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Abstract
Purpose – This work introduces an efficient and accurate technique to solve the eddy current problem in
laminated iron cores considering vector hysteresis.
Design/methodology/approach – The mixed multiscale finite element method based on the based on
the T,U-U formulation, with the current vector potential T and the magnetic scalar potential U allows the
laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not
have to be resolved, which saves a lot of computing time and reduces the demands on the computer system
enormously.
Findings – As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is
simulated with great success. The eddy current losses of the simulation using the standard finite element
method and the simulation using the mixed multiscale finite element method agree very well and the required
simulation time is tremendously reduced.
Originality/value – The vector Preisach model is used to account for vector hysteresis and is integrated
into themixedmultiscale finite element method for the first time.

Keywords Electromagnetic fields, Finite element method, Eddy currents, Magnetic hysteresis,
Lamination modelling, Homogenization method, Mixed potential formulation, Eddy current problem,
Mixed multiscale finite element method, Vector Preisach model

Paper type Research paper

1. Introduction
The mixed multiscale finite element method (MMSFEM) has already been successfully
introduced for linear and nonlinear eddy current problems (ECPs), see for example Hollaus
(2019) and Hollaus and Schöbinger (2020). In addition, the method has been applied to scalar
hysteresis as it occurs in ferromagnetism (Schöbinger et al., 2019). Most notably, it has been
demonstrated that the hysteresis phenomenon cannot be neglected when comparing
simulation results to measurement data.

A 2 D/1D approach considering hysteresis with a comparison of simulation results
with measurement data can be found in Bottauscio and Chiampi (2002). A b-conform
and a h-conform homogenisation techniques for the ECP in laminated cores is
presented in Dular (2008). A two-step technique has been proposed in Bír�o et al. (2005).
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In the first step, the laminated medium is assumed to have an anisotropic electric
conductivity and in the second step, the eddy currents are computed individually in
each sheet.

The aim of this paper is to efficiently simulate eddy currents in laminated iron cores
considering vector hysteresis. Thanks to the mixed T-U, U formulation, with a current
vector potential (CVP)T and a magnetic scalar potential (MSP)U, the vector Preisach model
(VPM) can be used in the forward mode. Using a magnetic vector potential (MVP)A would
require an inverse mode of the VPM, which is computationally expensive.

The developed technique is evaluated by a transformer excited by known currents in coils,
see also Hollaus (2019). The excitation is considered by the corresponding Biot-Savart field.

First, a brief explanation of the computationally optimised scalar Preisach model (SPM)
and the VPM and their integration into the finite element method (FEM) are given in Sec. II.
Then, the standard formulation for T-U, U to solve the nonlinear ECP by the time stepping
method with the FEM is presented in Sec. III. Next, the MMSFEM is introduced to
substantially reduce the overall computational costs of the considered ECP in Sec. IV.
Simulation results in Sec. V demonstrate that the results obtained by the MMSFEM agree
very well with the results obtained by the reference solution.

2. Preisach model
The Preisach model describes a hysteresis phenomenon (Mayergoyz, 1991).

2.1 Scalar Preisach model
In ferromagnetic materials, hysteresis occurs between the magnetic field strengthH and the
magnetic flux density B. The original version of the Preisach model considered scalar
hysteresis only. The fundamental idea for the SPM consists of describing the hysteresis
effect through an infinite number of weighted two-state operators gab [H(t)]: R!{0,1},
where a and b denote the upper and lower threshold for switching the current state. The
operators are weighted by the Preisach function m (a,b ), which uniquely defines a specific
material. The integration of these weighted operators over the Preisach plane determines the
magnetic flux density

B tð Þ ¼ Ĉ H tð Þ½ � ¼
ðð

Tmax

m a; bð Þgab H tð Þ½ � dadb : (1)

The Preisach planeTmax :=T(Hmax,�Hmax) is defined as the triangle

T a0; b 0ð Þ :¼ f a; bð Þ : a � b ;a#a0; b � b 0g (2)

for a maximal value of the magnetic field strengthHmax, which sets the limits of the Preisach
model. Possible larger values must be handled separately in a feasible numerical scheme.
The integration over a triangleT(a,b )(Tmax yields the Everett function

E a; bð Þ ¼ 2
ðð

T a;bð Þ
m a; bð Þ dadb : (3)

Using the Everett function in (1) yields an increase in performance. Moreover, the approach
of perfect demagnetisation reduces the average computational costs tremendously
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(Tousignant et al., 2017). For the perfect demagnetisation approach the maximal absolute
input value over time of the magnetic field strength

Hmax;in tð Þ ¼ max
t02 0;t½ �

jH t0ð Þj (4)

is stored. Finally, the time-variant magnetic flux density is

B tð Þ ¼ � 1
2
E Hmax;in;�Hmax;in
� �þXN�1

k¼0

E Mk;mk�1ð Þ � E Mk;mkð Þð Þ: (5)

The values Mk and mk denote the essential maxima and minima in the input sequence,
respectively.

An additional improvement of the performance can be achieved by storing the subtotals
of the sum in (5). This approach avoids recalculation of previously calculated results and is
particularly useful when the input varies in a limited range without wiping out previous
extrema.

For describing the material, the Lorentzian Preisach function is used (Schöbinger et al.,
2019). Its Everett function is given by

E a; bð Þ ¼ K1b2atan
b þ a
b

� �
atan

b � a
b

� �
� atan

a� a
b

� � !

þ K2e atan
b

e

� �
� atan

a

e

� � !
þ f b � að Þ �

ðb
a

K1b3atan
j þ a
b

� �
j 2 � 2aj þ a2 þ b2

dj :

(6)

The parameters in Table 1 are obtained by solving an inverse problem using measurement
data at a frequency of 50Hz. The remaining integral in (6) does not have an analytic
representation and has to be calculated numerically. A major hysteresis loop along with
the initial magnetisation curve obtained by these parameters is shown in Figure 1. The
discretisation of the Preisach plane is done in 701 steps along the a- and the b -axis,
respectively. A critical aspect of magnetic hysteresis is that the magnetic permeability
m ¼ B

H is not defined for the magnetic remanence (H = 0) leading to problems in numerical
schemes. However, the differential permeability

mD ¼ Ĉ H tð Þ½ � � Ĉ H tð Þ6DH½ �
DH

; (7)

where DH describes a sufficiently small local discrete step size, is greater than zero in any
case.
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2.2 Vector preisach model
The VPM is a superposition of an infinite number of SPMs. In the three-dimensional case, the
SPMs are distributed on the surface of a unit sphere. Hence, each SPM has a position vector eR
which affects the scalar magnetic flux density BR ¼ Ĉ H � eR½ � of the corresponding SPM. The
integration over the full unit sphere surface defines the vectorial magnetic flux density

B tð Þ ¼
ðp
u¼0

ð2p
w¼0

eRĈ H tð Þ � eR½ �dwdu : (8)

To uniformly distribute a finite number of SPMs on the unit sphere, Lebedev coordinates
with the direction vectors eR,i and the associated weights wi have been chosen for the
numerical integration of (8) as shown in Figure 2 (Lebedev, 1976). Experiments have shown
that Lebedev coordinates are well suited for the distribution of SPM on the surface of a unit
sphere. The number of SPMs has been selected with N = 73 as a good compromise between
accuracy and computation costs. The numerical integration of (8) yields the approximation
for the vectorial flux density

B �
XN�1

i¼0

wiĈ eR;i �H
� �

eR;i: (9)

Figure 1.
Initial magnetisation

curve and the
hysteresis loop with
an Everett function

based on the
Lorentzian function.

Table 1.
Parameters for the
Lorentzian Everett
function for 50 Hz

(M400-50A)

a –8.18773707 · 101

b 4.13538892 · 101

K1 2.00442033 · 10– 2

K2 2.49345353 · 10– 1

e 1.33306276 · 102

f 5.57513398 · 10– 3
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It is worth mentioning that the Everett function (3) of a SPM has to be adapted when it is
used in the VPM (Mayergoyz, 1991).

The tensor-valued differential permeability

m
D ¼

XN�1

i¼0

wi m
D
R;i eR;ie

T
R;i; (10)

is a superposition of the scalar differential permeabilities mD
R;i in (7) weighted by wi

according to the Lebedev coordinates and the outer product of the direction vectors eR,i
pointing in the direction of each SPM.

3. Standard formulation
The ECP couples a static magnetic field in an electrically non-conducting domain X0

with a quasi-static magnetic field in an electrically conducting domain Xc. Since the
VPM is implemented for the forward mode only, the T,U-U formulation is used (Bír�o,
1991).

3.1 T,U-U formulation
Considering Ampere’s law r � H = J þ JBS, with an impressed current density JBS, the
divergence of the current density

r � Jþ JBSð Þ ¼ r � r �H � 0 (11)

is identically zero. Therefore, the approach

Jþ JBS ¼ r� Tþ TBSð Þ (12)

with the CVPsT andTBS can be applied. The Biot-Savart field

TBS rð Þ ¼ 1
4p

ð
XS

JBS r0ð Þ � r� r0

jr� r0j3
dX (13)

is used for JBS, where r’ and r denote source and field point, respectively. Thus, the
magnetic field strength is

Figure 2.
Lebedev distribution
for points on the
surface of a unit
sphere
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H ¼ Tþ TBS �rU inXc

TBS �rU inX0

�
(14)

with a MSPU. Since no eddy currents occur inX0, the CVPT vanishes.
Therefore, the boundary value problem (BVP) with the mixed T,U-U formulation for the

quasi-static magnetic field inXc is described by

r� rr� Tð Þ þ @tmT� @tmrU

¼ �r� rr� TBSð Þ � @tmTBS

in Xc (15)

�@tr � m rUþ @tr � mT ¼ �@tr � mTBS in Xc (16)

T� n ¼ 0;
U ¼ 0

on CHc (17)

rr� Tð Þ � n ¼ � rr� TBSð Þ � n;

m T�rUð Þ � n ¼ �mTBS � n
on CE : (18)

Moreover, the static magnetic field inX0 is described by

�@tr � m 0rUð Þ ¼ �@tr � m 0TBSð Þ inX0 (19)

� m 0rU � n ¼ �m 0TBS � n on CB (20)

U ¼ 0 on CH0 : (21)
Finally, the interface conditions are

m T�rUð Þ � nc � m 0rU � n0 ¼ �mTBS � nc � m 0TBS � n0

T� nc ¼ 0
onC0c; (22)

where C0c is the interface betweenX0 andXc. The indices E,H or Bmean that the tangential
components of E orH or the normal component of B are prescribed. The indices 0 or c denote
the non-conducting or the conducting domain, respectively.

3.2 Fixed-point method
The nonlinear system is split into a linear and a nonlinear part (Bottauscio and Chiampi,
2002). The fixed-point permeability

mD
FP ¼ mD

max þ mD
min

2
(23)

is set to be the mean value of the smallest and largest differential permeability. Further,
the nonlinear parts are shifted to the right-hand side, leading to constant matrices on the
left-hand side. Since the differential permeability of the VPM m

D is tensor-valued, the fixed-
point differential permeability m

D
FP has to be tensor-valued as well. Therefore, the fixed-
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point differential permeability is a 3� 3 diagonal matrix with each diagonal element being
equivalent to mD

FP of the SPM.

3.3 Weak formulation
The differential approach

@tB ¼ @B
@H

@H
@t

� m
D 1
Dt

HD (24)

with HD = H(nþ1) � H(n) has been used in the weak formulation in order to exploit the
differential permeability m

D. The full weak formulation for the standard finite element
method (SFEM) is shown in App. I.

4. Mixed multiscale formulation
4.1 Mixed multiscale approach
To avoid the necessity to resolve the individual sheets of the iron core, the mixed multiscale
approach

~H ¼ TBS þT2f 2 �rU0 inXc

TBS �rU0 inX0

�
(25)

with the micro-shape function f 2, which is shown in Figure 3, is selected. The second order
Gauss-Lobatto polynomial

f 2 : z 2 �d=2; d=2½ � ! R

z 7!
0 for z 62 �dFe=2; dFe=2½ �ffiffiffi
3
8

r
4
d2Fe

z2 � 1

 !
else

8>><
>>:

(26)

is chosen as micro-shape function (Hollaus, 2019). The average MSP U0 takes into account
the solution on the large scale while the CVP T2 along with the periodic micro-shape function
f 2 considers the oscillating variation on the small scale (Hollaus and Schöbinger, 2020).

Figure 3.
Second order Gauss-
Lobatto polynomial
as micro-shape
function f 2 in a sheet
with an air gap of
width d0
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4.2 Material parameters
In the mixed-multiscale approach the insulated sheets are considered as bulk material. To
obtain the specific material parameters in a global integration point, an additional
integration with local integration points is needed, see Figure 4. In each local integration
point an independent VPM is set up and is updated in every time instant.

4.3 Weak formulation
Theweak formulation for MMSFEM can be found in App. II.

5. Numerical example
The ECP of the laminated iron core shown in Figures 5 and 6 is investigated. The
thickness of an iron sheet is dFe = 0.5mm and the width of the gap d0 = 0.01mm, yielding
a fill-factor kf ¼ dFe

dFeþd0
¼ 0:9804 and the core is composed of 184 sheets. The electric

Figure 4.
Global (left) and local

(right) integration
points in the bulk

core

Figure 5.
One eighth of the

laminated iron core
(gray) with the coils
(red), not drawn to

scale

Figure 6.
Top (left) and front
(right) view of the

geometry, not drawn
to scale, dimensions
are in mm, planes of
symmetry are x = 0,

y = 0 and z = 0
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conductivity of iron is selected with s = 2 · 106S/m. The excitation of the problem is
considered by the Biot-Savart field of four symmetric cylindrical coils with 60 turns each.
The frequency is selected with f = 50Hz. The arrangement of the core with the coils
exhibits three planes of symmetry. Handmade structured hexahedral finite element
meshes have been used. The same discretisation by finite elements in the x, y-plane have
been used in the models for the SFEM and MSFEM to ensure a fair comparison. One
period of time is discretised in 600 steps. The material of the iron sheets is considered to
be demagnetised initially. The simulations have been done by Netgen/NGSolve (Schöberl,
2021).

The reference solution with SFEM has been computed to verify the results obtained by
theMMSFEM. Simulations with different impressed currents I0 and different number of iron
sheets have been carried out. For every time instant the eddy current losses

Figure 7.
Eddy current losses
for I0 = 1A peak
without hysteresis

Figure 8.
Eddy current losses
for I0 = 3A peak
without hysteresis

Figure 9.
Eddy current losses
for I0 = 1A peakwith
hysteresis
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p tð Þ ¼
ð
Xc

rJ tð Þ � J tð Þ dX (27)

have been calculated. Eddy current losses using the BH-curve (initial magnetisation curve)
are shown in Figures 7 and 8 and those considering hysteresis are presented in Figures 9
and 10. The additional peaks in Figures 7 and 8 are due to the convex-concave nature of the
BH-curve. The eddy current losses are obtained for simulations with I0 = 1A and I0 = 3A
andwith 184 sheets. For the sake of visibility, only every third data point is shown.

Further, the mean value

P ¼ 1
T

ðt0þT

t0
p tð Þ dt (28)

has been calculated in the steady state. With the aid of P the error

« 1 ¼




PSFEM � PMMSFEM

PSFEM





100% (29)

Figure 10.
Eddy current losses

for I0 = 3A peak with
hysteresis

Figure 11.
Magnetic flux density
B for I0 = 3A peak-

to-peak
at z� 45.9mm and
t = 25ms, reference
solution with SFEM

on the left
andMMSFEM on

the right
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is calculated, which is not very sensitive. For a stricter criterion the error

« 2 ¼ 100%
T

ðt0þT

t0





 pSFEM � pMMSFEM

pSFEM





 dt (30)

using the time instants of the eddy current losses p(t), has been introduced. A
comparison of the local solutions are shown in Figures 11 and 12 representing the
magnetic flux density B and the current density J in the same layer. Further simulation
results without hysteresis are summarised in Table 2 and with hysteresis in Table 3.
Compared to the nonlinear simulations, the number of iterations increases slightly for the
simulations with hysteresis, see Table 4. The reduction of degrees of freedom NDOF
increases with the number of sheets in the laminated iron core for both MMSFEM and
SFEM. However, MMSFEM requires essentially less NDOF. The same holds for the
number of VPMs NVPM, as well as for the required computation time. The number of

Figure 12.
Current Density J for
I0 = 3A peak-to-peak
at z� 45.9mm and
t = 50ms, reference
solution with SFEM
on the left and
MMSFEM on the
right

Table 2.
Numerical data for
various simulations
without hysteresis

No. Sheets 4 20 184 184

I 0 in A 3 3 1 3
P in W SFEM 0.336 1.753 3.956 16.18

MMSFEM 0.339 1.771 4.009 16.383
«1 in % 0.881 1.034 �1.337 1.25
«2 in % 3.51 8.21 1.39 7.28
N DOF SFEM 58,868 195,940 1,600,928 1,600,928

MMSFEM 49,859 74,021 122,345 122,345
NVPM SFEM 14,336 71,680 659,456 659,456

MMSFEM 100,352 200,704 401,408 401,408
tsim in h SFEM 6.0 22.2 208.5 210.2

MMSFEM 7.3 12.9 24.7 23.8
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needed VPMs for small problems with just a few sheets is relatively high, which results
in long simulation times tsim also for MMSFEM.

6. Conclusion
The MMSFEM introduced in the frequency domain for a linear ECP (Hollaus and
Schöbinger, 2020) has been extended for materials with vector hysteresis in the time domain.
Simulation results of SFEMwith resolved sheets andMMSFEMwith a coarse finite element
mesh show a very high agreement. The efficiency of MMSFEM compared to SFEM
substantially grows with the number of iron sheets.
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Appendix I.Weak formulation SFEM
The weak formulation for SFEM reads as:

Find (T(nþ1),U(nþ1)) [VD := {T(nþ1),U(nþ1)} :T [u,U [ v and T(nþ1)� n = 0 on C0c | CHc,U
(nþ1) = 0

on CHc| CH0}, such that

Dt
ð
Xc

rr�T nþ1ð Þ � r � T0 dXþ
ð
Xc

mFP TD �rUDð Þ �T0 dX inXc

¼ �
ð
Xc

m
DTD

BS � T0 dXþ
ð
Xc

m FP � m
D

� �
TD; nð Þ � rUD; nð Þð Þ � T0 dX

(31)

and ð
X0

m 0rUD � rU0 dX ¼
ð
X0

m 0T
D
BS � rU0 dX inX0 (32a)

ð
Xc

mFP rUD �TDð Þ � rU0 dX ¼
ð
Xc

m
D
TD

BS � rU0 dX inXc

þ
ð
Xc

m FP � m
D

� �
rUD; nð Þ � TD; nð Þð Þ � rU0 dX (32b)
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for all (T’,U’) [V0, where u and v are finite element subspaces of H(curl,Xc) and H1(X), respectively
(Schöberl and Zaglmayr, 2005). The fixed-point method in the weak formulation requires UD,(n) and
TD,(n), cf. (24), of the former time instant.

Appendix II. Weak formulation MMSFEM
The weak formulation for MMSFEM reads as:

Find ðTðnþ1Þ
2 ; Uðnþ1Þ

0 Þ 2 VD :¼ fðT nþ1ð Þ
2 ; U nþ1ð Þ

0 Þ : T nþ1ð Þ
2 2 U; U nþ1ð Þ

0 2 V; T nþ1ð Þ
2 � n ¼

0 onC0cnCT2 [ CHc ; U nþ1ð Þ
0 ¼ 0 onCHc [ CH0g, such that

Dt
ð
Xc

rf 2f 2 r� T nþ1ð Þ
2 � r � T0

2 dX

þDt
ð
Xc

r@zf 2@zf 2 T nþ1ð Þ
2;x T0

2;x þ T nþ1ð Þ
2;y T0

2;y

� �
dX

þ
ð
Xc

mD
FPf 2f 2 T

D
2 � T0

2 dX

�
ð
Xc

mD
FPf 2 rUD

0 � T0
2 dX

¼
ð
Xc

m
D
FP � m

D
� �

f 2f 2 T
D; nð Þ
2 � T0

2 dX

�
ð
Xc

m
D
FP � m

D
� �

f 2 rUD; nð Þ
0 � T0

2 dX

�
ð
Xc

m
D
f 2 T

D
BS �T2

0 dX

(33)

and ð
X0

m 0 rUD
0 � rU0

0 dX

¼
ð
X0

m 0T
D
BS � rU0

0 dX
inX0 (34a)

ð
Xc

mD
FP rUD

0 � rU0
0 dX

�
ð
Xc

mD
FPf 2 T

D
2 � rU0

0 dX

¼
ð
Xc

m
D
FP � m

D
� �

rUD; nð Þ
0 � rU0

0 dX inXc

�
ð
Xc

m
D
FP � m

D
� �

f 2 T
D; nð Þ
2 � rU0

0 dX

þ
ð
Xc

m
D TD

BS � rU0
0 dX

(34b)
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for all (T’2,U’0) [V0, where u	H(curl,Xc), v	H1(X) and f 2 2 H1
per Xcð Þ have been selected. The

interface CT2 is the part of C0c which represents the smooth surface of the laminated iron core, see
Figure 5. The averaged coefficients are denoted by the bar and are calculated as described in (Hollaus
and Schöberl, 2018). The fixed-point method is exploited to solve the nonlinear problem, see Sec. III-B.
The VPM is applied to describe the ferromagnetic material, see Sec. II-B. To overcome the singularity
of the tensor-valued permeability in the magnetic remanence, a differential approach is chosen,
see (7).
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