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Abstract

Purpose - Using a generalized translation operator, this study aims to obtain a generalization of Titchmarsh’s
theorem for the Laguerre-Bessel transform for functions satisfying the wy-Laguerre-Bessel-Lipschitz
condition in the space LZ (i), where I = [0, 4-c0[ X [0, +oo].

Design/methodology/approach — The author has employed the results developed by Titchmarsh, of
reference number [1].

Findings — In this paper, an analogous of Titchmarsh’s theorem is established for Laguerre—Bessel transform.
Originality/value — To the best of the authors’ findings, at the time of submission of this paper, the results
reported are new and interesting.
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Paper type Research paper

1. Introduction
The integral Fourier transform, as Fourier series, is widely used in various fields of calculus,
computational mathematics, mathematical physics, etc.

Years ago, Titchmarsh established (1], Theorem 84) that if f satisfies the Lipschitz
condition Lip(5; p) in the L norm (1 < p < 2) on the real line R, that is

([ 1rtem=s@1?) =o), 0<21) 50

Then its Fourier transform Z(f) belongs to L (R), for

b p
prop—1- "1

A second result (1], Theorem 85) characterized the set of functions in LZ(R) satisfying the
Cauchy—Lipschitz condition by means of an asymptotic estimate growth of the norm of their
Fourier transform. Namely, we have:

JEL Classification — 26A16, 43A30, 26D10

© Larbi Rakhimi and Radouan Daher. Published in the Arab Journal of Mathematical Sciences.
Published by Emerald Publishing Limited. This article is published under the Creative Commons
Attribution (CCBY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works
of this article (for both commercial and non-commercial purposes), subject to full attribution to the
original publication and authors. The full terms of this license may be seen at http://creativecommons.
org/licences/by/4.0/legalcode

The authors would like to thank the referee for carefully checking the manuscript and for his/her
helpful comments and suggestions.

Data Availability Statement: The manuscript has no associated data.

Analog of
Titchmarsh’s
theorem

Received 25 April 2022
Revised 27 August 2022
15 October 2022

31 December 2022
Accepted 17 January 2023

C

Arab Journal of Mathematical
Sciences

Emerald Publishing Limited
eISSN: 2588-9214

p-ISSN: 1319-5166

DOI 10.1108/ATMS-04-2022-0101


http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-04-2022-0101

AJMS

Theorem 1.1. If f € L*(R). Then the following are equivalents:
Q) W+ =FOllezw = o(l’), (0<6<1)ash— 0.
@ [ | FOR*dh = 0(r) as r — co.

where F (f) stands for the Fourier transform of f.

Considerable attention has been devoted to discovering generalizations of new contexts for

those theorems, see, e.g. (2-7]). The aim of this paper is to give a generalization of these two

theorems by using the harmonic analysis associated with the Laguerre-Bessel operators.
Throughout this paper, C denotes a positive constant which can differ from one line to

another.

2. Preliminaries

Given a > 0. The harmonic analysis on K = [0, +-00[ X [0, +-oo[is generated by the following

partial differential operators:

# 2ad
Dig=—+— —
=52 T T u

# 2a+1 9
Dyy = — —+ 4D
2, o X ax+x Las

where (x, 1) € K. For (4,m) € [0, +00[ X N, the initial value problem:
Dy ot = —Au,

Dyout = —44 <m + aT—H> u

Ju ou
has a unique solution ¢; ,, given by
Pirm (xa t) :](z—%(lt)ﬁ’zz (/UCZ)7 (x7 t) € Kv

where € is the Laguerre function defined on [0, +ool, by

a —iLa (x )
2] _ 5m
LWZ (x) e Lfn (0) k)

L? being the Laguerre polynomial of degree m and order a, given by

m

a _ < kr(m+a+1) 1
L) = ;(_1) T(k+a+1) k!(m—k)!xk’

and 7, is the normalized Bessel function given by

R S o VAN e
jol®) = T(a+ );m@ '

@

@

)



Lemma 2.1. [8] For all (A,m) € [0, +oo[ X N, the function ¢, , is infinitely differentiable
on R, even with respect to each variable and we have

sup(x‘l)eK|‘PLm(x7 t)| =1 (5)

Notation. We denote by:
Q) Jxt]|=] (x,1)] = (& + 4t2)% the homogeneous norm on .

@ | Am =] (A,m)]g i = 4A(m + 1) the quasinorm on [0, +oo[ X N. Let us
denote B,, the ball centered 0 and of radius 7, defined by,

B, = {(A,m) €0, +oo[ X N;| 4,m| <7} and B = ([0, +oo] X N)\B,.

@) LL(K),p €1, +oo], the spaces of measurable functions on K such that

1l = {/Kp(x,twdma(x,t)r <400, if pEl,+oo|

“f”oo,a =6€s Ssup(xf)eK V(xv t)l < +o0,

where dm,, is the weighted Lebesgue measure on K, given by

ylotl tZa

@ ([0, +00[ X N),p €L, +o0], the spaces of measurable functions on [0, +-co[ X N
such that

Hg”“” [/[OAroo[xN

HgHy,mo = €8S Sup(/l.m)e[0,+oo[ XN ‘g(/lv m)| < Fo0,

1

b

g(A,m)[ dy,(2,m)| < +oo,ifp€E[l,+oof

where dy,, is the positive measure defined on [0, +oo[ X N by

g(A,m)dy,(A,m L ( / g(4,m)2**da.
/[OWN( o) = e IFH Z )
Definition 2.2.

(1)  The transiation operators T (%, 1) € Kare defined for a continuous function f on I, by

(x,t)?

Z/ (B0x.3), Y + (~1)t + (~17s)do, ifa =0
T/ s =q 7
ba f(AH(xvy)a Ag(x,y)f) d,ua(§7 l//a 6)7 lf(l > O

(0.’

where Ag(x,y) = /4% + 32 + 2xy cos 6, b, = “’“;r
d

a+i .
42), Y = xysin @ and
(a
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AJMS dpy(&,y,0) = (sin &)™ (siny)™*”" (sin )™ dédyde.

@)  The convolution product of two continuous functions f, g on K, with compact support is
defined by

(F*2)(x,1) = / T/ 0:980s)dmaly.s), - (5,0 €K.

We have the following properties:

1) Iffell(K),geL!(K)suchthat 1 <p,q < and j+;—1 =, then the function
f*gel (K), and

1 *&ll, o < Fllpallgllye:

(2) Forall (4,m) €0, +oo[ X N, the kernel ¢, ,, verifies the following product formula
Con® D)8, (1,8) = T 010 (0,5), (5,), (0,5) € K.
() For feLl(K),p €1, +oo]we have T(7, f € L2 (I) and
1T o < IF N

The Fourier-Laguerre—Bessel transform of a function in L}l(K) is given by

Fraf (ym) = / ) (. m (x.1), (4.m) € 0, 0] X N.

From Ref. [8], it is well known that Fourier-Laguerre-Bessel transform can be
inverted to

Filf(n 1) = / )@ (5, Oy (), (5,8) € K.

[0,400[ X N

It is well-known (see Refs. [8-11]) that the Fourier—Laguerre—Bessel transform F g satisfies
the following properties.

Theorem 2.3. (Inversion formula). If f € L.(KK) such that F5(f) GL;H([O, +oo[ X N), then
Sor all (x,t) € I we have

Flnt) = / ol e g, )

Theorem 2.4. (Plancherel Theorem for F;g). The generalized Fourier transform F g extends
to an isometric isomorphism from L’(IK). Onto Lil([O, +oo[ X N).

Proposition 2.5. For f € LL(K), (x, 1) € K and (A, m) € [0, +o0[ X N, we have
Fun (T ) ) = @05, Fro(F) 4 ). ©



Remark 1. From (6) (see Ref. [14]), we get Analog of

Fua(TEf = F) o) = (0u(s.) — 1) Funlf) o). @ Titchmarsts

3
~

3. Main results
In order to give the main results, we begin with auxiliary results interesting in themselves.

Lemma 3.1. Letn > 0.

(1)  The behavior in O of the kernel ¢, ,, could be expressed as follows:

()’ | A,m]| ¥
dla+l) 4(a+1)

Ornlt) =1 - ot ol 2ml* 51 f), @

1?22

_ 1
where ko = Sah@d T 2w T

(2) There exists a constant C, such that if |4, m\x2 <, then
|1 (%, 1) = 1| 2 ClA, m|2. ©)
() There exist C> 0 such that for all (x,t) € K,
aom | ntf<n = e t) =1 <Clamf|x, 1 (10)
@) There exist C> 0 and A > 0 such that for all |x, t|*|A, m| > A and (x,t) € K,
| eim(x,t) =1].2C. 11

Proof.
(1) From the relation (2) and (3), we have

m—l—%
X
a+1

B m? m 1 )
) =1- + (2(a+1)(a+2)+2(a+2)+§)x2+0(x)' 12)

Then (i) could be deduced easily using the relation (1),(12) and the behavior in 0 of the
normalized Bessel function which states

Jo(u) = u® +o(u?).

1
4(a+1)
(2) Using relations (8), we obtain

. |(P/Lm(x7 t) — 1’ o 1
lim ( ) =K >0,

|A,m‘x2—>0 Mv Wllx2 a—+ 1)

which proves the wanted result.
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(3) Using relation (8).
(4) From ([6], Lemma 4.3), we have

lim l///l,m (xv t) = 07

[2,m]—>+oc0

where y, , (v, 1) = ¢#¥; (1x%) the Laguerre kernel, and from Ref. [12], we have the
asymptotic formula for the normalized Bessel function j, when x — + oo:

Jo(x) = F(Icf(;r) Y (%) s cos (x — (2a+1) g) +o0 (;%)

Hence as
. 1
PLim (xv t) = ]a—%(}’t) ﬁw/l.m (x’ t)v

then lim; |- 1co@am, ) = 0, we get imy) | 4 co| @2,m, ) — 1| = 1, which completes the
proof. O

Lemma 3.2. (Hausdorff-Young inequality) Let 1 < p < 2. If fel’(K), then
Frrf €L] ([0, +oo X N) and we have

1Frefll,,, < Clfllpeo

Yag
where the numbers p and q above are conjugate exponents:

11
i
b a

Proof. By applying the Riesz—Thorin interpolation theorem to the elementary estimate [13]
and Plancherel theorem, we obtain the desired inequality. O

Proposition 3.3. Let f be a function in L2 (1K), such that ‘ sz)”f —fll =0\ forl<p<2
and 0 <y < 1. Then F15f belongs to Lfa([O, +oo[ X N), where
(a+2)p b
<p< .
(@a+2)(p—1)+2 P p—1

Proof. By proceeding similarly to theorem (Theorem 3.1 [6]). For fixed (x, ¢) € I<, we have
using relations (7) and Lemma 3.2

[ el = 1| Fuaf Gl ez, m) = 06,
[0,400[ X N
Using relations (9), we get

/ \h, ml?) Foaf (hom) iy, < / (s, £) — 17| Fuf (2, m)'dy,
By By

.t'z X7

SCX(V—Z)Q .



Now, let # < ¢q. From Holder inequality, one gets Analog of

) } g 14 Titchmarsh’s

[ vt FusGontan,s ([ |t Fasamra,) ([ ) theorem
By By By

Therefore

[ o\ Fuaf o) a.m) = O(xF5020D), 13)
Bx

Recall that B = ([0, +oo[ X N)\B;. To get the theorem, it is enough to prove that
/ gy | FLeS (4, m) V’dy,(4,m) is bounded when X — +oo. Therefore, we can write
1

Fraf(A,m)| dy, (2, m L%(0
/WX' L Gym) Py, (2, m) = ZMFH >

m=0

where I depend on m and X and has the expression

e e
I = | Fraf (A, m)|" 2> dA.
T
Then
X
Tnt2a12 g
I= (4m + 2a + 2)|A,m| "D, (|2, m|)dA
T
where
+X +2
®,(X) = Ay m|P| Fraf (A, m) P 2%+ da
1

xm+2a+2

Making a change of variables and an integration by parts, we get
X
I=0,X)X7+p / t7 1, (¢)dt.
1
Consequently

X
[ 1T Gomldrm) = X+ [ e

where

m=0

G R

/ L, | Fuaf (3 m) Py (4, m).
B{NBy
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From relation (13), we have

[ 1FufGmldrm) = o(x+ ()
BINBx

X
+0 ( / t—/’—ltz%’/’”“*z)(l*g)dt).
1

This is bounded as X — +oo if —f (% + —“;2) + (a+2) < Othat gives f > =20 +2()”‘(22)§)+,,, O
a+2)(p-1+7
Next we define the y-Laguerre—Bessel-Lipschitz class:

Definition 3.4. A function fis said to be in y-Laguerre-Bessel-Lipschitz class and is denoted
by Lip,(w, 2), if f belongs to Li([K) and verifies, for all (x, ¢) € K

| 767 =1, = 0w, t)asts. e o0, (14)

where
(1) w(t) is a continuous increasing function on [0; col.
2 w0) = 0and w(ts) = w®w(s) for all ¢, s € [0; oo].
®) [isw(s)ds =0 (bwm) as n—o.
Example 3.5. Lety(t) =, where 0 < y < 1. In this case, the relation (14) is a generalization of

Lipschitz condition ||f(x + &) —f(x)|| = O(k"), and the w-Laguerre-Bessel-Lipschitz class
Lip,(y, 2), are called the Laguerre-Bessel-Lipschitz class Lip,(y, 2).

Now, we are able to generalise the equivalence theorem.

Theorem 3.6. Let f € Li(K), the following two conditions are equivalent:
@) 1€ Lipaly, 2).
@

/Bf|5"—mf(/1,1’l’l)|2dya(/1,m) =o(y(r™)) as r— + oo.

Proof. (1 = u):Let f EL(ZZ([K) from (i), we have

2
|7~ = [ Jeumtet) =11 Fu )y,
2.a 0,400 X N

Therefore, using relation (11), we have

/ | Funf (hom)dy, <C / (@, £) — 1| Fuaf (4, m) Py,
BfA [B[A

|x.t\2 |x.t\2
x, t|2) ) .

<c| 1,1 ol

Consequently, (i) holds.



(@@ = 1): Denote » = |x'.,77t|2’ by Plancherel theorem, we get Analog of

(@ 2 Titchmarsh’s
H Tun/~f Hzf L+ I, theorem

where

B [ Jounte.t) = 11 Fuaf o) Py i)

and

j. / @, ) — 1| Fraf (3, m) Py (2, m).
B

, t\2>).

Using relation (5), we find that
L<a [ | Fufom) = o)) = o v
B

Denote
g(X) = / | Fraf (A, m) PR da,
X

then g'(1) = —| Fraf (4, m)|213‘”1. Using relation (10), which gives

= dxm
NSOt 1F P < /

2 =0

le /

‘ (4K1n)2/12(_g (A))d’{) ’
by integration by parts, we have
n

2 RN, S—
I <Clr ' e ZL T ol —1 | + (4, /“m|'“"‘22&g(/1)dﬂ

4 2
2 m=0 x,t| 4k, |, t| 0

Remark that
22“-1r (a+1) Z ( ) N /B | Funf (4m)dr, = o(w(R7)).
—0 Kon ;\)

Making a change of variable, one gets

h SO(W( . t|2)) +C|x’l‘|4/o|£l2 oa- 1r( +—> %L <4K’”>
2

ol () et o [t
=o(w (=)
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Then

[rissslf oo (es8)) ~ofote ) sie=o
' O

We conclude this work by the following immediate consequence. It is analogous of

Titchmarsh theorem (1], Theorem 85) is established for Laguerre—Bessel transform.

Corollary 3.7. Let w(t) = ¥, where 0 < y < 1. The following two conditions are equivalent:

(1) fisin Laguerre—Bessel-Lipschitz class Lip,(y, 2).

@ [l Fuaf (2sm)dy,(2,m) = O(r) as r — +oo.
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