To read this content please select one of the options below:

Investigation on the induction stirring effect in a laboratory scale crucible with the variation of electrical supply parameters

Michele Forzan (DII, University of Padua, Padova, Italy)
Fabrizio Dughiero (Department of Electrical Engineering, University of Padova, Legnaro, Italy)
Mattia Guglielmi (DII, University of Padua, Padova, Italy)
Antonio Marconi (DII, University of Padua, Padova, Italy and Inova Lab srl, Padova, Italy)

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering

ISSN: 0332-1649

Article publication date: 17 January 2020

Issue publication date: 11 March 2020

77

Abstract

Purpose

This paper aims to study the possibility of controlling the electromagnetic stirrer (EMS) is fundamental in a continuous casting line to achieve the desired properties of homogeneity and mechanical strength in the solidified cast.

Design/methodology/approach

Coupled electromagnetic (EM) and fluid dynamic (FD) simulations allow to predict the mixing effect on molten metal, in terms of velocity amplitude and shape of the flow. This paper describes the numerical results of EMS effect within a cylindrical crucible, surrounded by a solenoidal inductor, filled with a low melting temperature alloy, i.e. GalInStan.

Findings

Induced forces and resulting velocity distribution of the flow of the liquid metal have been calculated depending on varying amplitude and frequency of the supplied current. As expected, at a given amplitude of the current supply, the velocity distribution shows a maximum at a certain frequency while the intensity of electrodynamic forces monotonically increase as the frequency increases

Originality/value

The paper deals with simply models and experiments applied to coupled EM and FD problem, to assess the applied methodology.

Keywords

Citation

Forzan, M., Dughiero, F., Guglielmi, M. and Marconi, A. (2020), "Investigation on the induction stirring effect in a laboratory scale crucible with the variation of electrical supply parameters", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 39 No. 1, pp. 177-184. https://doi.org/10.1108/COMPEL-06-2019-0231

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles