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Abstract
Purpose – This paper aims to consider a multiscale electromagnetic wave problem for a housing with a
ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large
number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to
significantly reduce the computational costs.
Design/methodology/approach – A domain decomposition technique with upscaling is applied to
cope with the different scales. The idea is to split the domain of computation into an exterior domain and
multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the
same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid
discontinuous Galerkin method and a Schur complement which facilitates the transition from fine
meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the
interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the
finite element discretisation matrix.
Findings – Applying a Schur complement to the identical discretisation of the sub-domains leads to a
method that scales verywell with respect to the number of apertures.
Originality/value – The error compared to the standard finite element method is negligible and the
computational costs are significantly reduced.
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1. Introduction
In the context of electromagnetic compatibility, ventilation grills are also called metascreens
(Holloway andKuester, 2018). Such geometries contain regionswith a locally periodic structure, for
example, openings or scattering objects. This property will be called quasi-periodic. Around these
objects afinemesh is needed infinite element (FE) simulations. The goal of this work is to improve
the computational times in electromagneticwave simulations by reducing the degrees of freedom.

Many different methods have been considered in simulating shieldings with apertures. In the
time domain setting, the finite difference time domain method (FDTD) is prominent and has been
considered, for example, in Georgakopoulos et al. (2001) and Jiao et al. (2006). For simulations in the
frequency domain, the method of moments (MoM) (Araneo and Lovat, 2009), the finite element
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method (FEM) (Kubík and Sk�ala, 2015; Carpes et al., 2000; Boubekeur et al., 2014) or transmission
line models (TLM) (Carpes et al., 2000; Nie et al., 2011) are common. The cited works abovemainly
focus on shieldings with a single or few apertures. The present work deals with simulations for
shieldings with many apertures. In Ali et al. (2005) and Li et al. (2000) the FDTD and the MoM are
considered for such examples. Another approach for large numbers of quasi-periodic apertures is
homogenisation which has been studied in Bardi et al. (2006) and Cruciani et al. (2015). In this
work, the idea of the Nitsche-type mortaring finite element method for the vector potential wave
equation considering non-matching meshes introduced in Hollaus et al. (2010) and Heinrich and
Nicaise (2001) is altered tofit the quasi-periodic settingwithmany apertures.

The method will be used to establish an upscaling by non-matching meshes. In (Heinrich
and Nicaise, 2001) the structure of the resulting system matrix is exploited to reduce the
computational effort of solving the system of linear equations by applying a Schur
Complement (SC). This work applies the method to the electromagnetic wave problem with
multiple sub-domains. The main contribution of this work is the efficient implementation of
a SC for quasi-periodic structures. This is achieved by discretising each aperture identically.

The weak formulation for the vector potential wave equation in the time harmonic
setting is derived in Section 2. The quasi-periodic structure is exploited via a domain
decomposition (DD) approach where many of the generated sub-domains are identical. This
property is further used by introducing non-matching meshes, leading to an upscaling
(Graham and Scheichl, 2007) and applying the Nitsche-type mortar finite element method
(NMFEM) (Hollaus et al., 2010) to cope with the non-matching mesh in Section 3. In Section 4
the resulting system matrix for the NMFEM and its special structure are highlighted. To
exploit this structure a SC is applied, to effectively eliminate all the sub-domains from the
computation reducing the computation time, in Section 5. The proposed method is applied to
various electromagnetic wave problems for 2D geometries as well as 3D geometries, in
Section 6. The computational times for the NMFEM and the FEM are compared in Section 6.

2. Domain decomposition with upscaling for the time harmonic wave equation
The vector potential wave equation in the time harmonic setting using a magnetic vector
potentialA is given as:

curlm�1curlA� k 2A ¼ 0 inX; (1)

A� n ¼ 0 onCD; (2)

m�1curlA� n ¼ 0 onCN ; (3)

m�1curlA� nþ jv
Z

n�Að Þ � n ¼ 0 onCt; (4)

m�1curlA� nþ jv
Z

n�Að Þ � n ¼ h� n onCe (5)

with k 2 ¼ jvs þ v 2« and X ¼ [n
i¼0

Xi � R3. The physical parameters m , « and s are the

magnetic permeability, the electric permittivity and the conductivity, respectively, v = 2p f
is the angular frequency, j is the imaginary unit, h is a prescribed boundary field and
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Z ¼ ffiffiffim
«

p
is the wave impedance. Sub-domains are defined in Figure 1. To derive the, for

FEM needed, weak formulation the following function spaces are needed:

L2 Xð Þ :¼ fv : X ! C;

ð
X
jvj2 dx < 1g; (6)

H curl;Xð Þ :¼ fv 2 L2 Xð Þ� �3
; curlv 2 L2 Xð Þ� �3g; (7)

H0 curl;Xð Þ :¼ fv 2 H curl;Xð Þ;v� njCD
¼ 0g; (8)

L2 Cð Þ :¼ fv : C ! C;

ð
C
jvj2 ds < 1g: (9)

Equation (1) is multiplied by v 2 H0 curl;Xð Þ and then integration by parts is carried out.
This leads to the weak formulation: FindA 2 H0 curl;Xð Þ so that:ð

X
m�1curlA � curlv� k 2A � v dx� jv

Z

ð
Ce[Ct

A� n � v� n ds ¼
ð
Ce

h� n � v� n ds

(10)

for all v 2 H0 curl;Xð Þ.
To be able to exploit the quasi-periodic structure the whole domain is decomposed into the
exterior domain X0 and the sub-domains Xi; i 2 f1; . . . ; ng, see Figure 1. The domains are
non-overlapping and share the interface C. This interface is not only between X0 and theXi,
but also between the sub-domains. The Xi are chosen such that each represents exactly one
aperture and X0 encloses all Xi. In the decomposition the sub-domains are geometrically
identical; therefore, each can be discretised in the same way. This means that, independent
of the number of apertures, only oneXi has to be meshed and the FE systemmatrix for just a
single sub-domain needs to be assembled.

The DD can be used to address a second issue. The small geometric structure around an
aperture leads to a very fine discretisation. This entails a fine discretisation in the vicinity of

Figure 1.
Domain
decomposition of the
domain (left) into the
exterior domainX0

and the sub-domains
Xi (right)
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the aperture due to the necessarily regular, conforming mesh for the FEM. A sufficiently
accurate solution could be represented by a coarser mesh; therefore, the fine mesh
unnecessarily increases the computational costs. The goal is to discretise the exterior
domain as coarse as possible such that the wave propagation is appropriately resolved and
at the same time discretise the sub-domains fine enough to grasp the local, small-scale
behaviour of the solution around the apertures. This leads to an upscaling between the
solutions on the Xi and the solution on X0. The resulting non-conforming mesh over C can
be seen in Figure 2 and 3. The FEM is not capable to cope with non-conforming meshes. To
address this issue the NMFEM is applied.

3. Nitsche-type mortar finite element method
The general idea of the NMFEM is to break the strong continuity of the FE solution on
domain boundaries and reinforce it in a weak sense. This is achieved by introducing a FE

space X Cð Þ ¼ L2 Cð Þ� �3
which is defined on C, see Figure 3. Using the NMFEM, the FEs on

different sub-domains are not coupled directly, but only via the interface FEs on C. In an
usual discontinuous Galerkin method the continuity of the numerical flux is enforced by
testing with test functions from both side of the interface, which leads to a coupling between
elements. This is avoided by the NMFEM, because the continuity of the normal flux across
interfaces is tested by new interface variables. Therefore FEs on different sub-domains do
not couple directly (Hollaus et al., 2010; Cockburn et al., 2009).

3.1 NMFEM for the time harmonic wave equation
The vector potential wave equation in the time harmonic setting using local magnetic vector
potentialsAi for each sub-domain is given as:

curlm�1curlAi � k 2Ai ¼ 0 inXi; (11)

Figure 2.
Coarse mesh on the

exterior domain (left),
fine mesh on the sub-

domain (right)
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Ai � ni ¼ �Aj � nj ¼: Â � ni onC; (12)

m�1curlAi � ni þ m�1curlAj � nj ¼ 0 onC; (13)

Ai � ni ¼ 0 onCD; (14)

m�1curlA0 � n0 ¼ 0 onCN ; (15)

m�1curlA0 � n0 þ jv
Z

n0 �A0ð Þ � n0 ¼ 0 onCt; (16)

m�1curlA0 � n0 þ jv
Z

n0 �A0ð Þ � n0 ¼ h� n0 onCe: (17)

The vector ni is the outward pointing normal vector on the boundary of Xi. The
tangential continuity of the Ai over C is enforced by equation (12). The vector field Â
represents the tangential component of the Ai and is needed to derive the weak
formulation for the NMFEM. The tangential continuity of the flux is ensured by
equation (13).

To obtain the weak formulation for the NMFEM, equation (11) is multiplied with a test
function vi 2 H0 curl;Xið Þ on each domain and then integration by parts is carried out. This
leads to the initial weak formulation:

Figure 3.
A detail of the
interfaceC between
X0 andXi on which
the interface finite
element space is
defined

COMPEL
41,3

942



X
i

ð
Xi

m�1curlAi � curlvi � k 2Ai � vi dx�
ð
C

m�1curlAi � ni

� �
� vi ds

� jv
Z

ð
Ce[Ct

A0 � n0 � v0 � n0 ds ¼
ð
Ce

h� n0 � v0 � n0 ds: (18)

This closely resembles equation (10) with the difference that the volume term is
separated into the sub-domains and due to the fact that the solution is not
continuous over C, the boundary integrals appear. This weak formulation is
incomplete in the sense that the continuity over C is not yet considered. To be
able to enforce the field trace continuity in equation (12) and equation (13), a vector
valued space X(C) of traces of Nédélec kind [Schöberl and Zaglmayr (2005)] are
needed. Multiplying equation (13) with v̂ 2 X Cð Þ and integrating over C leads to the
term:

0 ¼
ð
C

m�1curlAi � ni þ m�1curlAj � nj

� �
� v̂ ds; (19)

which is zero if the flux of the solution is continuous. Adding this term to equation (18) yield:

X
i

ð
Xi

m�1curlAi � curlvi � k 2Ai � vi dx�
ð
C

m�1curlAi � ni

� �
� vi � v̂ð Þ ds

� jv
Z

ð
Ce[Ct

A0 � n0 � v0 � n0 ds ¼
ð
Ce

h� n0 � v0 � n0 ds: (20)

Using:

m�1curlAi � ni

� �
� vi � v̂ð Þ ¼ �m�1curlAi � vi � v̂ð Þ � n (21)

for the boundary term and adding:

X
i

ð
C
m�1curlvi � Ai � Â

� �
� ni

� �
ds ¼ 0 (22)

to symmetrise and:X
i

ð
C
a

p2

mh
Ai � Â
� �

� ni

� �
� vi � v̂ð Þ � nið Þ ds ¼ 0 (23)

to stabilise the formulation, which are zero because of equation (12), leads to:
FindAi 2 H0 curl;Xið Þ; i 2 f1; . . . ; ng; Â 2 X Cð Þ so that:
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X
i

ð
Xi

m�1curlAi � curlvi � k 2Ai � vi dx

þ
ð
C
m�1curlAi � vi � v̂ð Þ � nið Þ ds

þ
ð
C
m�1curlvi � Ai � Â

� �
� ni

� �
ds

þ
ð
C
a

p2

mh
Ai � Â
� �

� ni

� �
� vi � v̂ð Þ � nið Þ ds

� jv
Z

ð
Ce[Ct

A0 � n0 � v0 � n0 ds

¼
ð
Ce

h� n0 � v0 � n0 ds:

(24)

for all vi 2 H0 curl;Xið Þ; i 2 f1; . . . ; ng; v̂ 2 X Cð Þ. The scalar a > 0 represents a
sufficiently large stabilisation factor of the weak formulation which is independent of the
polynomial degree p of the finite element space and themesh size h.

In simulationswith a geometrywhere one dimension is considered as infinitely long the original
vector valued problem is reduced to the scalar Helmholtz problem defined on a 2D geometry.
The steps for deriving the weak formulation for the Helmholtz equation are similar to the steps for
the vector potential wave equation. The biggest difference is that instead of the vector valued space
X(C) the scalar valued spaceL2(C) is needed to reinforce thefield trace continuity overC.

3.2 Interface finite element spaces
Finite elements for the space H0 curl;Xið Þ as well as for the interface spaces L2(C) and X(C)
are needed. The first space is a FEM space described in (Schöberl and Zaglmayr, 2005;
Zaglmayr, 2006). For the space L2(C) defined on lines in 2D, Legendre polynomials of a fixed
degree are used. To discretise X(C) on rectangles in 3D, tensor products of Legendre
polynomials are considered. The polynomial degree for L2(C) and X(C) can be chosen
independently of the polynomial degree ofH0 curl;Xið Þ.

4. Systemmatrix for NMFEM
The system of linear equations for the NMFEM:

Mx ¼ f (25)

has the following block structure:

M :¼

M00 M0C 0 0 � � � 0
MC0 MCC MC1 MC2 � � � MCn

0 M1C M11 0 � � � 0

0 M2C 0 M22
. .
. ..

.

..

. ..
. ..

. . .
. . .

.
0

0 MnC 0 . . . 0 Mnn

0
BBBBBBBB@

1
CCCCCCCCA
; (26)
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x :¼ x0; xC; x1; x2; . . . ; xnð Þ>; (27)

f :¼ f0; fC; f1; f2; . . . ; fnð Þ>: (28)

The right hand side vector can be split into f0 corresponding to the excitation on
X0; fC to C and fi to the sub-domain Xi. In a similar way the unknowns x are split.
Sub-blocks with mixed indices in equation (26) indicate the coupling matrices
between different FE spaces. For example, the matrix M0C represents the
coupling between the FE spaces defined on X0 and C. Due to the identical
discretisation of Xi, the matrices Mii are identical for i 2 f1; . . . ; ng. As can be seen in
equation (24) the weak formulation is symmetric; therefore, the system matrix is
also symmetric and MiC ¼ MCi. These properties, as well as the structure of the
system matrix, will be exploited so that the whole system matrix does not need to be
assembled.

5. Schur complement
To efficiently use the introduced technique, a SC is applied to solve the resulting
system of linear equations. In the SC, the inverse of the system matrix of a single
sub-domain can be used for all sub-domains, reducing the computational costs. Due
to the small size of the system matrix of a single sub-domain, the inverse can be
cheaply calculated. The sparsity of the system matrix is retained, because the FEs
on Xi only couple with a few degrees of freedom (DoF) on C.

The SC of a matrixM is defined as:

M ¼ A B
C D

	 

¼ I BD�1

0 I

	 

A� BD�1C 0

0 D

	 

I 0

D�1C I

	 

(29)

and therefore the inverse ofM can be written as:

M�1 ¼ I 0
�D�1C I

	 

A� BD�1Cð Þ�1

0
0 D�1

 !
I �BD�1

0 I

	 

; (30)

if D is invertible. The matrix A – BD– 1C is always invertible if the matrices M and D are
invertible. ForM in equation (26) the blocks are:

A ¼ M00 M0C

MC0 MCC

	 

; (31)

B ¼ 0 0 � � � 0
MC1 MC2 � � � MCn

	 

; (32)
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C ¼
0 M1C

0 M2C

..

. ..
.

0 MnC

0
BBB@

1
CCCA; (33)

D ¼

M11 0 � � � 0

0 M22
. .
. ..

.

..

. . .
. . .

.
0

0 . . . 0 Mnn

0
BBBB@

1
CCCCA: (34)

Using this approach the system of linear equations can be solved in the three steps given
below for the case of two sub-domains.

5.1 Pre-processing
The first step has the form:

I �BD�1

0 I

	 

f ¼

I 0 0 0
0 I �MC1 M11ð Þ�1 �MC2 M22ð Þ�1

0 0 I 0
0 0 0 I

0
BB@

1
CCA

f0
fC
f1
f2

0
BB@

1
CCA

¼ f0 ~f C f1 f2
� �>

¼: ~f :

(35)

As can be seen, only fC is altered. To assemble the necessary matricesMCi Miið Þ�1 systems
of linear equations withMii have to be solved. The total number of needed solutions is equal
to the number of degrees of freedom (NDOF) of the boundary space on C \ @Xi. This might
be time expensive depending on the size of the sub-domain discretisation matrix and on the
NDOF on the boundary, but due to the identical discretisation of each Xi and of the boundary
spaces around the sub-domains, the matrices MCi Miið Þ�1 are, up to permutations, identical
for all sub-domains and therefore only one needs to be assembled.

5.2 Solving
The second step is given by:

A� BD�1Cð Þ�1
0

0 D�1

 !
~f ¼

S�1 0 0
0 M11ð Þ�1 0
0 0 M22ð Þ�1

0
B@

1
CA

f0
~f C
f1
f2

0
BB@

1
CCA ¼

x0
xC
~x1
~x2

0
BB@

1
CCA ¼: ~x;

(36)

Where:
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S :¼
M00 M0C

MC0 MCC �
X2
i¼1

MCi Miið Þ�1MiC

0
B@

1
CA: (37)

Instead of one large system of linear equations, smaller systems of linear equations on the
individual sub-domains can be considered in parallel. On the sub-domains solutions withMii

have to be calculated. On the exterior domain a system of linear equations with S has to be
solved. To assemble the matrices MCi Miið Þ�1MiC in S the matrix MCi Miið Þ�1, which has
already been assembled in the first step, can be used.

5.3 Post-processing
The third step consists of:

I 0
�D�1C I

	 

x̂ ¼

I 0 0 0
0 I 0 0
0 � M11ð Þ�1M1C I 0
0 � M22ð Þ�1M2C 0 I

0
BBB@

1
CCCA

x0
xC
~x1
~x2

0
BB@

1
CCA ¼

x0
xC
x1
x2

0
BB@

1
CCA:

(38)

In this step only the solution vectors of the sub-domains are altered. Due to the symmetry of
the systemmatrix, the matrix assembled in the first step can be used for the third step.

In case of no excitations on the sub-domains, fi ¼ 0; i 2 f1; . . . ; ng, the first step can be
omitted. If the solution on the sub-domains is not needed, the third step can be neglected.

6. Numerical example
To show the feasibility of the introduced method, 2D and 3D ventilation grills have been
considered.

6.1 2D Ventilation grill with one aperture
As a 2D example, a ventilation grill with one aperture, see Figure 4, has been chosen. The
shielding CD has been modelled by homogeneous Dirichlet boundary conditions.
Homogeneous Neumann boundary conditions have been applied on CN. The bottom
boundary Ct has been considered as transparent and modelled by first order absorbing
boundary conditions (ABC) (Chatterjee et al., 1993). On the boundary Ce at the top a plane
wave and a first order ABC have been applied via a Robin boundary condition with

h ¼ jv
Z ; 0
� �>

. The permeability and permittivity of vacuum have been used and a

frequency f = 10GHz is considered. The reference solution with FEM and the solution with
NMFEM have been compared. The logarithmically scaled norm of the solutions can be seen
in Figure 4. The relative L2 error onX0 of the NMFEM solution is:

jjAref � ANMFEM jjL2 X0ð Þ
jjAref jjL2 X0ð Þ

� 100% ¼ 0:06%: (39)
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6.2 3D Ventilation grill with 25 apertures
As a more realistic 3D example, a ventilation grill with 5� 5 apertures, see Figure 5 and 6,
has been considered.

The boundary value problem equation (24) has been solved at the frequency f = 10GHz.
For the permeability m and the permittivity « vacuum has been chosen. The excitation has
been set to:

h ¼ exp � x� 20ð Þ2
1002

 !
; 0; 0

 !>

: (40)

Although, for instance, perfectly matched layers (Leumüller et al., 2019) would be more
accurate, for the sake of simplicity first-order absorbing conditions have been prescribed on
the outer boundary Ct [ Ce. The shielding CD has been modelled by homogeneous Dirichlet
boundary conditions. Finally, this work focuses on upscaling and DD. The solution with the
NMFEM on the exterior domain can be seen in Figure 7. All the numerical examples have
been calculated with the aid of the open source FE software Netgen/NGSolve (Schöberl,
2022).

The computational times for the FEM simulation and the NMFEM simulation have been
compared. A constant maximum size for the mesh elements has been chosen in all
simulations. The meshes around the apertures are still very fine in the simulations. For the
H(curl) FE spaces the polynomial degree has been set to p = 3 in all simulations. The
polynomial degree of the boundary FE space on C has been set to pC = 6. All calculations
have been carried out on 16 cores in parallel. As a solver for the systems of linear equations,
PARDISO (De Coninck et al., 2016; Verbosio et al., 2017; Kourounis et al., 2018) has been
used. The number of sub-domainsNSD has been varied betweenNSD [ {1, 4, 9, 16, 25}. A list
of the NDOF for the different simulations can be seen in Table 1. In Figure 8 the simulation
times for NMFEM and FEM are shown. For smallNSD the computation time for the sub-domain
matrices in the SC, e.g.MCi Miið Þ�1, is dominant, but for a more realistic number of apertures the
factorisation and solving with PARDISO dominate. In the FEM simulation the computation time

Figure 4.
Reflection and
transmission of an
incident plane wave
from above of
the aperture,
reference solution
with fine mesh (left),
domain
decomposition
solution with
upscaling i.e. fine and
coarse mesh (right)
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is always dominated by the factorisation and solving with PARDISO. The meshing and
assembling times for the systemmatrices are small in comparison to the factorisation times. The
maximal used memory for NMFEM and FEMwith respect toNSD can be seen in Figure 9. Using
NMFEM themaximalmemory demands are enormously reduced.

Figure 5.
Geometry of the

exterior domain of a
ventilation grill
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7. Conclusion
A NMFEM with non-matching meshes for 2 D and 3 D ventilation grills with quasi-
periodic apertures has been introduced. The method leads to a large reduction of the
computational time and the memory demands through upscaling and SC reduction.
This has been achieved by an efficient implementation of the SC. The identical
discretisation of each sub-domain has been essential to decrease the NDOF in the
simulations.

Figure 6.
Geometry of the
periodic sub-domains
with quadratic
openings; boundaries
between the sub-
domains are indicated
by dashed lines, front
view (above) and top
view (below)
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Figure 7.
Incident, reflected

and transmitted field
of a plane wave

impinging a shielding
with an array of 5� 5

apertures

Table 1.
The NDOF for

NMFEM and FEM
with respect to the

number of sub-
domains

NSD 1 4 9 16 25

NMFEM
NDOF;Xe 21,908 40,384 80,348 126,092 164,432
NDOF;C 432 1,440 3,024 5,184 7,920
NDOF;Xi

19,060 19,060 19,060 19,060 19,060
NDOF;C\@Xi

432 432 432 432 432
FEM NDOF 66,000 187,824 408,048 707,364 1,073,208

Figure 8.
Computation time for

solving with the
NMFEM and the

FEMwith respect to
the number of sub-

domains

Figure 9.
Maximal memory

requirement in
gigabyte (GB) for
solving with the
NMFEM and the

FEMwith respect to
the number of sub-

domains
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