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Abstract

Purpose — In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some

abstract methods in mathematical complex matrix analysis.

Design/methodology/approach — We introduce and investigate the complex space H¢ consisting of all
z21+ iy zo + 1w, 4

—F -y, 7 + i, > (a1, 11,22, 102) €C.

Findings — We develop on H¢ a new matrix holomorphic structure for which we provide the fundamental

operational calculus properties.

Originality/value — We give sufficient and necessary conditions in terms of Cauchy—Riemann type

quaternionic differential equations for holomorphicity of a function of one complex matrix variable & € He. In

particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.

2 X 2 complex matrices of the form & = (

Keywords Complex quaternion, Complex quaternionic space, Quaternionic holomorphic function,
Cauchy-Riemann equations
Paper type Research paper

1. Introduction
The theory of quaternionic analysis was founded in 1928 and is devoted especially to the
study of the so-called regular functions introduced by R. Fueter in 1935 [1] which satisfy the
(left) Cauchy—Fueter equation
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where {1, 7, j, k} is the standard basis of the four-dimensional real algebra H of the
quaternions numbers constructed in 1843 by W. R. Hamilton [2]. All such quaternion
numbers have the representation

Xo + 3l + X + 23k, (%o, X1, %3, %3) € R
which provide in fact a foundation for simple mathematical representation of rotations.

Therefore, they are powerfully used in the fields of mechanics, magnetism, aerospace,
software development, etc. Thus, many mathematicians show a great interest in studying
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quaternionic analysis and particularly quaternionic analysis over a complex structure.
Among many research papers about quaternionic analysis, for instance, we may observe the
various versions of their works presented in Refs. [3-5].

In this paper, we are deeply interested in the field My of quaternion numbers represented
by all 2 X 2 complex matrices having the form

2= < 21 ZZ), (21,2,) € C.

—22 21

such My will be regarded here as an R-algebra isomorphic to the R-algebra H of W. R.
Hamilton. We propose to introduce the complex space H¢ of the so-called complex quaternion
numbers of the form

E=z 4w, (z,w) € My X My,

so that

I P A S R S A 4
He = {5_ <*Zg*i@2 Z +i@1> a2 102) €C }

We present He as the left M-vector space of complex quaternion numbers with basis

am={(5 9)-(o 7)}

so that H¢ has a splitting into the direct sum My @ i M. Moreover, we develop on H¢ a new
matrix holomorphic structure for which we provide the fundamental operational calculus
properties.
The main parts of this work are organized as follows. In Section 2, we present the
construction of the space H¢ of the complex quaternion numbers and we prove the following.
Theorem 2.1. Let (He, +, .) denote the set My X My equipped with the operations (+) and
() defined such that for all (z,w), (z,w') € He, for all 1 = a + ib € C, we have:

1) Ew+E w)=e+2,w+w)

@) Az w) = (@+1ib)z w) = (az — bw, aw + bz).
Then, it holds that

(1) (He,+,.)isa Cvector space.

(2) Mg has a sphitting into a direct sum Hy @ iH; where Hy is an R-sub-vector space of He
isomorphic to My.

() If (X) denotes the usual multiplication of square matrices, then the space (He, +, ., X)
1s a C-algebra and the space (My, +, ., X ) is an R-sub-algebra.

The above structure on H¢ has its own particular features, it induces a C-algebra structure.
So, we have included in this section the basic correspondent algebraic properties. Moreover,
we define a conjugation in H¢ for the one H¢ can be viewed as an inner product space. In
Section 3, we give the fundamental operational calculus on functions of one complex
quaternion (or complex matrix) variable that take values in a vector space
Ee{R,C, My,Hc}. In particular, the concepts of real and complex quaternionic
derivatives are introduced. In Section 4, the meaning of a quaternionic holomorphic
function is given due to the following operators
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0;=:0 = 5 and 9 '6_62 =
which act on differentiable quaternionic functions of one variable & € He. Therefore, we
provide a characterization of quaternionic holomorphic functions by means of sufficient and
necessary conditions in terms of Cauchy—Riemann type equations.

Theorem 4.1. Let E € {R, C, My, Hc } and @ : D — E be a complex quaternionic function
of one complex quaternion variable & = z + 1w, with (z,w) € My X My, defined on an open
subset Din He. Suppose that

D(&) = Bz + iw) :f(zj, w, w) n z‘g(z,z, w, w)

Then, ® is holomorphic on D, if and only if the following Cauchy—Riemann type equations
Y=% and L=-%aresatisfied.

Such new version of complex structure gives an other way of studying quaternionic
analysis. In addition, it is quite different from which provided in Ref. [4] and can be viewed
from a complex matrix analysis viewpoint. Furthermore, several different concrete
computational methods provided throughout this work show that the presented matrix
(quaternionic) complex structure is flexible and is close to the standard complex structure. In
fact, this can be shown with the help of Theorem 4.1, providing a non trivial example of
holomorphic quaternionic function.

Theorem 4.3. Let ®: &L be the complex quaternionic inversion function defined for all
EeHe\ S, where S = {£€He : deté = 0}. Then, it holds that,

(1) ®© has a decomposition into f + ig where f and g are functions of two variables

(z,w) € My X My salisfying the Cauchy—Riemann type equations % = % and
o _ o

o %
2) @ is a biholomorphism from Hc\ Sto Hc\ S.

Theorem 4.3 shows that we have a lot of holomorphic functions of one matrix variable. In fact,
the complex matrix analysis is the theory of such functions. The other results of this paper
can offer potential methods and stimulate activity in the theory of complex quaternionic
analysis. On the other hand, we illustrate our abstract study by several examples to insist that
the presented quaternionic holomorphic structure can induce a new aspect of pluripotential
theory in quaternionic plurisubharmonic functions as provided in Ref. [6]. Moreover, it should
be denoted that our paper can be useful for authors working on subjects studied in Refs. [7-9].

Finally, let us recall that according to Ref. [2], the algebra of quaternion numbers is the
non-commutative field

H=R1®Ri®Rj®RE,

which has a structure of a four-dimensional R-vector space, with basis {1, 7, j, &}, for which a
binary composition law is equipped and defined as a bilinear form, such that 1 is the unity and

P=F=KF==1=—ji=k jk=—-k =i, ki = —ik=].

on the other hand, the field H can be described as the sub-algebra My; of the R-algebra
M;(C) of dimension 8 consisting of all complex square matrices (see Ref. [10]). In addition,
the isomorphism
H i M[H]
a+bi+¢g+dk — al+b +cK+dL
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between H and My, shows that My is a 4-dimensional R-vector space with
. 10 i 0 0 1 0 ¢
R (BT AT E )

2. The complex quaternionic space H¢

With a complexification method applied on the product R-vector space My; X My, we shall
introduce the complex quaternionic space Hcto be the C — vector space consisting of all 2 X 2
complex matrices written uniquely as £ =z + 1w, (z,w) € My X My.

Theorem 2.1. Let (Hc, +, .) denote the set My X My equipped with the operations (+) and
() defined such that for all (z,w), (Z,w') € He, for all A = a + ib € C, we have:

e Zw+E, W)=c+2,w+w).
e Az, w) = (@ +ib)z w) = (az — bw, aw + bz).

Then, it holds that

(@) (He,+,.)is a Cwector space.

() He has a sphitting into a direct sum Hy @ iHy where Hy is an R-sub-vector space of He
isomorphic to My.

(it)) If (X) denotes the usual multiplication of square matrices, then the space (He, +, ., X )isa
C-algebra and the space (Muy, +, ., X ) is an R-sub-algebra of (He, +, ., X).

Proof. Statement (i) holds since the followings are immediately satisfied.

00

0 0/)

satisfies the following rules

(1) (He,+) is an Abelian group with zero element 0 =
C X IH]([Z b d IH]C
(2) The map (4, 8) 2 Y
@ V(a,p)eCEVEEH:: a.(B.e) = (ap).&

M) VEeHe: 1E=¢
@) VAEC, V(&,8)EHe X He : (& + &) = L& + A&,
@ VApeC’ VéEeHe: (A+p)é=rE+ps
Statement (ii) holds since each of the following maps

¢: My - He and o: My - He
z = z+10 w — O0+w

is R-linear and injective. We let H; = ¢(My) and iH; = i¢(My). Then, we verify at once
that H; N¢H; = {0} and Hy 4 ¢H; = He. The first part of the statement (iii) holds since by
statement (i), (H¢, +, .) is a C-vector space and the multiplication law (X) in H is associative
with unity 1. Furthermore, the multiplication law (X) in H¢ is distributive over the addition
law (+). Moreover, for all complex quaternion numbers (&,7) € He X He and for any
complex number A € C, we have (1.£) X n = & X (1) = A(E X n). The second part of the
statement (iii) holds since for all (z, w) € My X My and for any real number 1 € R, we have
z+weMy, zXweMy and A.ze My.Inaddition1e My, where 1 = ((1) (1)> is
the the square unity matrix.



2.1 Basic algebraic properties of the space He
Proposition 2.2. Each of the following statements holds in He.

(i) Forall &eHyc, there exists a unique (z,w) € My X My such that & = z +iw. As such Hc
can be identified to the direct sum My @1 My.

(i1) The space He is formed by all 2 X 2 complex matrices of the form
| atan 2w 4
E= < 2 —ily -+ i ) where (z1,w1,22,w7) € C".

(11) The space He is 4-dimensional and admits the family

10\ (i 0 0 1N (0 i\ < pasisover ©
0o 1) 0 =i)\-10)\i o0 '

My XMy - He

(2,0) 24w is R-linear and

Proof. Statement (i) holds since the map @ :

injective between finite dimensional R-vector spaces. Indeed, let z = ( le ;2> and
X2 1

w o w . . .
w= ( 1/1_0 WZ ) be in My, (21, w1, 2, w;) € C*. By a direct computation, we have
— w32 1

21 29 wy Wo
+1
-z Z —Wy Wy

z 4w

z1 iz e

—Z9 — iwz zZ1 + Zwl

In addition, the equation z + iw = O, is equivalent to the followings

21 +iw1 =0 21 :—iw1 21 =0
zl—H.wl:O - 21 = - 2,=0
2o+ 1wy =0 25 = —1y w, =0
2o+ 1w, =0 25 = 1y wy =0

< z=w=_0y,.

Hence, ker® = {(0n4,,,0u,,)} 50 @ is an isomorphism. Statement (ii) is a consequence of
statement (i). Statement (iii) is also a consequence of statement (i) since any vector £ € He can
z1 w2z +iws
— 29 —Zﬁz Z1+ iW1
2, = ay + by, wy, = ¢y + idy, (ay, by) € R, (i, dy) € R* for k € {1, 2}, we have

be written uniquely as the form & = ( ) . (21, w1, 2, w5) € C*. Setting
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AJMS ( a —dy +ilb+0)  ay—ds+i(by +62)>
};:

—ay — doy + Z(bg — 62) a +d; — Z(bl — Cl)

10 i 0
_(a1+iC1).< ) +(b1+ld1)< )
01 0 —
0 1 0 1
+(az +icz). ( ) + (by + idy). ( )
-1 0 i 0

Hence the family {((1) (1)), <6 i)i>’ < _01 (1)>, <(l) 6) } generates the space He
O

and obviously is linearly independent.
The following gives another specificity of the space H¢ ~ My X M.

Proposition 2.3. Each of the following statements holds:

@) (He,+, X)) s aleft My-vector space with basis {1,i1}.
(i) (My X Mpy,+, X)is aleft My-vector space with basis {(1,0), (0,1)}.

Proof. Statement (i) holds since the following properties are satisfied:
1) Vew)eMyXMyVEEH: G+uw)XE=zXE4+wXE
(2 VzeMpV(EneHeXHe: 2z2X(E4+n) =z2XE+z2Xn
B V@Ew) eMyX My VéEeHe: (Xw)XE=zX(wXE).
(4) VEeHe, 1XE=E

Statement (ii) holds since the following properties are satisfied:
(1) VY(z,w) e My X My, VY(a,b) € My X My

(z+w) X (a,b) =z X (a,b) +w X (a,b).
@) Vze My, V((a,b), (c,d)) € (My X My)*:
z2X[(a,b) + (¢,d)] =z X (a,b) +2z X (c,d).
@) V(z,w) € My X My, V(a,b) € My X My :
(zXw) X (a,b) =z X (wX (a,b)).
@ Y(a,b)eMuX My, 1x(ab)=(ab) O

Proposition 2.4. Let 6 : My — He be the injection map and let [ be an R-linear map from My

to another C-vector space F, then there is a unique C-linear map I from He to F such that the
following diagram



o New matrix

Mu > He holomorphic
~ Il?l structure

commutes (Io0 = [).
Proof. Let I be the map such that
1(&) = I(z +iw) = 1(z) +il(w) forall &=z +iwe He.

Then, for all A = a + b € C, (a,b) € R? for all & = z + iw € He, we have
1(2.8) =I[(az — bw) + i(bz + aw)] = [(az — bw) + il(bz 4 aw)
= a(l(z) + idl(w)) +1b(l(2) +il(w)) )
= (a+1).[l(z) + d(w)] = (a +1ib).[(z + w) = AI(E).
Hence the map /is C-linear. Further, /is unique since the existence of two maps /; and 5 such
that /10 @ = 500 = [, provides that

Im(6) c ker (71 - Zg) and Im(:0) c ker (71 - Zg) ,

where ¢ is the map defined by i6() = iz for all z€ My;. Which makes that ker(l; — 1) is an
R-sub§pacg of Hg, containing both My and i My so that ker(l; —l») = My + iMy = He.
Thus ll = lz. O

2.2 The conjugation in He
Let £ = z + iw € He be a complex quaternion (z, w) € My X My. We define the conjugate
of £ to be the complex quaternion

E—z-im, (200)€Mux My,

Therefore, for all (z;, 1,2, ws) € C, we have

B 21+ 2z +iws F_ s i ZI — W, Zp — 1Ws
é_(—gg—in 2+i@2)©§_2 lw_(—ZZ-‘rin Z—in).
From now on, the notation Tr(£) stands for the trace of & while ‘¢ stands for the transpose of &.

Proposition 2.5. For all ¢ = z + 1w and all & = 2/ + ' in He with @, w) and @, w') in
My X My, and for all A € C, the conjugation map EE satisfies on He the following rules:

() E=¢ &xf =Csf; EXE=ExZandiE=1E
() The map E~'€ is a Cisomorphism of We that satisfies & = tE.

(il) There exists a unique (&),&)€He X He such that & = & + & with & =&
ﬂnd 22 = _152
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(iv) Tr(wx'z) = Tr(z X 'w).

(v) EXE=zXZ+wX'w+i(wX'z2—zX'w).

Proof. Statements (i) and (ii) are obvious since they can be proved by a direct computation. Let
us prove statement (iii). The map &€&, on H, induces on My X My, an R-linear mapping /
defined by J(z, w) = (—w, z) and satisfies J? = —Id. Thus, ] has two eigenvalues {—i, + i}. Let
H~ be the eigenspace corresponding to the eigenvalue —i and let H' be the eigenspace
corresponding to the eigenvalue + i, then He = H~ @ H* and hence any & = z 4 iw € He
can be written as & = £ + & where £ € H and & € H'. Indeed, we may take
& =52+ 1= and & =42 +i=* . Finally, statements (iv) and (v) can be obtained by
simple computations. O

2.3 He as an inner product space

Proposition 2.6. Let () denote the map

HCXHC s C
&n = @m:ﬂ@xﬂ.

() For all neHg, the map (&, n) is C-linear.

(i) Forall (¢1n)€He X He,we have {(E,n) = (1, &).
Therefore, (Hc; (,)) is an inner product space.

Proof. Statement (i) holds since for all A € C and all &, &,, n € He, we have

(A& + &) = TV((’lfl + &) X lﬁ)
= Tr(Ae xX'n) + Tr(é& x'n)
= ﬂ<§1,1’[> + <§27’1>

Statement (ii) holds since for all £ n € H¢, we have

e =1r(exn) =1r( (ex))

(mx'é) = Tr(n x'¢)
1n,8).

3

—
hg) 3

O
Proposition 2.7. In the inner product space (Hc; (,)), each of the following statements holds.

(i) Forall (¢&,n) e He X He, if E=x+wandn =y + wwith (x,0), (y,w) € My X My, then
we have

(&m) = (@) + (v,0) +1((v,5) = (x,0)). @1

(i) Foral (z,w) € My X My, we have (iz,iw) = (z,w) = (w,z) € R.

z1+iw 2o + i

(i) Forall ¢ =z+iw= <_22_w2 % 1 i,

> € He, we have



(£,8) = la1 +iwi " + |z — ion|” + |22 + dwn[* + |22 — i (2.2)

@iv) Forall &=z+iweMHc with (z,w) € My X My, we have
(E,&) = (z,2) + (w,w). 2.3)

V) Forall &=z+iweMHe, with (z,w) € My X My, we have
deté = det(z + iw) = detz — detw + i Tr (sz) . 24)

Furthermore, if for all £€He, we put ||&]| = /(& &), then (Hg;|.||) is a C-normed
vector space.

Proof. Formula (2.1) in statement (i) is a consequence of the equality
(&) = Tr(fx ’ﬁ) =Tr(xX5+vXwW) +iTr(v X'y —x X 'w)
= (x,9) + (v,w) +i((v,9) — (x,w)).
Statement (ii) holds since for z = ( & f2> and w= ( o $_02> in My,
—Z22 21 —Ws W
(21,22, w1, w) € C*, we have

L
(iz,iw) = Tr<(iz) X (iw)> = —"Tr (z>< fw)
= <Z7 w) = 2101 + W12 + ZoWoloZ5
= (w,z) = Tr(wx ‘2).

Formula (2.2) in statement (iii) can be obtained by a direct computation of 7#(& X *&). Formula
(2.3) in statement (iv) holds since we have

(£,8) = (z+iw,z+w) = (2,2) + (z,1w) + (w,z) + (tw, iw)
= (2,2) + (w,w) +1((z,w) — (w,2)) = (z,2) + (w, w).
Formula (2.4) in Statement (v) holds since we have

z1 i, 2z +iws
deté =det(z+w) =

—Zy — Wy Z1 + 1
= (a1 i) (21 + i) + (22 + i) (22 + 02

2 2 2 2 _ _ _
= |21’ + |22| — |w1| - }W2| +l(2’1wl + unrzy + 292 +2’2W2)

= detz — detw + (Tr (zlw).
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AJMS Remark 2.8, (1) Since ¥ (£,5) € He X He, "(EXy) = T X E
_ z1 + iw1 29 + in _ I
and V¢ _( -1l 7 +iﬁ1> eMHe, (§,&) = Tr(Ex1E), formula (2.2) can be
transformed to

Tr(€X'E) = |ay + iwn | + |22 + iws|” + |21 — iwn|” + |22 — 0| 2.5)

and gives
v (&n) €He X He, [IEXnl. <&l 26)

zZy+iwy  Zy +iw)

Indeed, letn = ( ) € He. In vertu of the associativity of multiplication

—Zy— W, 2, + W,
in Hg, the trace proprieties and formula (2.5), we have

Tf((é X n)t(ﬁ—xn)) = Tr(éf X (n x tﬁ) x tc_f)
— Tr((lfx §> (;1 X fﬁ))
= [|z’1 + i [P + |2, + z'w’zﬂ [|zl —iwn|” + |z — iwzﬂ

a1 i+ oo + o] [ — it + (2 — ]

On the other hand, again by (2.5), we have
€17l = 7r (& x ‘&) Tr(n 7
. 2 . 2 . 2 . 2
= [|zl +iwn |+ |zo +we|” + |21 — dun|” + |z — twe| }
X | / <12 2/ <12 / c 72 / <12
2y + [+ [z, 4+ w|” + Jay — iy |+ |2y — duh
/ <2 / 12 . 2 . 2
> [l + iwf|” + 12 + s’ Iy — i P+ loo — iwsl”]
. 2 . 2 / <12 / s 72
+{|zl +iwr|” + |22 + 1o } [|z1 —a)|” + |25 — iwh)| }

= [lex ).

(2) Forall (z,w) € My X My, an easy computation provides

det(z + w) = detz + detw + Tr(z X ‘w). 2.7



3) Forz= ( A §2> and w = ( o @2> in My, we have Tr(z X 'w) = 210, +
—Zy 2 — Wy W1

ZoWs + w121 + woZo. Then, by the Cauchy—Schwarz inequality we deduce that
| Tr (2 % ') [* < (detz) (detw). 2.8)

Moreover, if ¢ = z + iw € Hg, then (2.4) provides that.
|det(z + iw)| < detz + detw. (29)

Indeed, following (2.4) and (2.8), we have

|det(z +iw)|” = |detz — detw +iTr (z X 'w) |
= (detz — detw)” + | Tr(z X w)|
<(detz — detw)z + (detz)(detw)
<(detz + detw)*.

3. Functions of one complex quaternion variable and complex quaternionic
differentiability

3.1 Functions of one complex quaternion variable

Let E€{R, C, My, H¢} and D be an open subset in He. We say that

D - E
e e fe

is a function of one complex quaternion variable £ € H¢ (or a complex quaternionic function
or a complex matrix function), if £is an association which associates to each element £ € Dan
element f(¢) € E. In case E = H¢, which means that f (&) € Hc for all £ € Hc, we deduce that
for all (z,w)€ My X My, there exist g,(z,w) = g,(2,z,w,w) € My and g,(z,w) =
25(2,2,w,w) € My such that

7 (&) 1(8) +1g2(8)

&1(
= g1(z + iw) +185(2 + i)

81(z,w) +1g5(2,w)
g1(z,z,w,w) + ig, z,é,w,w).

3.2 Quaternionic R-differentiability

Definition 3.1. For E€{R,C, My, He}, let f : D— E be a complex quaternionic function
defined on an open subset D of He.

() We say that fis quaternionic R-differentiable (or simply R-differentiable) at point &, € D,
if there exists an R-linear map f'(&;) : He — E such that

iy (6 + )~ (&)~ (&) 0)] =0
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Which is equivalent to 1irpW(§° F0) — (&) *f/(fo)(h)H
70 17|

=0.

(i) We say that fis R-differentiable on D if it is R-differentiable at any point & € D.
Example 3.2. Let us illustrate Definition 3.1 by the following examples:

-

(1) The function f : He 2 is R-differentiable and for all z € H¢, we have

€]
&0 = Tr(h XIE4 EX %)
In particular, at point 2 = 1, we have f'(£)(1) = Tr(¢ + '€).Indeed, for all 2 € Hc, we have
I+ Bl = el + 2502, &) +

Further, the map =20 (h, &) = Tr(h X'+ &x'h) is Rlinear on He and the function
I—e(h) = ||h))? satisfies hmhquh” = (), so that, fis R-differentiable.

- C
(2) The function f: 5 - det(&)

Vh=hi +ihy€He, f(E)(h) = (& h),
where ﬁ:hl—ihg,(hl,hg)e(MH)Z. In particular, for all £€Hg, at point & =1,

(&) = (£,1) = Tr(¢). Indeed, by formula (2.4) in Proposition 2.7, for all
h = hy + ihy € He and for all ¢ = z + iw € He, we have

det(+h) =det(z+ M +i(w+ hy))
= deté + deth + (&, h)

where (&, ) = Tr(2 X Ty —w X 'hy +i(ly X% + 2 X 'Ty)).

is R-differentiable and its differential is defined by

It is clear that
I (&, 1)) = Tr( % 'R)
is an R-linear map on He. In addition due to (2.1), the function s—e(h) = deth satisfies
e(n) = o(||h]]) since hmhqu = 0. In fact, by (2.2) in Proposition 2.7, we know that
14]|% = |h)? + |Iof?. Moreover, by (2.9) given in Remark 2.8, for ||/2|| # 0, we have
|det( h)| | det( +1h2)|
[ET——

_ (detn + dethy)?
s

(I )’
e
— el

Which affirms that hm =0.

II’ZH



3.3 Quaternionic directional derivative

Definition 3.3. For E€{R,C, My, He}, let

D - E
f: z+iww —  f(z+w)
be a complex quaternionic function of one variable & = z + iw € He defined on an open
subset D of He. If 7€ Hc\ {0} is a nonzero complex quaternion, then we say that f has a
quaternionic directional derivative at point & € D, in the direction of the vector #, if the
function of one real variable t € R—f (&, + ¢n) is differentiable at point 0. We denote f;(cfo)
the derivative of f at point &, in the direction of #. Hence,

Fy(6a) = lime (8 + 1) — £ (&)

3.4 Quaternionic partial derivative
As we have He ~ My X My, we may suppose for the present, that D is an open subset of
My X My. Let Ee {R, C, My, H@} and

) D — E
Fiw - flew)

be a complex quaternionic function defined on D such that
f(z,w) :f(z,z, w,@), V(z,w) €D.

We say that f has a quaternionic (or matrix) partial derivative % (z, w) with respect to the

variable z, if it is differentiable in the direction of the vector (1,0) and we say that f has a

quaternionic partial derivative g_i (2, w) with respect to the variable ), if it is differentiable in

the direction of the vector (0, 1). Therefore, we have

af . 1
E (27 W) - h—»Oleler{R}\ {O}E [f(Z + 11 ) M)) —f(Z, W)],
of 1
% (27 W) - /1—»0}}6%1\ {0}% [f(27 w+ hﬂ) *f(Z, W)]

Similarly, if (z,) € D for all (z,w) € D, then we say that f has a quaternionic partial
derivative ‘;—g (z,w) with respect to the variable Z, if the function

. D = E
U (gw) - jf(z,w) :f(z,z,w,w)

is differentiable in the direction of the vector (1,0) and we say that f has a partial derivative
% (z,w) with respect to the variable %, if the function

. D - E
/e (Z,W) - j‘(z,w) :f(z,z,w,w)

is differentiable in the direction of the vector (0, 1). Therefore, we have

New matrix
holomorphic
structure
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gé(z, w) = hﬁo,}ziergl}\ {0}% {f(z,é +, w,w) —f(z,Z, w,@)}
% (z,w) = h_)oleiErg\ {0}% {f(z,é, w, W+ /ﬂ]) —f(z,é, w, E)}

Example 3.4. (1) The function f : MuX My - My

(z,w) ~ (e+w
that ai[ Z, ) = i(z, w) =2(z+w).

0z ow
Mu—u XMH d , MH

) 2 has partial derivatives such

(2) The function f :

(2,0) - e+m) has partial derivatives such that
of of a7
% Z,) = (%(Z’w) =1
(3) The function f: M”E]ZXWJ)\AH : Tr(E%) satisfies the fact that f(z,w) =
f(z,w) = f(w,z) and an easy computation gives
af af _
FE (z,w) = % (z,w) = Tr(w) = Tr(w)
of af ~
%(z7 w) = %(z7 w) = Tr(z) = Tr(z).
M[H] X MH - C

(4) The function f: satisfies the fact that f(z,w) =

(z,w) ~ Triz+w)
f(z,w) = f(w,z) and an easy computation gives

of af

E(Z:w) = 5(271”)) = Ti’(ﬂ)
of of

%(2, w) = %(z,w) =Tr(1).

(5) Using formula (2.7) in Remark 2.8, expressing that
V(z,w) € My X My, det(z + w) = detz + detw + Tr(ztw).

My XMy - R

. oL ) "
I;;nce, the aEJCar‘ual derivatives of f: (2, 0) e det(z + w)
&(277,0) = %(z,w) =Tr(z+w).

are such that

3.5 Complex quaternionic derivative
For Ee{R,C, My, Hc}, let f : D— E be a complex quaternionic function defined on an
open subset D of He. We shall define what means by a quaternionic C-differentiable function
of one complex quaternion variable.



Definition 3.5. (i). We say that f has a complex quaternionic derivative (or complex matrix New matrix
derivative) at point & € D, if there exists a C-linear map f' (&) : He — E such that holornorphic

i [+ 1) (&) = G0 ] 0. structure

which means that

i WG +h) — f(&) — (@) )]

m =0.
0 ]

(ii). Wesay that fis complex quaternionic differentiable on Dif it has a complex quaternionic
derivative at any point & € D. In that case fis said to be quaternionic holomorphic (or matrix
holomorphic) on D.

Remark 3.6. Statement (i) in Definition 3.5 can be written as follows. The function f has a
complex quaternionic derivative at point & €D, if there exists a C-linear map
f (&) : He —E and a function i~e(%) defined on a neighborhood V of 0 satisfying
limy,oe(Z) = 0 and such that for all 2 €V, we have fi&, + ) = fiEy) + (o)) + ||2||e(r).
Moreover, a complex quaternionic differentiable function is obviously continuous.

Example 3.7. (1) The function f : H; - ||§|2 is not holomorphic on H¢ since it is

complex differentiable only at & = 0. Indeed,
VEeHe, VheHe, [E+h|° =g +2R(h,&) + ||,

Moreover, h—s(h) = ||h||* satisfies lim;Ho%: 0, but, for all £€Hc\ {0}, the map

h=2R(h, &) = Tr(W'E + £'h) is not C-linear.

@ If S={&e€Hc :deté =0}, then Hc\ S is an open subset of H¢ since the function

Hc\ S d [H]@\ S
¢ -

& det £ is continuous on He. Let us prove that the function f : is
C-differentiable on H¢\ Sand f(£) is such that
VEEH S, VheHe, f(&)Mh) =-&"he™

In particular, at point 7 = 1, we have f'(£)(1) = —£ 2 So that fis holomorphic on H¢\ S.
Indeed, following Example 3.2, V&€ He and Vi = &y + ihy € He, we have

det(¢ + h) = deté + deth + <5, h> where i = I — .
By the Cauchy—Schwarz inequality and the Example 3.2 (2), we have

[(&m)|<lgliel and  |deti] <l

So that, if ||/1|| is small enough, then | det(%)| and | (&, 1) | are also small enough. Hence the sum
(& + ) is invertible in He whenever €& is invertible in He and 7 is small enough. Furthermore,
for all £€ Hc\ Sand all 2 € Hc we have
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E+h)(ET =™ =1 - he'he ™
Therefore, V& € Hc\ Sand V 72 € He small enough,
E+n) =t =g he 4 (e 4 B)he he

Let (h) = (& + h)"'he "he ™", since h—& 'heé ™ is a C-linear map on He, to prove that fis
C-differentiable at point &, it is sufficient to prove that &(%) = o(]| 2||). On the other hand, using
inequality (2.6) in Remark 2.8 we get:

le()| = (& + 1) he he | < [[(E+R)” ||||h||||§‘ IHIhIIHf il

1€+ 1) [l 1 ™.

INIA

hence, limy,_ o) 7 /I = (, and so f is complex differentiable on H¢\ S.

3.6 Operations on complex quaternionic differentiable functions

Proposition 3.8. Let E€{R,C,My,Hc}, f:D—>E and g:D—E be two complex
quaternionic functions defined on the open subset D of He and let A€ C.

@) Iffand g are both complex differentiable at & € D, then so is the function f + Ag and for all
h € He, we have

(f +48) (&)(h) = f(&)(h) + Ag' (&) (h).

(1) If f and g are both complex differentiable at £ € D, then so are the functions f.g and g.f.
Moreover, for all h € He, we have

(f)'(&)(h) = 1'(&)(h).g(&) +£(£).&' (&) (h).

Proof. Statement (i) is obvious. Let us justify statement (ii). Since f and g are both
C-differentiable at point £, we have

fE+n) =F(&)+F (&) + |hler(h), limy_oer(h) =0
g(E+h) =g(&)+& &) (h) + |hlex(h), limy_oes(h) = 0.

Computing the product of the above equalities, gives that
f8(&+h) =5g(&) +1(&)(h)g(&) +(£)&&)(h)+ |hles(h), limy_oes(h) = 0.
O

Corollary 3.9. Any quaternionic polynomial function f () = S @l of degree d > 1, with
coefficients in He, is C-differentiable and its complex quaternionic derivative is given at any
EeHeby

VheHe, f( Z @, (Z ghe 1) 31
n=1

Proof. By Proposition 3.8, it suffices to prove the result for a quaternionic monomial A¢) =
which can be proved by induction on 7 € N. First, let show the existence of a function s ()
such that for all £ € H¢ and for all # € H¢, we have



0 L i New matrix
E+hn)"=¢"+ Zé hE™" +e(h) and e(h) = o(|h|). holomorphic
k=0 structure

This is obvious for n = 1, (we take e(2) = 0). Suppose the statement holds for all
keN,1<k<nwheren > 11is a natural number. Then we have

n—1

(§+h)n+l _ (f+1’l) én+zékh§n—k—l Jrg(h)
k=0

n—1
=& 4 (E+ D) Z Ene™ 4 he" + (& + h)e(h)

n—1 n—1
_ (:gn+1 +Z§k+lh§n—k —1 —|—h§ —I—hzz_,:khfn_k -1
+(&+ h)e ( )
(n+1)-1

:§n+1+ Z fkl’lf(n+l)_k_l+81(h)
k=0

where

n-1

e(h) =Y EnE ™ 4 (E+ he(h).

=1
Since the map defined on H¢ by

n—1

/. Z fkhfn_k_l
k=0

is C-linear and since hmh_,o*‘l‘ h}‘" = 0. Then, 1 is holomorphic on Hc. O

Remark 3.10. (1) If ae Hc\ S (deta;EO) and b€ Hg, then the quatermomc polynom1a1
function fig) = a& + b of degree 1, is holomorphic on He and &, = —a b is its unique zero.

(2) At point 2 = 1, formula (3.1) provides /' (£)(1) = Zn lnanf” 1

Proposition 3.11. Let D and D' be two open subsets of He and let f and g be complex
quaternionic functions defined on D and D' respectively. Suppose that f (D) C D, fis complex
quaternionic differentiable at £ € D and g is complex quaternionic differentiable at f(€), then the
composite function gof is complex quaternionic differentiable at & and its complex quaternion
derivative is given by

VheHe, (g2f) (@) = [¢U(€)er©&)]R).
Proof. Since f is C-differentiable at &, then for all 2 € H¢ we have
FE+1) =£(&) + F(E) () + llex (i), Timmes () =0,

and since g is C-differentiable at f(&), for all £ € H¢, we have
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g (&) +k) =8 (f(£)) +& (F(€)) (k) + [|lle=(k),  limez (k) = 0.
Hence by composition we find that

gof(E+h) =g(f(E+N) =g(f(&)+F (&) h)+||h|e ()
=2(f(8)) +&(F(&) X (f'(&) () + ||| es(R)
= g(f(£)) + & (F(£)oF (&) () + ||I|es()

where, limy,_,ge3(%) = 0. Thus, gof is C-differentiable at &. O

4. Quaternionic holomorphic structure on H¢
Let 9 and 9, be the operators defined on the space of differentiable quaternionic functions of
one variable £ € Hc by

ad a .4

9 o
go=a=2_; % Go—a=2_; %
¢ 5 low M 0 %z ow

Let @ be a complex quaternionic differentiable (complex matrix differentiable) function of one
variable £ = z + 1w € Hc where (z,w) € My X My. Then @ can be written ®z + i) = fiz,
w) + 1g(z, w) and we get

o) =2 (i) o

_(of  .of\ (g .og
—(&*Z@“(&*%

_(of  Og (0g Of
*(&*%)“(%‘@)
- d d .d .
d(®@) :—a%’:(&—z%)(fﬂg)

_(f of\ . [(éz .ég
- (&) (&%)

4.1 Cauchy—Riemann quaternionic differential equations
The following criterion provides a necessary and sufficient condition for the holomorphicity
of complex quaternionic functions.

Theorem4.1. LetE € {R,C, My, He} and @ : D — E be a complex quaternionic function of
one complex quaternion variable &£ = z + 1w with (z,w) € My X My, defined on an open
subset Din He. Suppose that



(&) = Dz +1w) = f(2,w) +1g(z,w), New matrix

holomorphic
then, ® is holomorphic on D, if and only if the following Cauchy—Riemann type equations structure
¥=2% and ZL=-%aresatisfied.

Proof. Since the spaces Hc and its dual Ty, are isomorphic as two dimensional
M y-vector spaces, then the family { 3% 5} constitutes a basis of the tangent space Ty, over
M. Therefore, the function ® is holomorphic on D, if and only if for all £ € D, the map @'(¢) is
C-linear. Since @'(£) can be written in the basis { 7 f} then the C-linearity condition of the
map @'(§) is equivalent to 9@ = 0 which is equivalent to the following

of og of _
(E_%) Z(an’az)’O
Jof Og
(Fz_%) (aw 62)
Jf g

—=-—=and v _ Gg
7z ow w9z

Example 4.2. Let us illustrate Theorem 4.1 with the following examples:
t_
(1) The function @(¢) = ¢ satisfies for all ¢ =z + iw e H,

Dz +iw) = 7 — 1 = f(2,w) + ig(z, w).

We have £ = Tr(1) # % = —~Tr(1) and £ = —% = (. Thus, @ is not holomorphic on He.

(2) The function @ : He -

C
z+uw —  det(z +w)
Dz + iw) = det(z) — det(w) + iTr (sz) = £z, w) + ig(z, w).

satisfies

. _ _ . . 2
Since f(z,w) =f(z,w) and g(z,w) = g(z,w), then, an easy computation gives aé:

% — Tr(z) and L = —% = —Tr(w). Hence @ is holomorphic on He.
-

(3) The function ® : He . Hf is complex differentiable on He. Indeed, ® can be
decomposed into @ = f + ig where fiz, w) = 22 — w® and gz, w) = 2w + wz,
(z,w) € My X M. In addition, an easy computation shows that £ = % =0 and

I — —g—ﬁ = 0. Therefore, ® is holomorphic on He.

dw

(4) Thefunction® : He : I]-—ﬂz(D is complex differentiable only at & = 0. Moreover, ® can

be decomposed into ® = f 4 g such that f(z,w) = Z* —w” and g(z,w) = —Zw — Wz,
(z,w) € My X My. An easy computation yields

of . o0g . of _
EiZZ’ e 2z, Fo 2w and —$72w.



AJMS The equations % = % and % = —‘;—g are simultaneously satisfied only at & = (z,w) =
(Ortys5 Oty )- Hence @ is not holomorphic.

The following result is a consequence of Theorem 4.1. It provides a principal example of

complex quaternionic holomorphic function of one variable. Moreover, it shows that we have

a lot of complex quaternionic holomorphic functions of one complex quaternion variable.

Theorem 4.3. If S={é€H¢ :deté =0} and @) = EV s the complex quaternionic
tnversion function defined for all £ € Hc\ S, then it holds that,

@) @ has a decomposition into f + ig where f and g are functions of two variables
(z,w) € My X My satisfying the Cauchy—Riemann type equations % = 3% and % =%

% %
(i) @ is a biholomorphism from Hc\ Sto He\ S.
Proof. First of all, it is clear that @ is one-to-one since ®o® = Idy, s. Furthermore, if

[ atu z+iwy 1 .
E= ( G —ill, 7 + i, > €Hc\ S, then & @(¢) can be written as follows

1 Z1+ i, —22 — iwe

= =
detz — detw + i Tr (z%) Zo + 105 2z1 +lwy

1
B detz — detw + iTr (z%)

ri + i.tw} =f(z,w) +ig(z,w),

where f and g are functions of tow variable (z,w) € My X My such that

Flaw) = detz — detw t
7 (detz — detw)” + (Tr (z%) )2 .

Tr (ZIW) tw [7R))
(detz — detw)” + (Tr (z%))z .

t

I o
:u(z,z,w,w).z+v<z,z,w,w).w

Tr (z%) .
g(z,w) = 5.2
(detz — detw)” + (Tr (z%))

detz — detw : 4.2)

| (detz — detw)® + (Tr(z%))z v

t

_ A _ _
= —v(z,z,mw).z—&-u(z,z,mw). w.

Furthermore, the partial derivatives of f and g are such that



K w =ew' 1+2 0 0 New matrix

— =—(z,w). 2+ u(z,w).d +—(z,w). w -
9z 0z 9z “3) holomorphic
- ’ structure
a—g(zw) ——%(zw)téJru(z w)ﬂJra—u(z w). w
ow "’ ow "’ ’ ow
of ou v t
%(277’{}) %(Z,M))Z-FU(Z,W)W]—F%(Z,W)‘W
4.4)
dg dv Ju t_
_6_2(’ ) 6—2(271,0) z+v(z,w)1]—a—z(z,w) w
Since the equations £ == ag =and 7 af = induces equalities of matrices of the form < _ag 6_[;

in My, then following (4.1), (4.2), (4.3) and (4.4), f and g satisfy simultaneously the above
Cauchy—Riemann equations, if and only if each of the followings holds

zau_i_ﬁévi Zav+w6u

) L9z Yow " ow
4.5)

aiu n w av w u

2o T T 2w Pow

LR A A

Yow " ow oz 0z
4.6)

6 w dv _, dv » du

25w o Par T Moy

An easy computation of the partial derivatives % and 2 yields

ou _ Az, w) — B(z,w) v B
%Y =" Caw and 5@ =W

where

A {(detz ~ detw)* + (17 (sz))z} Tr@z)
B =2(detz — detw) [(detz — detw).Tr(z) + Tr (sz) .Tr(w)}
c

= {(detz — detw)” + (Tr (z%))z} 2

B =2 [(detw — detz). Tr(w) + Tr(sz) .Tr(z)} [Tr(z%ﬂ.

Moreover, the partial derivatives

gﬁ (z,w) and o

can be obtained directly using the facts that

u(z,w) =-u(w,z) and v(Z,w) =v(w,z2).
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We get 2 (z,w) = -% (w,z) and % (z,w) =% (w,z2). Since we have V (z,w) € My X
My, ng, w) = C(w,z) > 0, then formula (4.5) and (4.6) are equivalent to
z1(2A — B—B')(z;w) = w1 (B + B — 2A)(w;2)
2(2A — B — B)(z;w) = wa(B+ B — 24)(w;2). @7
2(B+B —24)(w;2) = wi(B+ B — 24)(z;w) '
z22(B+ B — 2A)(w;z) = wy(B+ B — 24)(z;w)

On the other hand, an easy computation provides immediately the equalities

(B+B)(z,w) = 2A(z,w) and (B+ B)(w,z2) = 24(w,z).

Which permits to conclude that (4.7) are automatically satisfied and so that

of dg af og
w z,w) and z, 0 zZ,w
Lew) =gz and o (aw) = £ (),
Hence, ® and @ ' = ® both are holomorphic on Hc\ Sby Theorem 4.1. O
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