
Entity deduplication in big data
graphs for

scholarly communication
Paolo Manghi, Claudio Atzori, Michele De Bonis and Alessia Bardi
Istituto di Scienza e Tecnologie dell’Informazione, National Research Council,

Pisa, Italy

Abstract

Purpose – Several online services offer functionalities to access information from “big research graphs” (e.g.
Google Scholar, OpenAIRE, Microsoft Academic Graph), which correlate scholarly/scientific communication
entities such as publications, authors, datasets, organizations, projects, funders, etc. Depending on the target
users, access can vary from search and browse content to the consumption of statistics for monitoring and
provision of feedback. Such graphs are populated over time as aggregations of multiple sources and therefore
suffer from major entity-duplication problems. Although deduplication of graphs is a known and actual
problem, existing solutions are dedicated to specific scenarios, operate on flat collections, local topology-drive
challenges and cannot therefore be re-used in other contexts.
Design/methodology/approach – This work presents GDup, an integrated, scalable, general-purpose
system that can be customized to address deduplication over arbitrary large information graphs. The paper
presents its high-level architecture, its implementation as a service used within the OpenAIRE infrastructure
system and reports numbers of real-case experiments.
Findings –GDup provides the functionalities required to deliver a fully-fledged entity deduplicationworkflow
over a generic input graph. The system offers out-of-the-box Ground Truth management, acquisition of
feedback from data curators and algorithms for identifying and merging duplicates, to obtain an output
disambiguated graph.
Originality/value –To our knowledge GDup is the only system in the literature that offers an integrated and
general-purpose solution for the deduplication graphs, while targeting big data scalability issues. GDup is
today one of the keymodules of theOpenAIRE infrastructure production system,whichmonitorsOpen Science
trends on behalf of the European Commission, National funders and institutions.

Keywords Deduplication, Information graphs, Big data, Scholarly communication, Scalability,

Implementation

Paper type Research paper

1. Introduction
The advent of Open Science has broadened the scope of interest of scholarly/scientific
communication beyond scientific literature, so as to include research data and research
software and, for monitoring purposes, projects and funders. Researchers, communities,
institutions, governments and funders demand integrated and enhanced access to research
graphs (Xia et al., 2017), obtained as metadata aggregations of distributed scholarly
communication data sources. Their intent differs, ranging from discovery and access of
scientific products, to monitoring and evaluating funding efforts or identifying research
trends. Examples of research graphs in the scholarly communication domain are the Google

Entity
deduplication

in big data
graphs

409

©Paolo Manghi, Claudio Atzori, Michele De Bonis and Alessia Bardi. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial &
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode.

This work was supported by the European Commission [OpenAIRE2020 project (grant 643410, call
H2020-EINFRA-2014-1), OpenAIRE-Advance project (grant 777541, call H2020-EINFRA-2017-1)].

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2514-9288.htm

Received 4 September 2019
Revised 13 December 2019

Accepted 19 December 2019

Data Technologies and
Applications

Vol. 54 No. 4, 2020
pp. 409-435

Emerald Publishing Limited
2514-9288

DOI 10.1108/DTA-09-2019-0163

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/DTA-09-2019-0163

Scholar graph [1], the Microsoft Academic graph [2] and the OpenAIRE research graph [3].
Such initiatives collect from different kind of data sources (e.g. libraries, publication
repositories, publishers, author directories) and assemble graphs whose objects are authors,
organizations, publications, etc. having specific customers inmind. In general, due to the high
degree of heterogeneity and independence of such sources, which may preserve objects
produced by the same authors or affiliated to the same organizations, such graphs suffer from
disruptive duplication rates and require adequate solutions to be adopted. System engineers
can easily find general-purpose public/commercial tools for the identification of equivalent
metadata records in big “flat” collections of objects. Engineers write code to import their
collection into the tool of choice, then use the tool to identify duplicates, retrieve the set of
object equivalences (typically groups of object IDs) and finally write code to resolve
duplication within their collection. If the collection is also “big”, that is untreatable without
parallel computing solutions, then the task becomesmore complex as extra big data skills are
required. However, merging of records in flat object collections is a rather simple task
compared to graph-like scenarios. Graphs introduce two different problems: (1) multiple
entities, hence the handling of multiple entity-specific deduplication scenarios, and (2) the
relationships between objects, which burden the deduplication phase to preserve the
topology of the graph. For such reasons, the adoption of existing tools cannot be easily
adapted to the problem of deduplication of big graphs. To implement a full entity
deduplication workflow for big data graphs curators end-up realizing patchwork systems,
tailored to their graph data model, often bound to their physical representation of the graph,
expensive in terms of design, development and maintenance, and in general not reusable by
other practitioners with similar problems in different domains.

This work, building on literature and tools for duplicate identification in big data flat
collections, addresses the more complex challenge of deduplication of entities in big data
graphs. In the following text a graph is intended as any digital representation of a set of entity
types (structured properties) linked by relationships. Graphs are big when duplicate
identification over the objects of such entity types require parallel-oriented approaches to
scale up and perform in reasonable time. Entity deduplication is the combined process of
duplicate identification, that is efficient identification of pairs of equivalent objects of the same
entity type, and graph disambiguation, that is removal of duplicates from the graph, while
semantically preserving the topology of the graph.

The need of practitioners for implementing a fully-fledged entity deduplication workflow
to disambiguate a generic big graph has led us to devise GDup, an integrated, scalable,
general-purpose system for this purpose. GDup offers to graph data curators functionalities
to manage “ground truths”, acquire end-user feedback to improve the process, and customize
algorithms for the identification and merge of duplicates to return an output disambiguated
graph; such functionalities rely on an underlying parallel computing engineering that ensures
scalability to graphs of arbitrary size. Therefore, the novelty of GDup is not about improving
accuracy of deduplication algorithms for specific entities or beating existing deduplication
systems on deduplication efficiency; but rather offering out-of-the-box tools to data curators,
who should focus on modeling and customizing their big graph deduplication solutions
rather than facing the technical challenges necessarily implied by such tasks. This work
extends initial outcome on GDup (Atzori et al., 2018), where the authors sketched the concept
and high-level architecture of GDup and described its adoption in the real-case scenario of the
big graph operated by the OpenAIRE infrastructure for Open Science Research in Europe [4].
OpenAIRE infrastructure’s services populate a scholarly communication big data graph,
namely the OpenAIRE Research Graph [5], whose goal is to support discovery and
monitoring of Open Science trends and research impact for funders, institutions and
researchers in specific disciplines; services like Scopus, Zenodo.org, European Commission’s
Open Science monitor, the ResearchGraph Foundation and others are today using the graph

DTA
54,4

410

as main source of information. GDup is the core deduplication service for the production
system of the OpenAIRE infrastructure, used today to deduplicate publications, datasets,
software and organizations records, in order to ensure sensible statistics are delivered. The
contribution of this article, not addressed in previous work (Atzori et al., 2018), is to provide a
formal definition of the graph deduplication problem, the formal definition of GDup’s
architecture, that is the internals of the functions modeling the various deduplication phases,
and to report experimental results relative to the usage of GDup in the new OpenAIRE
Research Graph, which has since expanded to include new kinds of entities (e.g. research
software) and triplicated the size of the data.

1.1 Outline
Section 2 describes the OpenAIRE Research Graph use-case to identify the requirements that
a big data graph deduplication system should meet and analyses the state-of-the-art to
highlight the limits of current solutions. Section 3 formally presents the functional
architecture of GDup, while Section 4 describes its technical implementation and gives an
example of its usage in the OpenAIRE infrastructure.

2. Deduplication of big data graphs
To describe the problem of big graph deduplication we introduce the OpenAIRE
infrastructure system, whose services populate a big graph of scientific publications,
datasets, organizations, authors, and other related entities, and whose size and deduplication
challenges are representative of this class of problems. The use-case highlighted the lack of
solutions in the literature capable of addressing such challenges and provided input for the
definition of functional and non-functional requirements leading to the realization of GDup.

2.1 The OpenAIRE research graph
The OpenAIRE infrastructure is an initiative (Manghi et al., 2010) funded by the European
Commission (soon to become a Legal Entity) whose purpose is to facilitate, foster and support
Open Science in Europe. The infrastructure has been operational for almost a decade and
successful in linking people, ideas and resources for the free flow, access, sharing and re-use
of research outcomes. On the one hand, OpenAIRE manages and enables an open and
participatory network of people willing to identify the commons and forums required to
foster and implement Open Science policies and practices in Europe and globally. On the
other hand, it supports the technical services required to facilitate and monitor Open Science
publishing trends and research impact across geographic and discipline boundaries.

The OpenAIRE service infrastructure consists of metadata aggregation services and
information inference services whose purpose is to populate the OpenAIRE Research Graph
(Manghi et al., 2012a). A high-level view of the graph’s data model is depicted in Figure 1. Its
main entities are described below, together with other aspects that are not represented in the
picture as they are not relevant for this work:

Products are intended as the outcome of research activities and may be related to Projects
co-funding the underlying research or Organizations to which product authors are affiliated.
OpenAIRE supports four kinds of research outcome: Publications, Datasets, Software and
Other research products; that is any product that does not fall in the other three categories. As
a result of merging equivalent objects collected from separate data sources, a Product object
may have several physical manifestations, called instances; instances indicate URL(s) of the
full text, access rights, and a relationship to the data source that hosts the file; Organizations
include companies, research centers or institutions involved as project partners or are
responsible for operating data sources or are the affiliations of Product authors; Funders (e.g.

Entity
deduplication

in big data
graphs

411

European Commission, Wellcome Trust, FCT Portugal, Australian Research Council) are
responsible for a list of Funding Streams , that is strands of investments of a Funder (e.g. FP7
and H2020 for the EC). Funding Streams can be nested to form a tree of sub-funding streams
(e.g. FP7-IDEAS, FP7-HEALTH); Projects are research projects funded by a Funding Stream
of a Funder. Investigations and studies conducted in the context of a Project may lead to one
or more Products; Data Sources are the web sources from which OpenAIRE collects the
metadata records representing the objects populating the OpenAIRE research graph;
examples of sources are institutional and thematic repositories, data repositories, journals,
publisher databases, registries such as ORCID, DataCite and CrossRef, etc.. Each object is
associated to the data source from which it was collected to track its provenance.

On top of the graph OpenAIRE offers, beyond a search and browse portal, a number of
applications, called Dashboards, in support of researchers (Research Community Dashboard
[6]), organizations (Institutional Dashboard), funders (Funder Dashboard [7]) and project
coordinators (Project Dashboard). The dashboards allow users to access statistics relative to
Open Access trends and research impact for organizations, funders, and projects.
Deduplication of products and organization is therefore crucial to deliver meaningful
statistics to dashboard users.

2.2 Graph entity deduplication
The OpenAIRE Research Graph suffers from heavy duplication phenomena. The main
causes are content duplication in the harvested data sources, the low availability of persistent
identifiers for the entities involved (e.g. DOI for scientific articles, datasets, and software,
ORCID identifiers for authors, ISNI/GRID for organizations, FundRef for funders), but also
the fact that products may feature different versions, which are indeed distinct digital objects
but to be considered as one in the OpenAIRE context, where reporting andmonitoring are key
tasks; that is pre-print, post-print, published version of an article cannot be regarded as three
different scientific results by a project coordinator, a funder or an institution. The strategy is
therefore to (1) generate uniquely identified OpenAIRE objects when harvesting from data
sources and (2) subsequently rely in the deduplication process to merge the equal objects.
Such identifiers should be “stateless”, that is IDs which are identically re-generated for all
objects derived from a given metadata record. To this aim, the method relies on the original
local identifiers assigned by the data source to such objects or to other unique information
within the record. For example, when collecting metadata records of datasets from of a data
repository X, the aggregation services extract from such records OpenAIRE objects and
relationships to feed the Research Graph: for each record, this process yields one dataset
object, the organization to which the dataset is associated, the relationships between the

Figure 1.
OpenAIRE data model

DTA
54,4

412

dataset and the organizations, and possibly relationships from the dataset to other products
or projects. The dataset has an OpenAIRE identifier obtained from the unique OpenAIRE
identifier for the repository X (assigned at data source registration time) the MD5 hash [8] of
the ID of the record as assigned to it by the repository X. In turn, organization objects have an
identifier obtained from the OpenAIRE dataset ID as described above, plus the MD5 of the
name of the organization or the MD5 of the organization ID if one is available. Interestingly,
via an OpenAIRE ID it is always possible to track back the origin of an entity.

Duplication may be of two main kinds: “intra-data source”, i.e. duplicates generated by
records from one data source, or “cross-data source”, i.e. duplicates generated by records from
different data sources. In particular, objects of the entity types Publications, Datasets,
Software,Other research products, and organization are affected by both forms of duplication,
which in turn lead to specific big data graph deduplication challenges:

Publications Intra-data source publication duplicates are very common in publication
aggregators (e.g. NARCIS, CORE-UK, etc.), and in some rare cases also manifest in
institutional repositories, due to the lack of curation of the data source managers. Not all
aggregators collect from other aggregators, but this is indeed the case for OpenAIRE, which
is trying to maximize the number of publications minimizing the number of sources to
actively harvest (today around 1,100). Cross-data source duplicates are very common as we
can at least expect all co-authors of a publication to deposit in the respective institutional
repositories, which will likely be OpenAIRE data sources. Besides, the publication can be
further deposited in thematic repositories (e.g. arxiv, PubMed, Repec) or be collected by
aggregator services collected by OpenAIRE. For the same reason, as we shall see in Section 4,
duplication rate for a publication is generally not high. OpenAIRE collects today around
300Mi individual publication records. Some of these, collected from Unpaywall, Microsoft
Acedmics and Crossref, are pre-merged using DOI as pivot to populate the DOIBoost
collection (La Bruzzo et al., 2019), which returns around 85Mi publication records. This
optimization results into a total of around 150Mi publication records to be deduplicated.

Datasets are different in nature as they typically reside in one data archive, database, or
institutional repository. As a consequence their cross-data source duplication arises from
collecting the same objects from different aggregators, with a very low rate. On the other
hand, the same object may have different versions within the same data source. OpenAIRE
collects today around 12.5Mi datasets records to be deduplicated.

Software products are not so common into repositories, as most scientists still deposit
them into software development repositories, such asGitHub. Recently, the deposition of code
as a scientific product is more and more becoming the norm, and platforms such as
Zenodo.org or Figshare.org, which provide support for software deposition, metadata and
DOIs, are indeed playing a key role on this cultural shift. Duplication of software products has
the same features of dataset duplication, but a much lower dimension, OpenAIRE harvesting
today around 300K software records.

Other research products (ORPs): ORPs duplication features may match the ones of
publication, datasets, and software, as ORPs may in nature be similar to any of the three in
terms of cross-data source and, intra-data source duplication. OpenAIRE harvests today
around 7.5Mi ORP records to be deduplicated.

Organizations: Organizations are mainly collected from CRIS systems and entity registries,
such as project databases from the European Commission (CORDIS) or other funders today
included inOpenAIRE (around 30) and the Global Research Identifier Database [9] maintaining
an authoritative list of research organizations. Their duplication can be due to both intra-data
source and cross-data source issues. Some data sources provide unique identifiers for
organizations in the metadata, others provide unique names, but not identifiers and others
provide organization names inserted by users, hence potentially different for the same
organizationwithin the samedata source. To further increase the chaos there is no best-practice

Entity
deduplication

in big data
graphs

413

on “granularity” for organization names (i.e. some provide a department, some the principal
institution, some provide both), on the language to be used and on the specific structure (e.g.
University ofWarsaw andWarsawUniversity). Finally organizations change names over time.
OpenAIRE harvests today around 400K organization records to be deduplicated.

From this analysis it is clear that deduplication of the OpenAIRE graph requires a wide
variety of functionalities and skills. For publications numbers can be very high, in the order of
hundreds of millions, and grow every day generally of a small fraction: this means
computational performance is an issue as heuristics alone cannot mitigate the time to compute
over such large collection; to copewith evolution, deduplication should count on an incremental
approach where deduplication can be executed by adding the new records, without running
deduplication on the whole collection; finally, humans must be able to provide feedback to the
system in order to permanently fix the inevitable glitches of an automated approach, which
leads to false positives or negatives. For organizations cardinality is not an issue as we are
targeting about hundreds of thousands, but deduplication suffers from the lack of informative
metadata and the lack of best practices mentioned above. Accordingly, humans play an
important role in providing feedback to the results of deduplication, and the possibility to count
on existing “ground truth” of organizations provided by other organizations, such as isni.org
and grid.ac, becomes crucial. Ground truth of organizations are curated by humans and for
each organization they keep a number of “aliases” that can be very useful to deduplicate
otherwisemismatching organization names or acronyms collected inOpenAIRE. Finally, for all
entities, once the groups of similar objects have been identified, specific merging techniques
must be adopted that replace groups with one “representative object” for the group and
associate the relationships of the merged objects to such representative.

2.3 State-of-the-art and motivations
The deduplication of big data graphs requires a system capable of supporting an end-to-end
workflow, which initially focuses on the identification of duplicates for the different entity
types and concludes with the construction of a de-duplicated graph. More specifically, a
system capable of supporting such workflow should tackle the following high-level
challenges:

(1) Graph model: should be able to represent and manage graph-shaped information
spaces, hence handle multiple entity types and relationships between them;

(2) General purpose-ness: should be customizable and configurable in order to cope with
graphs of any type andwhose entities canmanifest different deduplication scenarios;

(3) Ground Truth: should be able to import ground truth sets as well as generate ground
truth sets from deduplication results;

(4) Scalability: deduplication is a challenging task per se, especially in terms of
computational cost; in order to process large graphs the system should ground on
parallel computing techniques;

(5) Data curators feedback: no machinery will ever replace human ability to judge
whether two objects of the same entity are indeed duplicates or should never be
regarded as such; to this end such system must allow domain experts to evaluate the
results and provide feedback to the system.

Looking up the literature, it is clear that deduplication research has a long history (Fellegi and
Sunter, 1969; K€opcke et al., 2010): record linkage, entity resolution, duplicate detection,
co-reference resolution, object consolidation, reference reconciliation, fuzzy match, object
identification, object consolidation, entity clustering, merge/purge, identity uncertainty and
many other research topics may offer different interpretations and solutions to the problem of

DTA
54,4

414

http://isni.org
http://grid.ac

deduplication. An analysis of the requirements of the functionalities for deduplication and
record linkage systemswasproposed byK€opcke, Thor andRahm in (K€opcke et al., 2010). In fact,
as a result of such studies several deduplication tools have been developed (Jurczyk et al., 2008;
Manghi et al., 2012b; Christen, 2008; Kang et al., 2008). Our work is orthogonal to most of the
large body of work in deduplication since, to our knowledge, no researcher has worked on
systems for the deduplication of big data graphs: some approaches address the problem of
record linkage or entity resolution for “big data” flat collections, while others tackle
disambiguation of “graphs”, but none delivers the full workflow of big data graph
deduplication as described above.

Among the first category we can mention Dedoop [10] (Kolb and Rahm, 2013) and PACE
(Manghi et al., 2012b). Both tools are built on distributed column stores, respectively Hadoop
MapReduce and Cassandra. They allow to efficiently process large collections in parallel to
identify duplicates and offer flexible configuration of blocking functions (so as to match the
Map Reduce processing model they adopt) and general-purpose matching functions.

For the second category, on the side of graphs, approaches have been explored but not
effectively implemented, such as (Bhattacharya and Getoor, 2004) and Saeedi et al., 2008)
which consider the semantics of graph links as input of deduplication and disambiguation,
and Dedupalog (Arasu et al., 2017), which focuses on large-scale graph deduplication.

Dedupalog addresses optimization of clustering in graph deduplication by taking into
account constraints identified by relationships between entities, for example “equal
publications must have the same related organizations”. The underlying algorithm produces
a clustering that optimizes the number of matches to be performed in the Reduce phase of
optimization. Constraints are expressed using a Datalog-like language, which improves
previous approaches in terms of usability and performance. The authors provide numbers
relative to an implementation developed on top of an SQL database which performs clustering
in 2min over a “big collection” of 450Kpublication bibliographic records from theACM library.
Scalability to hundreds of millions of records (300Mi in the case of OpenAIRE for example)
would therefore require a different implementation, likely devised keeping parallel computing
design in mind. The outcome of Dedupalog is indeed relevant to the topic, but addressing only
one of the aspects of deduplication of big graphs identified by the OpenAIRE use-case.
Dedupalog does not support disambiguation by merging of objects and relationships, ground
truth management, human data curation, scalability to arbitrary numbers of records, etc.

To conclude, practitioners in the need of disambiguate big graphsmay reuse existing tools
or techniques but then would require to assemble them to form custom deduplication
solutions for their graphs. Such ad-hoc solutions are typically complex to engineer, expensive
to maintain and hardly reusable in different contexts by others.

3. GDup architecture
We have designed and implemented a system for graph deduplication called GDup (Atzori,
2016) (Atzori et al., 2018) whose aim is to address the general lack of tools capable of
addressing a complete graph deduplication workflow, from the graph input phase to the
materialisation of the disambiguated graph, enhanced by end user feedback and supported
by ground truth. The architecture of system is depicted in Figure 2, whose main functional
areas support an end-to-end workflow enabling data curators at:

(1) Graph import: importing their graph in the system;

(2) Candidate identification and matching: configuring for each entity type the relative
duplicate identification policy;

(3) Ground Truth injection: generation of ground truth from deduplication results and
injection of ground truths in future candidate identification phases;

Entity
deduplication

in big data
graphs

415

(4) Duplicates Grouping and Merging: configuring graph disambiguation strategies;

(5) Curators feedback: supporting data curators at providing feedback to the results of
deduplication;

(6) Graph export: exporting the output deduplicated graph in a standard exchange
format.

In the following we will first describe the type and object language of GDup based on the
Property Graph Model (Rodriguez and Neubauer, 2010), then formally introduce the
individual areas of the architecture and the relative functionalities.

3.1 Graph data model
The workflow depicted in Figure 2 takes an input “raw” graph GR and applies a number of
functions that change the topology of the initial graph by adding or removing objects and
edges to yield its “deduplicated” version GD. To semantically describe this workflow, GDup’s
data model must be able to represent (1) the type schema of the input graphs, since duplicate
conditions are formulated at the level of entities and based on the properties of such entities,
and (2) different logical views (in the following “overlays”) of the graph, since the transition of
the graph from one workflow stage to the next will be logical. Among known models for
graph representation, the Property Graph Model (PGM) (Robinson et al., 2015) has become
quite popular in graph databases implementations due to its expressiveness, which
subsumes several and simpler forms of graphs types, and its extensions to match specific
representation challenges. Of interest to our work are the Extended PGM graphs (EPGM),
described as a set of vertices and edges (Junghanns et al., 2015) where:

(1) Vertex: an object that has a unique identifier, a label that denotes its type (i.e.
properties) and potentially incoming and outgoing edges;

(2) Edge: an object that connects two vertices, may have properties, has a label that
denotes the type of relationship between the two vertices, and has a direction, that is
head vertex and tail vertex;

(3) Properties: are a set of key/value pairs associated to a vertex;

Figure 2.
GDup: architecture of
de-duplication
workflow

DTA
54,4

416

(4) Overlays: are labels tagging vertices and edges in order to define “logical graphs”, that
is subset of vertexes and edges bound together by some logic; the same vertices and
edges may belong to different logical graphs.

The concept of overlay is of particular interest since it allows the co-existence of several
graphs interpretations within the same graph representation. Such logical tagging reflects
directly possible underlying representations. In order to introduce a schema for our graphs,
that is an expected structure of vertexes and edges, we defined the Structured Property Graph
Model (SPGM) as an extension of EPGM that includes the notion of graph schema. A graph
schema is a set of assertionsVT that associate the label of a vertex type in EPGMwith a “type
structure”. More specifically:

(1) Graph schema: a set of assertions that constrain the name of a vertex type (i.e. a vertex
label in EPGM) with a specific set of structured properties and edge types with a
semantic label for each of the directions and a set of structured properties;

(2) Structured properties: vertex properties are defined as a set of label-value pairs, where
label is the attribute name and the values are primitive types (integer, float, string,
. . .), lists of such values, or set of properties;

(3) Vertex: an object that has a unique identifier, a label that denotes the entity type it
conforms to, the values instantiating its type, and one or more overlay labels;

(4) Edge: An object that has a label that denotes the type of relationship between its two
vertices, a source and a target vertex and one or more overlay labels.

More specifically, a graph schema is a set of vertex types ½VT1
. . .VTm

� defined as assertions:
VT ¼< ½l1; . . . ; ln�;

�
→

s1VT1
. . . → smVTm

��

whereVT is the name of the type, the li’s are the property labels of the typeVT, while↔
siVTi

’s
indicates a relationship type between VT and VTi

whose semantics is si. Accordingly, an
SPGMgraph is an EPGMgraphwhose nodes conform, that is respect the structure, of a given
graph schema. Figure 3 illustrates an example of an SPGM graph instance with Raw graph
overlay, which includes only one type of objectsArticle, whose objects are described by three
properties title, authors, and issn and a self-relationship cites:

Article ¼< ½title; authors; issn�; �→ citesArticle
�
>

Figure 3.
Structured Property
Graph: raw graph

Entity
deduplication

in big data
graphs

417

3.2 Deduplication workflow
In this section we illustrate more in detail the functional architecture of GDup by presenting
the functional breakdown of the deduplication workflow it implements. More specifically, it is
composed of the following phases, as illustrated in Figure 2:

3.2.1 Graph import. The import phase is responsible of importing a graph expressed
according to known standards, such as RDFG and JSON-LD, into the graph database of
GDup, defined according to a given graph schema. Data curators are responsible for mapping
standard exchange format for graphs onto their SPGM representation (mappings onto the
PGM model were proposed in (Rodriguez and Neubauer, 2010; Hartig, 2014)).

3.2.2 Candidate identification andmatching.This phase operates over an anchor graphGA,
obtained by “injecting” into the raw graph GR the ground truth for each type VT, to identify
pairs of equivalent objects. For simplicity, we will assume that GA ¼ GR as if no ground truth
was injected, and introduce the benefits of ground truth later on. Data curators initiate this
phase by selecting/defining, for each typeVT, a configuration for candidate detection and for
candidate matching of the objects inVT. Candidate identification consists of a set of duplicate
identification configurations, while candidate matching fine tunes the similarity function to be
applied to determine equivalence of two objects in terms of their properties. Precision and
recall of a solution depend on the ability of data curators to fine-tune such configurations.

Candidate identification Deduplication systems often embed techniques to reduce the
inefficiency of quadratic complexity derived by the pairwise comparisons between the
objects. To this aim GDup provides a selection of clustering hash functions, which group
objects into “blocks” of likely similar objects. The purpose of such functions h is to associate
objects o∈VT to the same “block” BhðoÞ (or canopy (Kolb et al., 2010; McCallum, et al.,2000)) if
the objects are potential duplicates, in order to limit the comparisons to the worthy ones and
achieving logarithmic complexity. The main challenge is therefore to define a function h that
∀o; o’∈VT analyses their properties and sends them to the same block Bk (namely when
hðoÞ ¼ hðo’Þ ¼ k) maximizing the chances that o and o’are equivalent; h should be tailored to
the semantic features of VT, in order to minimize false positives, that is objects that are not
equivalent and associated to the same blockBk, and false negatives, that is equivalent objects
associated to different blocks. GDup allows to add multiple clustering functions within the
same configuration, causing the same object to be included in more than one block, hence
minimizing false negatives. Examples of h are functions calculating ngrams, fetching prefixes
of words, etc.

Listing 1: GDup clustering functions configuration for the type VT 5 Article

1 VertexType = Article,

2 clusteringFunction[\\ from each title, generates 3 ngrams of size 3 from all

words of minimal length 5; each title may generate more than one

clustering key

3 name = ngram

4 params = [minWordLen = 5, ngramLen = 3, ngramNum = 3]

5 property = [title]

6],

7 clustering Function [\\ for all words of minimal length 4 generates a string

combining 1 char from the head and 1from the tail of the word,then

appends the results to generate one string; each title generates one

clustering key

8 name = suffix − prefix − synthesis

9 params = [minWordLen = 4, headLen = 1, tailLen = 1]

10 property = [title]

11]

DTA
54,4

418

As shown in listing 1, GDup allows to add multiple clustering functions within the same
configuration, causing the same object to be included in more than one block, hence
minimizing false negatives. Each hash function can receive as input one or more of the object
property values defined in a givenVT, and return one or more clustering keys, depending on
the function specific parameters.

Candidate matching Candidate matching is the phase in the deduplication workflow that
performs the comparison between object pairs. The object matching operation in GDup is
defined as the computation of a similarity measure Fsim between two objects, mapped in the
range ½0 . . . 1�, where 1 indicates perfect match. A match between a pair of objects is
considered positive, and the objects equivalent, when the score obtained by a given similarity
function reaches a given configurable threshold Th∈ ½0 . . . 1�. GDup supports fine tuning of
candidate matching configuration, by setting up a similarity function with the relative block
sliding window and configuration of matching pre-conditions.

Similarity function The properties of an object can contribute to the equivalence match in
different ways. For example, when matching publications, the title can be considered as more
relevant than the publisher. Hence, GDup can be configured to associate to each property li a
similarity function fiwith aweight wi. Given two objects o; o

0 belonging to a givenEntityType
VT, the system calculates the similarity Fsimðo; o0Þ as the weighted mean of the contributes
from the different similarity functions, as defined in the configuration:

Fsim

�
o; o

0� ¼
Pn

i¼1

�
wifiðo:li; o0

:li
��

Pn

i¼1wi

Where
Pn

i¼1wi ¼ 1 and 0 <¼ fi <¼ 1 are respectively the weights and the similarity
functions w.r.t. to each object property li. In order to adapt to different application
domains, GDup supports a predefined set of general purpose and established similarity
functions f, and a mechanism to easily include new ones. The selection of such functions was
inspired by the work of Cohen, Ravikumar and Fienberg in (Cohen et al., 2003) and the most
relevant ones are: ExactMatch, JaroWinkler, Level2JaroWinkler, Level2Levenstein, Levenstein,
AuthorSurnamesDistance, SortedJaroWinkler, SubStringLevenstein. Others have been added
and obtained as “specializations of known similarity functions to adapt to special cases: for
example LevensteinTitle preprocesses the title strings to normalize” them before applying
Levenstein distance.

Moreover, GDup provides a selection of functions exp used to equally harmonize input
values before the similarity functions are applied. Such functions are associated to each li and
are applied to both o:li and o0:li before fi is computed. Examples are RemoveBlankSpaces,
removeCapitalLetters, extractNumbers, removeStopwords, etc. which can of course be
combined. An example of such configuration is shown in listing 2.

Listing 2: GDup similarity function forVT 5Article, based on properties title and authors

1 EntityType = Article,

2 Threshold = 0.98

3 similarity Function[

4 name = LevenshteinDistance

5 weight = 0.8

6 exp = [remove Stop words, remove Capital Letters]

7 property = [title]

8],

9 similarity Function [

10 name = PersonDistance

11 weight = 0.2

12 property = [authors]

13]

Entity
deduplication

in big data
graphs

419

Block sliding window Once the configuration of the similarity functions for all interested
types VT is set, GDup runs pair-wise comparisons in all blocks B to identify equivalent
objects. Since the number of objects inB’smaybe very high, as well as the number of blocksB
generated for VT, GDup allows to fine-grain configure a sliding window heuristic to further
reduce the number of matches (Wang et al., 2016). The heuristics sorts the objects inB using a
sorting function sort then, given a “window size” w, applies Fsim to the first element of Bwith
the following w objects; once finished, the algorithm moves to the second element of B and
repeats thematching phase for anotherw objects. The algorithm endswhen it reaches the last
element in (B. Users can configure GDup to specify which sorting function to use among a list
of functions (e.g. DESC, ASC, although custom functions can be added) and towhich property
li it must be applied.

An example of such configuration is shown in listing 3.
Listing 3: GDup sliding window configuration for VT 5 Article

1 Entity Type = Article,

2 sliding Window[

3 property = title

4 sort = DESC

5 windowLen = 100

6 exp = remove Stopwords, remove CapitalLetters, Remove BlankSpaces

7 maxBlockLength = 2000 \\ the elements of a block can be limited to the

first 2000 sorted elements, the rest is disregarded by the sliding

window

8]

Matching pre-conditions In order to further optimize the candidate matching phase, GDup
supports the definition of pre-conditions that, given a pair of objects o and o0 in B, allow to
determinewhether the objects are equivalent or distinct (Arasu et al., 2017). Pre-conditions are
first-order logic predicates Pðo; o0Þ over properties of the two objects, to be evaluated before
the similarity functions. If true, positive preconditions set f ðo; o0Þ ¼ 1 while negative
preconditions set f ðo; o0Þ ¼ 0. If none of the predicates are matched the similarity function is
applied.

An example of preconditions is shown in listing 4.
Listing 4: GDup preconditions for VT 5 Article

1 EntityType = Article,

2 precondition[

same article

3 class = positive

4 predicate = ExactMatch

5 exp = normalizePID

6 property = identifier

7]

8 precondition[\\ if the titles contain different numbers as characters they

are relative to different articles

9 class = negative

10 predicate = Mismatch

11 exp = normalizePID

12 property = title

13]

 \\ if the two articles have the same identifier, they are the

The duplicate identification phases generate a set of pairs of equivalent objects, which in
turn constitute the equivalence graph GE. As a result of the matching, whenever the distance
between two objects o and o0 successfully passes the given threshold, then the following

DTA
54,4

420

actions are performed: (1) the relationship equalsTo between the two is added to the graph
and attached to the overlay equivalence graph, and (2) both objects are attached to the overlay
equivalence graph–by “adding the object/relationship to a graph” we imply the object/
relationship is decorated with the overlay of the target graph. Figure 4 shows the graph GE

obtained for our example, after identifying the equivalence between objects 1 and 2.
Before moving to the next phase of duplicates grouping and merging, the graph GE is

further cleaned by applying the data curator feedback assertions. As described in section
3.2.5 the assertions refine the de-duplication process by adding further relationships or
removing relationships from the equivalence graph GE as indicated by expert users.

3.2.3 Duplicate grouping and merging. Graph disambiguation consists of two distinct
phases. The first phase is duplicate grouping and is in charge of identifying all connected
components (CC) in the equivalence graph GE with overlay equivalence graph. The second
phase is duplicate merge and is responsible of, given all connected components, generating a
representative object and distributing the relationships of the merged objects to keep the
graph topology coherent with the newly created representative object.

Duplicates groupingDuplicate grouping consists in identifying the connected components
in GE by exploiting the transitivity of the equivalence’s relationship equalsTo. For example, if
< o1; equalsTo; o2 > and< o2; equalsTo; o3 >we can conclude that< o1; equalsTo; o3 >. If
no other object in GE is reached via a relationship equalsTo from o1, o2, or o3, then the group of
objects o1; o2; o3 is a connected component and represents a set of equivalent objects, ready to
be merged into one object. The grouping phase distributes equivalence relationships and
adds them to the overlay of GE until all its connected components are found. The problem is
typically solved using heuristics (Tomaszuk and PÆ’~A-k, 2018).

Duplicates merging Once duplicate grouping is completed the deduplication workflow
proceeds with the action of merging the objects in each group. For each connected component
this phase builds a representative object, elected to virtually replace all duplicates in the group.
To this aim, two issues must be tackled: representative object election and distribution of
relationships.

Representative object election In this phase, for each connected component in GE, GDup
builds a representative object out of the information provided by the objects therein.
Important aspects involved in the process are (1) generating a stateless identifier for the
representative object (the same identifier is produced from the same group of duplicates), and
(2) merging strategy of the duplicate objects’ properties. To this aim, GDup first elects a pivot

Figure 4.
Structured Property

Graph:
equivalence graph

Entity
deduplication

in big data
graphs

421

object, which is the object with the “smallest” identifier in the group, when sorted in
lexicographic ascending order. The representative object identifier is generated by
appending to a prefix dedup to the identifier of the pivot object. The properties of the
representative object are then generated starting from the pivot object and, for each other
object in the group, following the shadowing strategy as indicated by the user for each
property: ifMissing, if the pivot object does not have a value for a property (e.g. date property),
the merge adds the first such property found in the merged objects; enrich, the pivot object is
enriched with all values found in the merged objects (e.g. subject properties).

Listing 5: GDup shadowing strategy: building a representative objects for VT 5 Article

1 EntityType = Article,

2 representativeObject[

3 properties [

4 [property = identifier

5 condition = ifMissing \\ add identifier value if none is

available in the object

6]

7 [property = title

8 condition = ifMissing \\ add title value if none is available

in the object

9]

10 [property = issn

11 condition = enrich \\ add issn value if

is not already available in the object

12]

13 relationships [

14 ByType = {< cites, Article > }

15 ByPivot = { }

16]

Distribution of relationshipsThe creation of a representative object implies the dismissal of
the objects it merges, hence modifies the graph’s topology. To preserve the consistency of the
graph, relationships engaging merged objects must be propagated to the representative
object. GDup allows users to pick one of the following relationship distribution policies:
ByType, that is all relationships with objects of the type listed are to be redistributed to the
representative object, and ByPivot, that is for the given types, only the relationships
associated to the pivot object are kept and the ones of the other objects in the group
disregarded. In the example, only the relationships to the authors of the pivot object are
regarded. This strategy is conservative as author object deduplication is highly subject to
errors and the very same author may be represented multiple times in the graph, as different
objects. Applying a ByType technique for the Author type would likely create article
representative objects related with redundant authors.

The combination of duplicate grouping and duplicate merging generates a new dedup
graph GD identified by the overlay dedupedGraph. GD is created as follows:

(1) Adding the new representative objects ro obtained from each connected component
CC (i.e. group of duplicates) as well as new relationships < ro;merges; o > for each
o∈CC; such relationships are part of the deduplicated graph, in order to provide
evidence and “provenance” of the deduplication process;

DTA
54,4

422

(2) Adding the relationships created from and to the representative object as specified in
the relationships distribution configuration;

(3) Adding all objects in GR that are not in GE; the deduplicated graph should of course
include the objects that are not subject to deduplication;

(4) Adding all relationships in GR that are not incoming or outgoing an object in GE: all
such relationships were replaced by new and corresponding relationships to the
representative objects.

Figure 5 shows the GD graph obtained from the GE in Figure 3. The graph consists of one
representative object dedup 1 obtained frommerging the nodes 1 and 2, which do not belong
to GD. dedup 1 inherits all properties of the two objects and their relationships to 3.

3.2.4 Ground truth injection. A Ground Truth is a graph gtVT
that includes a set of

representative objects, and relative merged objects in GD, considered to be of high quality and
trust. The introduction of a Ground Truth approach changes the perspective of the
deduplication process, since gtVT

’s can used to pre-process the input graph GR in order to
replace sets of merged objects with the relative representative object before the deduplication
phase. This optimizes performance of the process but, most importantly, leads to a stable
graph, where identifiers and object converge to a highly-trusted and stable graph.

A Ground Truth gtVT
is a set of equivalence assertions represented as “trees” rooted in

representative objects whose leaves are the merged objects, reached by relationshipsmerges.
Due to their high level of trust, such representative objects are called anchor objects. Figure 6
shows a possible ground truth gtArticle consisting of one only assertion. The assertion contains
the anchor object dedup1 and the edges < dedup1;merges; 1 > and < dedup1;merges; 2 >.

As a good practice users may, for example, run deduplication using highly successful
configurations (i.e. the “obvious”matches) to generate results (representative objects) which
are then stored as ground truths for each type VT. This way, in subsequent rounds of
deduplication, the input graph GR can be injected with the “obvious” ground truth matches
and users can focus onmore experimental and complex levels of deduplication configuration.
This pre-processing phase is also useful for two other reasons: (1) reducing the computational
time of entity deduplication by limiting the identification of duplicates to the objects that are
not yet merged by the Ground Truth, and (2) progressively converging to a stable
deduplicated graph by applying deduplication refinements with different deduplication
configurations, each based on the results of previous ground truths.

type_label = Article
properties:
 title = On deduplication of rats
 authors = [“Ron Morrison”, “Keith Sibson”]

Overlays:
- Raw graph
- dedup graph

type_label = cites
 Overlays:
- Raw graph

type_label = cites
 Overlays:
- dedup graph

type_label = merges
 Overlays:
- dedup graph

type_label = merges
 Overlays:
- dedup graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, Bill”, “Stoner, Casey”]
Overlays:
- Raw graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, Bill.”, “Stoner, Casey.”]
 issn = XYZ
Overlays:
- dedup graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, B.” , “Stoner, C.”]
 issn = XYZ
Overlays:
- dedup graph

3

1 2

dedup_1

Figure 5.
From raw graph to

equivalence graph and
to deduplicated graph

Entity
deduplication

in big data
graphs

423

More specifically, given a set of ground truths gtVT
’s selected by the data curator, GDup

obtains from the raw graph GR a normalized anchor graph GA by:

(1) Adding all objects and relationships in GR to GA;

(2) Adding all anchor objects in gtVT
’s to GA;

(3) Adding all relationships incoming and outgoing the anchor objects to GA;

(4) Removing from GA all objects inGR that are merged by anchor objects, as well as their
relationships to other objects.

Figure 7 shows an example of the anchor graph GA resulting from the injection of the ground
truth gtArticle. The application of the gtArticle to the raw graph with objects 1, 2 and 3 generates
an anchor graph GA. Given the initial raw graph GR, a further deduplication process would
deliver no changes to the graph and deliver a deduplicated graph GD that matches exactly the
anchor graph GA (see Figure 8).

3.2.5 Data curators feedback. GDup allows experienced users to supervise the
deduplication workflow, refine the results, and then exploit such feedback in subsequent
applications of the process to refine the candidate matching phase. Data curators are
providedwith toolswithwhich they can search, browse and visualize the objects of any entity
type in the GD, in order to “repair” representative objects that were not correctly created or
create groups of duplicates that were overlooked by the process. Such feedback results in a
set of assertions for each entity type, which can be of two kinds:

(1) Equality assertion: an equality assertion is a group of objects fo1; . . . ongof typeVT in
the graph GD, where the objects can be representative objects or raw objects in the
graph. The assertion claims that all raw objects in the input graph GR, directly or
indirectly (via a representative object) involved in the set, are equal.

(2) Diversity assertion: a diversity assertion states that two objects o and o0 are distinct:
the claim is represented as a relationship < o; differsFrom; o0 >. If either or both of

type_label = Article
properties:
 title = On deduplication of rats
 authors = [“Ron Morrison”, “Keith Sibson”]
Overlays:
- Raw graph

type_label = cites
 Overlays:
- ground truth graph

type_label = merges
 Overlays:
- ground truth graph

type_label = merges
 Overlays:
- ground truth graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, Bill”, “Stoner, Casey”]
Overlays:
- Raw graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, Bill.”, “Stoner, Casey.”]
 issn = XYZ
Overlays:
- ground truth graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, B.” , “Stoner, C.”]
 issn = XYZ
Overlays:
- Raw graph

3

1 2

dedup_1

type_label = Article
properties:
 title = On deduplication of rats
 authors = [“Ron Morrison”, “Keith Sibson”]

type_label = cites
 Overlays:
- Anchor
graph

type_label = Article
properties:
 title = Record Linkage survey
 authors = [“Gates, Bill.”, “Stoner, Casey.”]
 issn = XYZ
Overlays:
- Anchor graph

3 dedup_1

Overlays:
- Raw graph
- Anchor graph

Figure 6.
Example of ground
truth assertion

Figure 7.
From raw graph to
anchor graph via
ground truth gtArticle

DTA
54,4

424

the objects are representative objects, the claim naturally extends to all objects
merged by the representative ones.

(3) These relationships populate a feedback graph GF , which keep the history of such
assertions over time. Once the equivalence graphGE is generated,GF is used to update
its content as follows:

(4) Adding to GE all relationships < o; equalsTo; o0 > in GF ;

(5) Removing from GE all relationships < o; equalsTo; o0 > or < o0; equalsTo; o > for
which a relationship < o; differsFrom; o0 > exist in GF .

3.2.6 Graph export. Any time, data curators can opt to export any of the overlay graphs
populated in this process. The export can follow, as for the input, a mapping from the
internal graph schema provided by data curators and one of the standards supported by
the GDup.

4. GDup implementation
The implementation of GDup realizes the functionalities described in the previous section by
assembling known Open Source technologies (GDup Release 1.0 (Atzori and Manghi, 2017)),
as shown in Figure 5. GDup is today used in the production system of OpenAIRE to
deduplicate publications, datasets, software, and organizations entities in the information
graph. In the following we give an high-level description of the implementation and also
report on numbers and performances in the adoption of the tool.

4.1 Graph database
To achieve the intended objectives, GDup ’s graph database should support, scalability of
size, parallel processing, flexibility of models and efficient bulk read and write operations.
Such conditions exclude the adoption of classic graph databases, oriented to efficient graph
traversal functionalities (Rodriguez, Neubauer). Since the beginning of the project, back in
2010, the OpenAIRE infrastructure based its solution and services on HBase technology [11]
(George, 2011). Hbase is the open source version of BigTable (Chang et al., 2008), the large
volume distributed storage system developed by Google: “a distributed storage system for

Figure 8.
GDup deduplication

workflow: supporting
technologies

Entity
deduplication

in big data
graphs

425

managing structured data that is designed to scale to [. . .] petabytes of data across thousands
of commodity servers”. Hbase data model consists of a sparse, distributed, persistent multi-
dimensional sorted map. Such map is indexed by a row key, column key, and a timestamp,
and each value in the map is an uninterpreted array of bytes. Hbase is based on the Hadoop
framework [12], enabling large scale distributed data processing and analytics based onMap
Reduce programming model (Dean and Ghemawat, 2008; Lee et al., 2012).

Hbase represented the optimal candidate for bulk integrating, populating, storing,
processing, deduplicating graphs while addressing all non-functional requirements above;
since the average real-case wewere confronted with is characterized by low-density graphs, a
representation of graphs as adjacency lists was adopted. For the future, as part of the
OpenAIRE services road map, a solution based on Apache Spark [13] is to be designed,
covering all the deduplication theory and methods described in this paper, but also meeting
the requirements of frequent metadata aggregation and integration of graphs demanded by
OpenAIRE services.

The GDup graph is represented in HBase by associating each object in the graph to an
HBase row. Each row contains the following columns: (1) the identifier of the entity, (2) the
type of entity, (3) the body of the entity (its properties and values) and (4) one column for each
relationship, where the name of the columns is constructed from the relationship semantics
(e.g. cites), and the ID of the target row. This representation of the graph does not explicitly
encode SPGM graph overlays. Starting from the raw graph, the anchor graph and the
deduped graph are incrementally constructed by adding representative object rows and
“virtually deleting” the rows/edges merged by these. This is modeled by adding a deleted
column to the row and a deleted flag in the cell of the relationships to be removed. The
equivalence graph is represented by explicit relationships equalsTo between the rows. With
respect to the deduplicated graph in Figure 5, the objects dedup 1, 3, and 2 would be
represented as depicted in Figure 9. Since the deduplicated graph is obtained by modifying
the raw graph, GDup runs a “reset” Map job before a new deduplication workflow is run,
which restores the original raw graph in HBase.

4.2 Deduplication workflow: implementation
As suggested in Figure 5 the core phases of the deduplication workflowmanipulate the graph
in HBase via Hadoop MapReduce processing jobs. Other technologies, such as Solr and
PostgresDB are used to implement the data curator tools required to explore the deduplicated
graph, to store assertions and ground truths. The following sections provide insights on the
implementation of GDup for each phase of the workflow.

4.2.1 Candidate identification and matching. The candidate identification phase is
implemented as a MapReduce job that (1) in the Map phase applies the clustering function to
all rows of a given type to generated blocks of candidate objects, and (2) in the Reduce phase

Type Body Recl:cites:3 Recl:cites:1 Recl:cites:2

Rel:isCited:dedup_1Rel:isCited:2

dedup_1 Article
indentifier = 10.3405/6574.3
title = Record Linkage survey
subjects = computer science...

Type Body

Type Body

Recl:cites:3

Article

Article

indentifier = 10.3405/6574.3
title = Record Linkage survey
authors = [“Gates, B.” “Stoner..

indentifier = 10.0007/Jom435
title = On deduplication of rats
authors = [“Ron Morrison”, ...

deleted

deleted

deleteddeleted

1

3

Figure 9.
Graph object
representation
in HBase

DTA
54,4

426

applies the candidate matching function, while sorting of the objects in a block is performed
by exploiting the very same functionality as offered by Hadoop. Blocks are independent and
the Reduce phase is therefore processed in parallel to perform pair-wise matching over a
sliding window. Overall, the parallel execution in combination with heuristics significantly
optimizes the execution time.

Precision, recall, and performance depend on configuration parameters and must be
fine-tuned by data curators. The current GDup implementation does not yet implement user
admin interfaces for the configuration of the workflow phases. Data curators need to edit the
files containing JSON representations of such configurations which reflect the ones
exemplified in the listings in the previous section. Users can add new clustering functions,
matching functions, etc. to the system as instances of respective Java abstract classes.

4.2.2 Duplicate grouping and merging. Duplicate grouping requires an algorithm for the
identification of connected components (Tomaszuk and PÆ’~A-k, 2018). As explained in the
previous section, GDup assigns to each connected component a representative object whose
ID is the lexicographic lowest ID. GDup adopts an algorithm based on the “message passing”
technique (Lin and Schatz, 2010). The technique recursively applies MapReduce jobs to
propagate the minimum object identifier to related objects until no more propagation can be
applied. The process ensures that all objects in a connected component of the graph are aware
of the minimum ID in the component. The final Mapper can therefore send pairs
< dedup minimumID; body > to the Reducers, which can create the representative objects
by merging all object bodies, following the directives in the respective configuration file, as
exemplified in Listing 5.

4.2.3 Ground truth injection. Ground truths are generated by data curators, from the
deduplicated graph, by indicating an entity type VT whose representative objects are
particularly reliable and must be preserved as a ground truth. A ground truth is stored in a
separate Hadoop HBase table, which stores a copy of the deduplicated graph rows for
representative objects (body and relationships) and includes columns of type
merges :: objectID pointing to all objects “merged” by the representative one. Since no user
interface is yet available, the creation of a ground truth can only be activated manually by
data curators via shell scripts.

The injection of a ground truth in the graph is performed before the deduplication process
is fired. This can happen manually via shell scripts or via APIs (as in the case of OpenAIRE,
where data processing activities are managed by D-NET orchestration workflows (Manghi
et al., 2014)). The process is performed by Map jobs that scan the HBase table for the given
ground truth and for each row create a representative row in the HBase graph table, virtually
delete rows and columns deprecated by the merging process and adds the inverse
relationships towards representative objects.

4.2.4 Data curators feedback.The deduplicated graph is indexed in a Solr 7.5.0 installation
which creates a single shard collection for each deduplicated type VT of the graph. Data
curators can, through a GUI, explore the representative objects generated by the process and
create assertions to refine the quality of the graph. Assertions are stored in a PostgreSQL
database and are applied, on request of the data curator, after the duplicate identification. The
process is performed with two separate writing/delete phases, respectively applying equality
assertions, hence adding relationships equalTo, and diversity assertions, hence removing
such relationships.

4.3 GDup experiments in OpenAIRE
The major production instance of GDup is deployed as a key service in the OpenAIRE
infrastructure over anHadoop cluster featuring 16worker nodes, totalling 160 CPU cores, 480
GB of RAM and 21TB of allocated HDFS disk space–the cluster is used also for heavy full-
text mining tasks. GDup is used to perform deduplication of publication, research data,

Entity
deduplication

in big data
graphs

427

software, other research products and organization entities in the OpenAIRE Research
Graph. The graph is the result of deduplicating around 320Mi metadata records collected
from around 1,000þ data sources. Today OpenAIREAPIs offer access to the graph to service
like Scopus, Zenodo.org, Open Science monitor of the Commission, and several other funders
via OpenAIRE MONITOR [14]. In the following text, we shall describe the two phases of
candidate identification and matching and duplicates grouping and merging, by providing
configurations and numbers.

4.3.1 Deduplication of scientific products. Scientific products are characterized by different
candidate identification and matching, due to the specific features of the entity records
involved, and a common duplicates grouping and merging phase.

4.3.1.1 Publications: candidate identification and matching. Candidate identification
generates blocks of publications using three functions: (1) if available, the normalized DOI
string, (2) the string obtained by combining 3 characters of the first 2 longest words in the
title, (3) the string obtained by combining the last 3 characters of the 2 longest word in the
title. While the DOI captures the unique nature of the objects, the latter two are both a clear
indicator of uniqueness of the publicationswhile leaving flexibility towardsminor differences
(e.g. typos) in the titles. Candidate matching sorts publications with the title normalized by
removing punctuation, stopwords, blanks, and numbers; it uses a sliding window of size 100
and a max number of elements of 2000. The matching function includes as positive
preconditions the equality of DOIs (“if objects have the sameDOI they are equivalent”) and as
negative preconditions the combination of two predicates: “cardinality of authors” and
“minimal best equivalence threshold for author names”. These two ad-hoc functions capture
key preconditions of equality and are applied to the deduplication of publications, datasets,
software, and ORPs: the former counts the number of authors for the two publications, which
must be the same for record equivalence; the latter verifies that author strings are similar (in
their best score pair-wise matches) above a minimal threshold of equivalence set to 0.6, which
is considered well below the average threshold of the same function applied to equivalent
records in a gold set. If preconditions are verified, candidate matching applies a similarity
function, with a threshold of 0.98, matching the title of the articles. Dates are not regarded by
the function, as for the OpenAIRE purposes different versions of the same publication should
be merged into one record, and these may well bear different publication dates. As shown in
Table 1, out of the 146Mi publications aggregated in OpenAIRE (November 2019) this
configuration creates 14Mi blocks, producing 92,4Mi of equalsTo relationships out of 24.2Bi
matches, in one day and half time. Subsequently, GDup identifies 56.8M duplicates, merges
them in 20.9M representative records, to deliver a total of 110Mi records visible today at
http://beta.explore.openaire.eu, for a duplication ratio of around 39%. Figure 10 shows the
number Y of representative objects that group X records: interestingly, more than 90% of
representatives merges 2–4 duplicates, and the number of representative objects with more
than 8 records drops below 1; 000.

Datasets: candidate identification and matching
Datasets are deduplicated adopting the same configuration used for publications. As

shown in Table 2, out of the 12.5Mi dataset aggregated in OpenAIRE (November 2019) this

Phase Input
Execution
time Output

Candidate identification
publications

146M 14M blocks

Candidate matching
publications

14M
blocks

∼ 38h420 24,2B comparisons & 92,4M equalsTo
relationships

Table 1.
Publications
deduplication statistics
(November 2019)

DTA
54,4

428

http://beta.explore.openaire.eu

configuration creates 1.98Mi blocks, producing 4.2Mi of equalsTo relationships out of 421Mi
matches, in around one hour. Subsequently, gdup identifies 4.5M duplicates, merges them in
1.9M representative records, to deliver a total of 8.5M records visible today at http://beta.
explore.openaire.eu, for a duplication ratio of around 36%. Figure 11 shows the number Y of
representative objects that group X records: interestingly, the distribution is not very
different from publications, the representatives merging 2–3 duplicates touching 90%, and
the number of representative objects with more than 8 records dropping below 1; 000.

Software: candidate identification and matching
Software are deduplicated adopting a dedicated deduplication configuration, where

software product titles are considered equal independently of the version numbering they

Publication duplicate group size
10000000

1000000

100000

10000

1000

100

10

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77

Phase Input
Execution
time Output

Candidate identification
dataset

12.5M 1.98M blocks

Candidate matching dataset 1.98M
blocks

∼ 1h80 421M comparisons & 4.2M equalsTo
relationships

10000000

1000000

100000

10000

1000

100

10

1

Dataset duplicate group size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Figure 10.
Publication duplicate

groups: distribution of
group sizes

Table 2.
Dataset deduplication

statistics
(November 2019)

Figure 11.
Dataset duplicate

groups: distribution of
group sizes

Entity
deduplication

in big data
graphs

429

http://beta.explore.openaire.eu
http://beta.explore.openaire.eu

feature. This is to make sure that the practice of publishing different versions of the same
software as different products will not affect the statistics in OpenAIRE. Moreover, software
repository URLs are also regarded as indicators of equality in the pre-conditions. As shown in
Table 3 GDup is fed with 294K software records (November 2019) to create 181.2K blocks,
processes 3.3M matches, and generates 402K equalsTo relationships in 17 minutes. As a
result, the process delivers 181K software products visible today at http://beta.explore.
openaire.eu. The Figure 12 shows the number Y of representative objects that group X
records: the distribution shows that the representatives merging 2-3 duplicates touch 90%,
and the number of representative objects with more than 4 records drops below 1; 000.

Other research products: candidate identification and matching
ORPs are deduplicated adopting the deduplication configuration of publications and

datasets. Table 4 shows that GDup is fed with 7.4M ORP records (November 2019) to create
825K blocks, processes 431M matches, and generates 2.6M equalsTo relationships in one
hour and 22 minutes. GDup identifies 1.1M duplicates, merges them in 424K representative
records, to deliver a total of 6.7M records visible today at http://beta.explore.openaire.eu.
Figure 13 shows the numberY of representative objects that groupX records: the distribution
shows that the representatives merging 2-4 duplicates touch 90%, and the number of
representative objects with more than 7 records drops below 1; 000.

100000

10000

1000

100

10

1
1 2 3 4 5 6 7 8 9 10

Software duplicate group size

Phase Input
Execution
time Output

Candidate identification
software

294K 181.2K blocks

Candidate matching software 181.2K
blocks

∼ 17
0

3.3M comparisons & 402K equalsTo
relationships

Phase Input
Execution
time Output

Candidate identification
ORP

7.4M 825K blocks

Candidate matching ORP 825K
blocks

∼ 1h22
0

424M comparisons & 2,6M equalsTo
relationships

Figure 12.
Software duplicate
groups: distribution of
group sizes

Table 3.
Software deduplication
statistics
(November 2019)

Table 4.
Other research product
deduplication statistics
(November 2019)

DTA
54,4

430

http://beta.explore.openaire.eu
http://beta.explore.openaire.eu
http://beta.explore.openaire.eu

4.3.2 Scientific products: duplicates grouping and merging. The phase of duplicate
grouping andmerging is performed in GDup for all scientific products, collecting as input the
equalsTo relationships produced for publications, datasets, software and ORPs. Table 5
shows the process runs in around 5 hours and half, identifies 23.3Mi connected components/
representative objects merging 62.7M duplicate records. Table 6 reports interesting numbers
on the minimal, maximum, average number of equivalent records per connected components;
numbers show that except from software, all entities feature connected components up to 100
records (limit set by configuration of GDup) and with an average of 2-3 records for scientific
products and 3 for organizations.

4.3.3 Deduplication of Organizations. Deduplication of organizations is a non-trivial
process. The metadata fields provided for organizations are mainly titles, acronyms, and
country, where only the latter, when provided, obeys to a vocabulary of terms. Preconditions
for diversity of records use the country field, as indeed different country values exclude the
similarity of two organizations. Similarity match is left to the remaining fields, where,
however, standard string similarity functions cannot be considered optimal. Organization
names can take different forms in the same language (e.g. “University of Pisa” and “Pisa
University”) or in different languages (e.g. “Universit�a di Pisa”). To this aim, GDup exploits
dedicated semantic functions, where such similarities are normalized via “bags of words”

1000000

100000

10000

1000

100

10

1

Other duplicate group size

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

Phase Input
Execution
time Output

Connected components 99.6M eq. rels ∼ 4h21
0

23.3M connected components
Repr. object election & Rels
distribution

23.3M conn.
comp.

∼ 1h15
0

23.3M repr. objects & 62.7M
duplicates

Type Min size Max size Mean size Stddev

Publication 2 100 2,633 0,988
Dataset 2 100 2,193 0,664
Software 2 14 2,589 1.058
Other 2 100 2,466 1,881
Organization 2 100 3,172 3,853

Figure 13.
Other duplicate

groups: distribution of
group sizes

Table 5.
Result deduplication

graph statistics
(November 2019)

Table 6.
Statistics on duplicate

groups
(November 2019)

Entity
deduplication

in big data
graphs

431

identifying semantic equivalence across different languages for institution names, place
names, and disciplines names. Table 7 shows that GDup is fed with 385K organization
records (November 2019) to create 372K blocks, processes 15.5Mmatches and generates 341K
equalsTo relationships in 23minutes. This process identifies 250K duplicates, merges them in
56K representative records, to deliver a total of 135K records visible today at http://beta.
explore.openaire.eu. Figure 14 shows the number Y of representative objects that group X
records: the distribution shows that the representatives merging 2-6 duplicates touch 90%,
and the number of representative objects with more than five records drops below 1; 000.

5. Conclusion
The problem of deduplication applied to Big Data graphs opens actual and interesting
challenges. Semi-automatic approaches, based in common general-purpose tools, are needed
to reduce as much as possible the manual effort and to assist data curators in solving the
domain specific disambiguation issues, repeating experiments, and sharing results with
other scientists. This work describes architecture and implementation as a production-ready
system of GDup, an integrated and general-purpose system for deduplication of big graphs.
GDup is used in the production system of the OpenAIRE infrastructure to ensure the
population of a non-ambiguous graph on top of which scientific production and Open Science
statistics can be generated. Future development include (i) improvement of end-user
interfaces, to make it a more user-friendly product, and (ii) the development of a crowd-
sourcing toolkit allowing groups of experts (entitled by delegation) to manually add, remove,
validate equality or distinction assertions so as to clean deduplication results andmaintain re-
usable ground truths.

Phase Input
Execution
time Output

Candidate identification organization 385K 372K blocks
Candidate matching organization 372K blocks ∼ 9

0
15.5M comparisons & 341K
equalsTo rels.

Connected components Repr. object
election & Rels distribution

341K equalsTo rels. ∼ 8
0

56K connected components
56K connected
components

∼ 4
0

56K repr. objects & 185K
duplicates

100000

10000

1000

100

10

1

Organization duplicate group size

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

Table 7.
Organization
deduplication statistics
(November 2019)

Figure 14.
Organization duplicate
groups: distribution of
group sizes

DTA
54,4

432

http://beta.explore.openaire.eu
http://beta.explore.openaire.eu

Notes

1. Google Scholar: http://scholar.google.com.

2. Microsoft Academic Graph https://academic.microsoft.com.

3. OpenAIRE scholarly communication graph, http://api.openaire.eu.

4. OpenAIRE infrastructure, http://www.openaire.eu.

5. OpenAIRE Research Graph, OpenAIRE Blog, https://www.openaire.eu/blogs/the-openaire-
research-graph.

6. Funder Dashboard, http://provide.openaire.eu.

7. Funder Dashboard, http://monitor.openaire.eu.

8. https://tools.ietf.org/html/rfc1321.

9. GRID database, http://www.grid.ac.

10. Dedoop http://dbs.uni-leipzig.de/dedoop.

11. HBase - https://hbase.apache.org.

12. Apache Hadoop, http://hadoop.apache.org.

13. Apache Spark, https://spark.apache.org.

14. OpenAIRE Monitoring Dashboard for Funders, http://monitor.openaire.eu.

References

Arasu, A., R�e, C. and Suciu, D. (2017), “Large-scale deduplication with constraints using dedupalog”,
in 2009 IEEE 25th International Conference on Data Engineering, pp. 952-963, doi: 10.1109/
ICDE.2009.43.

Atzori, C. and Manghi, P. (2017), “gdup: a big graph entity deduplication system - Release 1”, doi: 10.
5281/zenodo.292980.

Atzori, C., Manghi, P. and Bardi, A. (2018), “Gdup: De-duplication of scholarly communication big
graphs”, in IEEE/ACM 5th International Conference on Big Data Computing Applications and
Technologies (BDCAT), pp. 142-151, doi: 10.1109/BDCAT.2018.00025.

Atzori, C. (2016), “gDup: an integrated and scalable graph deduplication system”, PhD Thesis,
University of Pisa, Ph.D. Program in Information Engineering of the Engineering Ph.D. School
“Leonardo da Vinci”, doi: 10.5281/zenodo.1454880.

Bhattacharya, I. and Getoor, L. (2004), “Deduplication and group detection using links”, Proceedings of
the 2004 ACM SIGKDD Workshop on Link Analysis and Group Detection.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A. and
Gruber, R.E. (2008), “Bigtable: A distributed storage system for structured data”, ACM
Transactions on Computer Systems (TOCS), Vol. 26, p. 4.

Christen, P. (2008), “Febrl-: an open source data cleaning, deduplication and record linkage system
with a graphical user interface”, Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, pp. 1065-1068.

Cohen, W., Ravikumar, P. and Fienberg, S. (2003), “A comparison of string metrics for matching
names and records”, in Kdd Workshop on Data Cleaning and Object Consolidation, Vol. 3,
pp. 73-78.

Dean, J. and Ghemawat, S. (2008), “Mapreduce: simplified data processing on large clusters”,
Communications of the ACM, Vol. 51 No. 1, pp. 107-113.

Fellegi, I.P. and Sunter, A.B. (1969), “A theory for record linkage”, Journal of the American Statistical
Association, Vol. 64 No. 328, pp. 1183-1210.

Entity
deduplication

in big data
graphs

433

http://scholar.google.com
https://academic.microsoft.com
http://api.openaire.eu
http://www.openaire.eu
https://www.openaire.eu/blogs/the-openaire-research-graph
https://www.openaire.eu/blogs/the-openaire-research-graph
http://provide.openaire.eu
http://monitor.openaire.eu
https://tools.ietf.org/html/rfc1321
http://www.grid.ac
http://dbs.uni-leipzig.de/dedoop
https://hbase.apache.org
http://hadoop.apache.org
https://spark.apache.org
http://monitor.openaire.eu
https://doi.org/10.1109/ICDE.2009.43
https://doi.org/10.1109/ICDE.2009.43
https://doi.org/10.5281/zenodo.292980
https://doi.org/10.5281/zenodo.292980
https://doi.org/10.1109/BDCAT.2018.00025
https://doi.org/10.5281/zenodo.1454880

George, L. (2011), HBase: The Definitive Guide, O’Reilly Media, ISBN: 9781449396107.

Hartig, O. (2014), “Reconciliation of rdf* and property graphs”, arXiv preprint arXiv:14093288.

Junghanns, M., Petermann, A., G�omez, K. and Rahm, E. (2015) “Gradoop: Scalable graph data
management and analytics with hadoop”, arXiv preprint arXiv:150600548.

Jurczyk, P., Lu, J.J., Xiong, L., Cragan, J.D. and Correa, A. (2008), “FRIL: A tool for comparative
record linkage”, in AMIA annual symposium proceedings, volume, American Medical
Informatics Association, p. 440.

Kang, H., Getoor, L., Shneiderman, B., Bilgic, M. and Licamele, L. (2008), “Interactive entity resolution
in relational data: A visual analytic tool and its evaluation”, IEEE Transactions on Visualization
and Computer Graphics, Vol. 14 No. 5, pp. 999-1014.

Kolb, L. and Rahm, E. (2013), “Parallel entity resolution with Dedoop”, Datenbank-Spektrum, Vol. 13
No. 1, pp. 23-32.

Kolb, L., Thor, A. and Rahm, E. (2010), “Parallel sorted neighborhood blocking with mapreduce”,
arXiv preprint arXiv:10103053.

K€opcke, H., Thor, A. and Rahm, E. (2010), “Evaluation of entity resolution approaches on real-world
match problems”, Proceedings of the VLDB Endowment, Vol. 3 Nos 1-2, pp. 484-493.

La Bruzzo, S., Manghi, P. and Mannocci, A. (2019), “Openaire’s doiboost - boosting crossref for
research”, in Manghi, P., Candela, L. and Silvello, G. (Eds), Digital Libraries: Supporting Open
Science, Springer International Publishing, Cham, ISBN 978-3-030-11226-4, pp. 133-143.

Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D. and Moon, B. (2012), “Parallel data processing with
mapreduce: a survey”, AcM sIGMoD Record, Vol. 40 No. 4, pp. 11-20.

Lin, J. and Schatz, M. “Design patterns for efficient graph algorithms in mapreduce”, Proceedings of
the Eighth Workshop on Mining and Learning with Graphs. MLG ’10, New York, NY, USA,
ACM, ISBN 978-1-4503-0214-2, pp. 78-85, doi: 10.1145/1830252.1830263.

Manghi, P., Manola, N., Horstmann, W. and Peters, D. (2010), “An infrastructure for managing ec
funded research output-the openaire project”, The Grey Journal (TGJ): An International Journal
on Grey Literature, Vol. 6 No. 1, pp. 31-40.

Manghi, P., Houssos, N., Mikulicic, M. and J€org, B. (2012), “The data model of the openaire scientific
communication e-infrastructure”, inMetadata and Semantics Research, Springer, pp. 168-180.

Manghi, P., Mikulicic, M. and Atzori, C. (2012), “De-duplication of aggregation authority files”,
International Journal of Metadata, Semantics and Ontologies, Vol. 7 No. 2, pp. 114-130.

Manghi, P., Artini, M., Atzori, C., Bardi, A., Mannocci, A., La Bruzzo, S., Candela, L., Castelli, D. and
Pagano, P. (2014), “The d-net software toolkit: A framework for the realization, maintenance,
and operation of aggregative infrastructures”, Program, Vol. 48 No. 4, pp. 322-354, doi: 10.1108/
PROG-08-2013-0045.

McCallum, A., Nigam, K. and Ungar, L.H. (2000), “Efficient clustering of high-dimensional data sets
with application to reference matching”, Proceedings of the sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, pp. 169-178.

Robinson, I., Webber, J. and Eifrem, E. (2015), Graph Databases: New Opportunities for Connected
Data, O’Reilly Media, ISBN: 1449356265.

Rodriguez, M.A. and Neubauer, P. (2010), “Constructions from dots and lines”, Bulletin of the American
Society for Information Science and Technology, Vol. 36 No. 6, pp. 35-41.

Saeedi, A., Peukert, E. and Rahm, E. (2018), “Using link features for entity clustering in knowledge
graphs”, in Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A.
and Alam, M. (Eds), The Semantic Web, Springer International Publishing, Cham, ISBN 978-3-
319-93417-4, pp. 576-592.

Tomaszuk, D. and PÆ’~A-k, K. (2018), “Reducing vertices in property graphs”, PloS One, Vol. 13 No. 2,
pp. 1-25, doi: 10.1371/journal.pone.0191917.

DTA
54,4

434

https://doi.org/10.1145/1830252.1830263
https://doi.org/10.1108/PROG-08-2013-0045
https://doi.org/10.1108/PROG-08-2013-0045
https://doi.org/10.1371/journal.pone.0191917

Wang, Q., Cui, M. and Liang, H. (2016), “Semantic-aware blocking for entity resolution”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 28 No. 1, pp. 166-180, doi: 10.1109/
TKDE.2015.2468711.

Xia, F., Wang, W., Bekele, T.M. and Liu, H. (2017), “Big scholarly data: a survey”, IEEE Transactions
on Big Data, Vol. 3 No. 1, pp. 18-35, doi: 10.1109/TBDATA.2016.2641460.

Corresponding author
Paolo Manghi can be contacted at: paolo.manghi@isti.cnr.it

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Entity
deduplication

in big data
graphs

435

https://doi.org/10.1109/TKDE.2015.2468711
https://doi.org/10.1109/TKDE.2015.2468711
https://doi.org/10.1109/TBDATA.2016.2641460
mailto:paolo.manghi@isti.cnr.it

	Entity deduplication in big data graphs for scholarly communication
	Introduction
	Outline

	Deduplication of big data graphs
	The OpenAIRE research graph
	Graph entity deduplication
	State-of-the-art and motivations

	GDup architecture
	Graph data model
	Deduplication workflow
	Graph import
	Candidate identification and matching
	Duplicate grouping and merging
	Ground truth injection
	Data curators feedback
	Graph export

	GDup implementation
	Graph database
	Deduplication workflow: implementation
	Candidate identification and matching
	Duplicate grouping and merging
	Ground truth injection
	Data curators feedback

	GDup experiments in OpenAIRE
	Deduplication of scientific products
	Publications: candidate identification and matching

	Scientific products: duplicates grouping and merging
	Deduplication of Organizations

	Conclusion
	Notes
	References

