ (30, 30), (30, 50), (50, 50), (50, 100), (100, 100);
the population means were ðμX; μYÞ ¼ (1,1); the population SNRs were ðθX; θYÞ ¼ (10, 1), (10,
2), (10, 5), (10, 10); and the population standard deviations were computed as

σX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðð1=θ2XÞ þ 1Þ

q
and σY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðð1=θ2YÞ þ 1Þ

q
. The coverage probabilities and
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average lengths of the 95% two-sided confidence intervals for the difference between the
SNRs of the log-normal distributions were evaluated based on 5,000 replications, and 2,500

Rδ’s, 2,500 bδ*, and 2,500 δBS were obtained for the GCI, parametric bootstrap, and Bayesian
approaches. The results are displayed in Table 2, showing that all approaches were
satisfactory for all cases, except for the parametric bootstrap approach, which demonstrates a
coverage probability lower than the nominal confidence level of 0.95. The GCI approach
surpasses the others in terms of both coverage probability and average length.

For the common SNR simulation study, the sample cases, sample sizes, population means,
population standard deviations, and population common SNR were set. For each set of
parameters, M random samples were generated. For the GCI, computational, and Bayesian
approaches, m times of Rγ,bγRML, and γBS were obtained for each of the random samples. In this
simulation study, the sample cases were k ¼3; the sample sizes were ðn1; n2; n3Þ ¼ (30,30,30),
(50,50,50), (30,50,100), (100,100,100); the population means were ðμ1; μ2; μ3Þ ¼ (1,1,1); the
population standard deviations were ðσ1; σ2; σ3Þ ¼ (0.10,0.29,0.47), (0.29,0.47,0.83). For each
set of parameters, 5,000 random samples were generated. For the GCI, computational, and
Bayesian approaches, 1,000 Rγ’s and 1,000bγRML’s, and 1,000 γBS were obtained for each of the
random samples. The results are showcased in Table 3, revealing that the GCI and Bayesian
approaches were superior in terms of coverage probability. Additionally, the computational
approach demonstrated coverage probabilities close to the nominal confidence level of 0.95
for large sample sizes. However, the adjusted MOVER approach exhibited coverage
probabilities lower than the nominal confidence level of 0.95. Overall, the GCI approach
emerged as the best approach, excelling in both coverage probability and average length.

The R code for computing the coverage probabilities and average lengths of 95% two-
sided confidence intervals for the common SNR of several log-normal distributions using the
GCI, adjusted MOVER, computational, and Bayesian approaches is presented in the
Appendix.

5. Empirical results
Changes in stock market indices and their constituents occur over time due to market
dynamics and the criteria set by the exchange. In the context of Thailand, SET50, SET100,
and sSET are notable indices. The SET50 Index mirrors the price fluctuations of 50 large-
capitalization securities with substantial trading liquidity on the Stock Exchange of

n θ
CP (AL)

CIθ:GCI CIθ:LS CIθ:BS

30 1 0.9486 (0.7296) 0.9490 (0.7302) 0.9478 (0.7243)
2 0.9506 (1.1787) 0.9516 (1.1815) 0.9462 (1.1691)
5 0.9452 (2.6796) 0.9460 (2.6927) 0.9424 (2.6563)
10 0.9522 (5.2743) 0.9550 (5.3010) 0.9498 (5.2268)

50 1 0.9498 (0.5552) 0.9498 (0.5554) 0.9488 (0.5510)
2 0.9478 (0.8957) 0.9482 (0.8968) 0.9458 (0.8887)
5 0.9472 (2.0433) 0.9480 (2.0498) 0.9444 (2.0263)
10 0.9500 (4.0332) 0.9510 (4.0460) 0.9496 (3.9995)

100 1 0.9520 (0.3888) 0.9528 (0.3888) 0.9490 (0.3856)
2 0.9536 (0.6249) 0.9540 (0.6252) 0.9532 (0.6202)
5 0.9522 (1.4279) 0.9516 (1.4295) 0.9478 (1.4166)
10 0.9488 (2.8132) 0.9508 (2.8180) 0.9490 (2.7917)

Source(s): Authors’ calculation

Table 1.
The coverage
probabilities (CP) and
average lengths (AL) of
95% two-sided
confidence intervals for
the SNR of log-normal
distribution
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The CPs and ALs of

95% two-sided
confidence intervals for
the difference between

SNRs of log-normal
distributions
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Thailand. Similarly, the SET100 Index encompasses the price movements of 100 large-
capitalization securities with notable trading liquidity on the same exchange. On the other
hand, the sSET Index captures the price changes of common stocks beyond those included in
the SET50 and SET100 indices. These stocks exhibit consistent liquidity and adhere to
specified requirements related to share distribution among minor shareholders.

Price-earnings ratios for the SET50, SET100, and sSET indexes are computed from
monthly index data provided by the Stock Exchange of Thailand. This study focuses on
monthly index data spanning from January to November 2023, as detailed in Table 4. The
histograms depicting daily rainfall data can be found in Figure 1, and Table 5 presents
sample sizes, means, standard deviations, and SNRs for the three indexes. Before applying
our methods to real data, it is crucial to assess the assumption that the logarithms of the data
are drawn from a normal distribution. Traditionally, the Shapiro–Wilk normality test was
employed, yielding p-values of 0.3922, 0.1467, and 0.08508 for SET50, SET100, and sSET
indexes, respectively. Recognizing the limitations of p-values in testing, alternative methods
for checking normality include graphical tools such as QQ-plots or Bayesian tests. Analysis
of Table 6 reveals the minimum Akaike Information Criterion (AIC) values from Bayesian
tests across five regions, indicating that SET50, SET100, and sSET indexes follow log-
normal distributions. Furthermore, the normal QQ-plots of log-data in Figure 2 affirm the
results of the Bayesian test. For illustrative purposes, we exclusively select data from log-
normal distributions to showcase our estimation approaches.

For SET50 index, the 95% confidence intervals for the SNR based on the GCI, large
sample, and Bayesian approaches are CIθ:GCI ¼ [11.4901,28.5148] with an interval length of
17.0247, CIθ:LS ¼ [11.2126,28.7475] with an interval length of 17.5349, and CIθ:BS ¼
[10.8550,28.0229] with an interval length of 17.1679, respectively. For SET100 index, the
95% confidence intervals for the SNR based on the GCI, large sample, and Bayesian
approaches are CIθ:GCI ¼ [8.6529,21.7304] with an interval length of 13.0775, CIθ:LS ¼
[8.4493,21.6850] with an interval length of 13.2357, and CIθ:BS ¼ [8.0436,21.1895] with an
interval length of 13.1459, respectively. For sSET index, the 95% confidence intervals for the
SNR based on the GCI, large sample, and Bayesian approaches are CIθ:GCI ¼ [7.9635,20.0325]
with an interval length of 12.0690, CIθ:LS ¼ [7.8989,20.2794] with an interval length of 12.3805,
and CIθ:BS ¼ [7.9815,20.1948] with an interval length of 12.2133, respectively. Notably, the
confidence intervals for the SNR based on the GCI, large sample, and Bayesian approaches
encompass the true value of the SNR. However, the GCI approach has a shorter length than
the large sample and Bayesian approaches.

For difference between SET50 index and SET100 index, the true difference between the
SNRs is 4.9129. The 95% confidence intervals for the difference between SNRs based on the
GCI, large sample, MOVER, parametric bootstrap, Bayesian approaches are CIδ:GCI ¼

ðn1; n2; n3Þ ðσ1; σ2; σ3Þ
CP (AL)

CIγ:GCI CIγ:AM CIγ:CA CIγ:BS

(30,30,30) (0.10,0.29,0.47) 0.9530 (1.2606) 0.8846 (1.0129) 0.9394 (1.2970) 0.9478 (1.2424)
(0.29,0.47,0.83) 0.9484 (0.7425) 0.8908 (0.6071) 0.9386 (0.7596) 0.9444 (0.7317)

(50,50,50) (0.10,0.29,0.47) 0.9512 (0.9656) 0.8814 (0.7612) 0.9456 (0.9823) 0.9504 (0.9523)
(0.29,0.47,0.83) 0.9550 (0.5699) 0.8952 (0.4578) 0.9498 (0.5776) 0.9528 (0.5614)

(30,50,100) (0.10,0.29,0.47) 0.9482 (0.6554) 0.9100 (0.5783) 0.9426 (0.6650) 0.9426 (0.6465)
(0.29,0.47,0.83) 0.9484 (0.4010) 0.9170 (0.3554) 0.9508 (0.4065) 0.9444 (0.3954)

(100,100,100) (0.10,0.29,0.47) 0.9544 (0.6780) 0.8736 (0.5262) 0.9458 (0.6842) 0.9494 (0.6689)
(0.29,0.47,0.83) 0.9448 (0.4000) 0.8792 (0.3169) 0.9454 (0.4032) 0.9414 (0.3944)

Source(s): Authors’ calculation

Table 3.
The CPs and ALs of
95% two-sided
confidence intervals for
the common SNR of
several log-normal
distributions
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Sample statistics
Index

SET50 SET100 sSET

ni 11 11 11
yi 19.57 18.83 17.21
sYi

1.00 1.29 1.26
xi 2.97 2.93 2.84
sXi

0.05 0.07 0.07bθi 19.98 15.07 14.09

Source(s): Authors’ calculation

Index Price-earnings ratios

SET50 18.90 20.09 20.07 18.71 18.90
18.79 19.69 21.77 20.45 19.58
18.33

SET100 17.54 18.79 18.80 17.52 18.24
18.07 18.66 21.73 20.44 19.43
17.87

sSET 16.00 17.52 17.49 16.45 17.15
16.07 16.15 20.05 18.84 17.20
16.44

Source(s): Stock Exchange of Thailand (https://www.set.or.th/th/market/statistics/market-statistics/main)
Authors’ calculation

Figure 1.
Histogram plots of

monthly price-earnings
ratios of three indexes

Table 5.
Sample statistics of

price-earnings ratios of
three indexes

Table 4.
Price-earnings ratios of

three indexes

Confidence
intervals for

functions

https://www.set.or.th/th/market/statistics/market-statistics/main


[�5.9406,15.6047] with a length of interval of 21.5453, CIδ:LS ¼ [�6.0718,15.8977] with a
length of interval of 21.9695, CIδ:MOVER ¼ [�7.5748,17.4007] with a length of interval of
24.9755, CIδ:PB ¼ [�11.6552,21.9753] with a length of interval of 33.6305, and CIδ:BS ¼
[�6.2144,15.6602] with a length of interval of 21.8746, respectively. For difference between
SET50 index and sSET index, the true difference between the SNRs is 5.8909. The 95%
confidence intervals for the difference between SNRs based on the GCI, large sample,
MOVER, parametric bootstrap, Bayesian approaches are CIδ:GCI ¼ [�4.1340,16.4281] with a
length of interval of 20.5621, CIδ:LS ¼ [�4.8416,16.6235] with a length of interval of 21.4651,
CIδ:MOVER ¼ [�6.3101,18.0920] with a length of interval of 24.4021, CIδ:PB ¼ [�9.7428,21.7973]
with a length of interval of 31.5401, and CIδ:BS ¼ [�5.2779,15.4926] with a length of interval of
20.7705. For difference between SET100 index and sSET index, the true difference between
the SNRs is 0.9780. The 95% confidence intervals for the difference between SNRs based on
the GCI, large sample, MOVER, parametric bootstrap, Bayesian approaches are CIδ:GCI ¼
[�7.7565,9.7044] with a length of interval of 17.4609, CIδ:LS ¼ [�8.0837,10.0398] with a length
of interval of 18.1235, CIδ:MOVER ¼ [�9.3236,11.2796] with a length of interval of 20.6032,
CIδ:PB ¼ [�14.3997,16.7647] with a length of interval of 31.1644, and CIδ:BS ¼ [�8.0435,9.8604]
with a length of interval of 17.9039. The results indicate that all confidence intervals contain
the true difference between the SNRs. However, the GCI approach stands out by providing the
shortest length, making it the most preferable among the alternatives.

The true common SNRs is 15.6870. The 95% confidence intervals for the common SNR
based on GCI, adjusted MOVER, computational, and Bayesian approaches are CIγ:GCI ¼

Distribution
AIC

SET50 index SET100 index sSET index

Normal 34.09 39.76 39.31
Log-normal 33.67 39.00 38.50
Gamma 33.88 39.34 38.86
Exponential 88.43 87.58 85.61

Source(s): Authors’ calculation

Figure 2.
The normal QQ-plots of
log-monthly price-
earnings ratios of three
indexes

Table 6.
The AIC values of
price-earnings ratios of
three indexes

AJEB



[9.7447,18.5943] with a length of interval of 8.8496, CIγ:AM ¼ [11.1191,20.2548] with a length of
interval of 9.1357, CIγ:CA ¼ [12.0582,21.0089] with a length of interval of 8.9507, and CIγ:BS ¼
[9.7514,18.7842] with a length of interval of 9.0328. The findings suggest that all confidence
intervals include the true common SNR, with the GCI approach having a shorter length
compared to the others.

6. Conclusion
The GCI approach showed better results than other techniques in terms of coverage
probability and average length for both the SNR and the difference between SNRs, with the
Bayesian approach performing similarly to the GCI approach. Therefore, it is recommended
to use the GCI approach for constructing confidence intervals for these parameters.
Regarding the common SNR, the Bayesian approach had the shortest average length. Hence,
it is recommended to use the Bayesian approach for constructing confidence intervals for the
common SNR.
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