The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2514-9288.htm

DTA
96,4

506

Received 27 September 2021
Revised 3 December 2021
Accepted 17 December 2021

C

Data Technologies and
Applications

Vol. 56 No. 4, 2022

pp- 506-535

Emerald Publishing Limited
2514-9288

DOI 10.1108/DTA-09-2021-0261

Modular framework for similarity-
based dataset discovery using
external knowledge

Martin Necasky and Petr Skoda
Department of Software Engineeving, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

David Bernhauer
Department of Software Engineeving, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia and
Department of Software Engineering, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czechia, and

Jakub Klimek and Tomas Skopal

Department of Softwarve Engineeving, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Abstract

Purpose — Semantic retrieval and discovery of datasets published as open data remains a challenging task. The
datasets inherently originate in the globally distributed web jungle, lacking the luxury of centralized database
administration, database schemes, shared attributes, vocabulary, structure and semantics. The existing dataset
catalogs provide basic search functionality relying on keyword search in brief, incomplete or misleading textual
metadata attached to the datasets. The search results are thus often insufficient. However, there exist many ways
of improving the dataset discovery by employing content-based retrieval, machine learning tools, third-party
(external) knowledge bases, countless feature extraction methods and description models and so forth.
Design/methodology/approach — In this paper, the authors propose a modular framework for rapid
experimentation with methods for similarity-based dataset discovery. The framework consists of an extensible
catalog of components prepared to form custom pipelines for dataset representation and discovery.
Findings — The study proposes several proof-of-concept pipelines including experimental evaluation, which
showcase the usage of the framework.

Originality/value — To the best of authors’ knowledge, there is no similar formal framework for
experimentation with various similarity methods in the context of dataset discovery. The framework has the
ambition to establish a platform for reproducible and comparable research in the area of dataset discovery. The
prototype implementation of the framework is available on GitHub.

Keywords Dataset, Discovery, Search, Framework, Similarity, Knowledge graph
Paper type Research paper

1. Introduction

The number of datasets available on the web increases tremendously. For example, the number
of datasets published by public authorities in European countries increased from 880k datasets
in August 2019 [1] to 1140k datasets in November 2021 [2]. Also Google observed an explosive
growth in the number of available datasets in rvecent years according to Benjelloun ef al. (2020).

© Martin Necasky, Petr Skoda, David Bernhauer, Jakub Klimek and Tomas Skopal. Published by
Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY
4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for
both commercial and non-commercial purposes), subject to full attribution to the original publication
and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/
legalcode. 5

This work was supported by the Czech Science Foundation (GACR), Grant Number 19-01641S.

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/DTA-09-2021-0261

Although there exist dataset catalogs providing search for datasets, their retrieval features are
restricted to simple keyword search based on textual metadata recorded in the catalog. These
simple search methods presume that their users, the data consumers, know exactly what they
are searching for and which search query leads to the expected results. However, this
assumption is usually not valid, and, in principle, it neglects the very purpose of the catalogs.
When users know which datasets they are searching for, they usually also know who publishes
a dataset and how the publisher titles the dataset. With this knowledge, it is quite
straightforward to locate a dataset on the publisher’s website using a generic search engine.
The genuine purpose of data catalogs emerges when users do not exactly know which datasets
they are searching for and how to find them. This is a usual situation where the users know only
a few keywords and topics that roughly characterize the needed data. The problem of missing
information about data is inherently related to the big data phenomenon and is generally
discussed as the problem of data findability by Zezula (2015). In their studies, Gregory et al.
(2020a), Koesten (2018) and Degbelo (2020) show that users typically need to search for more
than a single, isolated dataset. Typically, the users wish to find multiple datasets similar to each
other in some way, and this is where the pure metadata-based search methods come up short.
The studies also show that dataset discovery depends on the context of the user’s needs and
discovery tasks. Various works such as Fernandez et al (2018), Zhang and Balog (2018) and
Mountantonakis and Tzitzikas (2018) also show that dataset content can be important for
building dataset discovery services. Therefore, it is not easy to construct a dataset discovery
service on top of a single similarity discovery method. It is necessary to be able to experiment
with various combinations of different methods and compare them. This leads us to the
following research questions we try to solve in this paper:

RQI. How can we support such experiments with different similarity dataset discovery
methods?

RQ2. How can we support combining the methods to more complex pipelines for
computing dataset similarities?

RQ3. How can we evaluate and compare different pipelines?

In this paper, we introduce a modular framework for rapid experimentation with methods for
similarity-based dataset discovery, using the perspective of software engineering. We are
aware that the development of an ultimate and universal method for dataset discovery would
be an infeasible effort. This is based on our previous work — Skoda et al. (2019), Skopal et al.
(2021) — where we already experimented with various similarity discovery methods. We have
measured them on various real search scenarios, and we showed that none of the evaluated
methods performs best on all the scenarios. In this paper, we do not propose yet another
method. Instead, we focus on answering the research question above by proposing a
framework for experiments with various dataset similarity methods.

Therefore, the framework is not proposed as a complete solution to particular dataset
discovery problems, but it should rather act as an extensible modular toolbox for
experimentation with various dataset discovery pipelines, including future ones. It supports
experimentation by providing a predefined and extensible set of compatible components
which can be combined to more complex pipelines which can then be measured, evaluated
and compared. Although the framework is designed as generic and extensible, its retrieval
model is based on the similarity search paradigm that proved to be an effective general
mechanism for retrieval of complex data. Another feature of the framework is its
presumption of external knowledge in the process of dataset discovery, which is essential
to retrieval using different dataset contexts. In Skoda et al (2020), we proposed a framework
for evaluation of dataset discovery methods. This paper focuses not only on the evaluation
but also on the experimentation with the methods and their combinations.

Similarity-
based dataset
discovery
framework

507

DTA
96,4

508

1.1 Paper contributions
We identify four contributions in this paper:

(1) The modular and extensive architecture of the framework provides a formal meta-
model solution under which particular steps or methods can be easily connected
together into dataset discovery pipelines.

(2) The framework includes a proof-of-concept component catalog that could be used as a
predefined source for assembling discovery pipelines.

(3) We demonstrate the framework benefits using a proof-of-concept implementation
and evaluation of several pipelines constructed within the framework.

(4) The extensible architecture of the framework could provide other scientists both
formal and system platforms for reproducible and repeatable research in the area of
dataset discovery.

The rest of the paper is organized as follows. In Section 2, we give an overview of the dataset
discovery area and various discovery methods with the main focus on similarity-based
methods. We also show that there is a lack of a framework introduced in this paper. In
Section 3, we introduce the framework. We present its layered architecture and describe its
layers in detail. In Section 4, we prove the viability of our approach using a proof-of-concept
where we construct concrete pipelines for measuring dataset similarity and its presentation
to users willing to discover datasets. We conclude in Section 5.

2. Related work

2.1 Importance of dataset discovery

Finding related datasets, or shortly dataset discovery, is one of the important tasks in data
integration as shown by Miller et a/. (2018). Chapman et al. (2020) recognize dataset discovery as a
research field with its unique technical challenges and open questions. Large companies such as
Google develop their own dataset search techniques and solutions (Brickley ef al, 2019). New
solutions for dataset search in specific domains started to appear recently. For example, Chen et al
(2018) mtroduced Datamed, which is an open source discovery index for finding biomedical
datasets. The field of dataset discovery is not studied only from the technical point of view but
also from a more social point of view. Gregory et al. (2020a) investigate how researchers discover
data they need for their research projects on the base of the large survey among researchers (1,677
respondents from 105 countries). Gregory et al (2020b) investigate the same problems by
analyzing existing research literature and interviewing scientists who need to discover datasets
for their work. Koesten (2018) interviewed 20 data professionals asking them questions on how
they search for datasets. These recent studies and surveys show that dataset discovery is an
important problem which needs further research. Gregory et al (2020a, b) conclude that dataset
search engines could help searchers looking for data outside their domain to better identify new
possible sources of data. Gregory et al. (2020a) moreover show that data needed for a research task
can be diverse data from different sources of various types. Degbelo (2020) formulate 27 open data
user needs as a synthesis of current findings from recent literature focusing on smart city data.
They structure the statements to 10 categories. One of the categories is called serendipitous
resource discovery (SRD) which involves user questions such as “Are there datasets that I never
thought of, that could also be relevant to my tasks?.” Degbelo (2020) emphasize the need of cross-
linking to other datasets related to the dataset being looked at by the user.

2.2 Dataset discovery techniques
All the studies emphasize the role of quality metadata for dataset findability, while Chapman
et al. (2020) point out that available metadata do not always describe what is actually in a

dataset and whether a described dataset fits for a given task. Gregory ef al (2020a, b) and
Koesten (2018) confirm that dataset discovery is highly contextual depending on the current
user’s task. The studies show that this contextual dependency must be reflected by the
dataset search engines. This makes the task of dataset discovery harder as it may not be
sufficient to search for datasets only by classical keyword-based search. More sophisticated
approaches which are able to search for similar or related datasets could be helpful in these
scenarios. As shown by Chapman et al. (2020) and Miller et al. (2018), many existing dataset
discovery solutions are based on simple keyword query search. This is what is typically
implemented in open data portals such as NODC or EDP. There are also open data portal
mash-ups. For example, EDP collects metadata records about open datasets from national
portals of individual member states and provides search features across the whole European
Union. Recent works further extend these basic approaches. Brickley ef al. (2019) describe
Google Dataset Search. The authors explain in the paper how dataset metadata is crawled
from the web and cleansed. The metadata is then mapped to the Google’s knowledge graph,
which is then used for dataset duplicates detection and for dataset discovery. Chen ef al
(2020) enrich metadata records with labels based on the dataset content. Chapman et al. (2020)
describe the whole dataset discovery process comprising querying for datasets, query
processing resulting in a list of datasets, result handling and its presentation. It also surveys
recent techniques for these individual steps.

2.3 Similarity-based dataset discovery techniques

In this paper, we are interested in similarity-based dataset discovery techniques. Dataset
similarity can be used either during query processing where the query result can be enriched
with similar datasets or for result handling and presentation where similarity of retrieved
datasets can be used to group datasets in the presentation or to enable exploration of
retrieved datasets in case of large results. For example, EDP offers a discovery feature based
on dataset similarity besides the basic keyword query search. For a dataset found by the
keyword query search, similar datasets are also offered to the user. According to source code
published at GitLab [3], the portal uses TLSH presented by Oliver et al. (2013). Firstly, they
concatenate the title and description of the dataset. The locally sensitive hash is constructed
from the concatenated string, which should produce a similar hash for a similar dataset, and
these hashes are compared. Originally, the method was introduced by Dutkowski and
Schramm (2015). It was implemented as a technique for searching for duplicate or almost
equal datasets, ignoring typing errors.

Similarity-based dataset discovery is discussed in the recent survey by Chapman ef al.
(2020). It discusses techniques to extend a table by discovering tables through table similarity
based on tabular schema similarity (e.g. Das Sarma ef al., 2012, Yakout et al, 2012) and
semantic similarity using embedding approaches (e.g. Zhang and Balog, 2018). These can be
considered also as dataset discovery techniques because a table is just a special case of a
dataset. Several novel techniques for similarity dataset discovery have been proposed in
literature in the last few years. Fernandez et al (2018) propose Aurum. It is a system to build,
maintain and query an enterprise knowledge graph (EKG) which represents datasets and
their structural elements, for example, table columns, as nodes and relationships between
them as edges. A relationship between two structural elements may represent content
similarity, schema similarity, for example, similarity of names of the columns, or key/foreign
key pairs defined in the dataset schemas. The paper introduces an efficient model which
exploits EKG. Moreover, the introduced technique requires only a linear passage through
datasets to build EKG. Dataset discovery is then performed on top of EKG. When a user
selects a dataset, the tool offers other relevant datasets through the relationships in EKG.
Bogatu et al. (2020) propose a technique based on content and schema similarity. For schema

Similarity-
based dataset
discovery
framework

509

DTA
96,4

510

similarity, the approach considers similarity of column names. For content similarity, the
approach considers various similarity models, for example, based on value embedding.
Mountantonakis and Tzitzikas (2020) propose union and complement metrics between RDF
datasets. The metrics are content-based and computed directly on the RDF triples forming
the datasets. Several papers propose dataset similarity techniques based on metadata
similarity. Altaf et al. (2019) describe a method which enables to measure similarity between
datasets on the base of papers citing the datasets and a citation network between datasets.
Degbelo and Teka (2019) evaluate four different metadata-based models for searching
spatially related datasets, that is, datasets which are related because of the same or similar
spatial area covered. The first model is a full-text search model. The second one parses and
geocodes user’s query. The other two models map user’s query to knowledge graphs,
WordNet (Fellbaum, 2005) and ConceptNet (Speer et al., 2017), enrich the query with the
neighborhoods from these knowledge graphs and use the result for the full-text search.

There are also works which focus on methods useful for datasets published as Linked
Data (Berners-Lee, 2006). For example, Mountantonakis and Tzitzikas (2018) introduce
content-based metrics for measuring connectivity between datasets using links and shared
entities between the datasets. Wagner et al (2014) also use shared entities to define similarity
between datasets and extend this approach also to clusters of similar entities. The metrics can
be then used also for measuring similarity between datasets. Ellefi ef al (2016) present a
dataset recommendation approach which identifies linking candidates based on the presence
of schema overlap between datasets. Ellefi ef /. (2016) introduce a dataset recommendation
method based on cosine similarity of sets of concepts present in datasets. Similarly, Martins
et al. (2016) recommend datasets based on the similarity of resource labels present in the
datasets. Then they rank the recommended datasets based on their TF-IDF score and their
coverage of labels present in the original dataset. Leme et al. (2013) present a probabilistic
Bayesian classifier for dataset recommendation. Such recommendation techniques can also
be used for dataset discovery services as they recommend similar or related datasets.

2.4 Data catalogs and metadata

Any dataset discovery method depends on the ability to find and access available datasets.
To make a dataset available and accessible, the current practice is to describe it with
metadata which is published in a data catalog. A typical data catalog consists of a database of
dataset metadata records and a pair of query interfaces, one for machines, for example, a
SPARQL endpoint, and one for humans, for example, a user interface, the latter typically
using the former. Examples of such data catalogs are the official portal for European data
(EDP)[4], the Czech National Open Data Catalog (NODC) [5] described by Klimek (2019), or the
US government’s open data portal [6]. In addition, there are many more data catalogs within
enterprises. Those typically contain non-open data, but otherwise, they work in an identical
way as the open data catalogs.

For dataset metadata, there is the DCAT W3C Recommendation (Browning et al., 2020), a
vocabulary specifying the metadata fields and their representation based on RDF (Cyganiak
et al, 2014). For data portals within the European Union, there is an application profile of
DCAT called DCAT-AP [7], further specifying the metadata fields, improving metadata
interoperability. Furthermore, there are additional application profiles of DCAT-AP for
individual countries and use cases.

According to DCAT, a dataset is “A collection of data, published or curated by a single
agent, and available for access or download in one or more representations [8].” The dataset
metadata record according to DCAT contains various kinds of fields. Some fields are textual,
such as dataset title, dataset description and keywords describing a dataset. Other fields,
such as, in the case of DCAT-AP, update frequency, file format or language used, contain
values from code lists from the EU Vocabularies [9].

2.5 Modularity and reusability of existing solutions

Based on the dataset metadata, data catalogs offer dataset search and retrieval functionalities
for their users. As the studies mentioned above show, the users typically need to search for
more than a single, isolated dataset. Typically, the users wish to find multiple datasets related
to each other in some way, and this is where the pure metadata-based search methods present
in today’s data catalogs come up short. The studies also show that dataset discovery depends
on the context of the user’s needs and discovery tasks. Therefore, it is not easy to construct a
dataset discovery service on top of a single similarity discovery technique. It is necessary to
be able to experiment with various combinations of various techniques and compare them. A
framework supporting such experimentation, possibly providing predefined components
which can be combined and compared, would be helpful for anyone who needs to find a viable
solution for their domain and contexts. The framework shall support extracting metadata
from data catalogs, processing the extracted metadata and computing similarities between
described datasets, and presenting the resulting similarities to human users. The framework
shall be modular. It shall provide a set of various components for metadata extraction,
metadata processing, similarity measuring and also various human interfaces for presenting
the similarities to human users. One could say that any ETL framework shall be sufficient.
An ETL framework, as explained by El-Sappagh et al (2011), is a framework for defining data
manipulation processes, each starting with extracting data from its sources, its various
transformations and loading the result to a database. The database is then used for various
purposes, including presentation of the data to human users. However, what is important is
not a particular ETL framework but a set of ETL components prepared for a certain task. In
our case, this task is dataset discovery and measuring similarity of datasets in particular.
From this point of view, a given technique for metadata extraction or similarity computation
shall be packed as a component. Moreover, the components need to have standardized and
compatible outputs and inputs so that it is possible to combine them and introduce new
components for experimentation.

Unfortunately, the only standardization in the existing solutions are the DCAT and
DCAT-AP metadata standards described above. The existing techniques for metadata
extraction and similarity computation surveyed in the subsections above are isolated and
incompatible solutions without open and modular architecture. This makes them hard to
combine and compare. To the best of our knowledge, the existing works in the field of dataset
discovery do not address this problem, and our paper is the first which addresses the problem
of defining such open and modular architecture for dataset discovery. For example, Brickley
et al. (2019) describe the architecture of the Google dataset search solution. The architecture
comprises components for metadata extraction; metadata manipulation including its
normalization, cleansing and deduplication; and a user interface for searching datasets using
the cleansed metadata. The EDP architecture comprises components for harvesting metadata
from national data catalogs in EU countries, components for metadata manipulation
including a component for computing dataset similarities using TLSH. Fernandez et al. (2018)
describe the architecture of Aurum comprising a component for extracting dataset profiles of
tabular datasets, a component for building relationships between datasets and a component
for querying the resulting search index by human users. We can see that all these works
somehow describe a dataset discovery architecture, but none of them defines it as open and
modular architecture which enables to reuse and combine various solutions.

3. Architecture of dataset discovery framework

In this section, we introduce our dataset discovery framework. We present its basic concepts,
its architecture and conceptual model of its components. As can be seen from the overview of
dataset similarity techniques in Section 2, the framework needs to accommodate various

Similarity-
based dataset
discovery
framework

511

DTA
96,4

512

Figure 1.

The architecture of the
dataset similarity
discovery framework

solutions, from simple metadata similarity techniques to techniques employing knowledge
graphs. The framework must be modular so that it is possible to combine the techniques. To
achieve modularity, it is necessary to encapsulate various techniques as framework
components with well-defined inputs and outputs.

The basic concepts of our framework are simularity production pipelines and similarity
presentations. A similarity production pipeline is a data processing pipeline which takes a
data catalog as an input together with other possible inputs and produces similarity of
datasets in the catalog. It comprises various components which either extract data from
external sources, process data or present data to end users. A similarity presentation then
presents similarity to human users through a user interface. It comprises a presentation
component which takes an output of one or more similarity production pipelines as an input.
The framework supports experts in building their own similarity production pipelines and
similarity presentations. The experts can experiment with various combinations of
components suitable for their domain and use cases and compare them.

The architecture is depicted in Figure 1. It comprises three layers of abstraction: pipeline
(yellow), catalog (orange) and conceptual (green). The pipeline layer comprises concrete
assembled similarity production pipelines, each complemented with a similarity presentation.
A similarity production pipeline connects various components together, defines in which
order the components are executed and how the components pass their outputs. A similarity
presentation then takes the outputs of one or more pipelines and presents them to human
users using a presentation component. Two sample similarity production pipelines are
outlined in Figure 1. Their components are depicted as blue boxes with rounded corners.
Component inputs and outputs are depicted as squares in different colors. Each pipeline ends
with a similarity presentation.

The catalog layer comprises a catalog of supported components which can be placed in
pipelines and used for presentations. A component specifies expected input data, how the
input data is processed and what output is provided. The sample catalog depicted in Figure 1
comprises eight different components, each depicted as a blue box with rounded corners and
with their expected inputs and their outputs as colored squares. The gray dashed arrows

Conceptual Layer

Types of extractors Types of processors Types of presenters
A A A
T T T
Catalog Layer f f f
Extractors Processors Presenters

D308 -C-8| | B8 B-C-0

5. .m B0l
e
P

B o

Pipeline Layer

oriented from the pipeline layer to the catalog layer depict how the individual components
chosen from the catalog layer are placed in the similarity pipelines or used for similarity
presentation.

The conceptual layer is an abstract layer which defines the conceptual model of similarity
production pipelines and similarity presentations. The conceptual model defines supported
component types. Each component in the catalog is an instance of a component type from the
conceptual model. A component type specifies an action but it is abstracted from a specific
method and specific form of input and output data. The input and output data specification is
abstracted to conceptual entity types which describe possible inputs and outputs at the
conceptual level without technical details. Figure 1 outlines the conceptual model. It shows
that the conceptual model defines component types with their input and output entity types.
From the left to the right, each component type depicted as a blue box has one or more
instances at the catalog layer. The first component type depicted on the left of the conceptual
layer has two components as its instances in the catalog layer, the second has one component
as an instance and so forth. Each component type instance, that is, a specific component,
adheres to its component type. It means that it provides a specific implementation of the
action defined by the component type. To perform the action, it takes inputs and provides
outputs which adhere to the input and output types, respectively, predefined by the
component type.

In this section, we describe each layer in detail. We describe the conceptual model as a
fixed set of component types, with fixed set of entity types as their inputs and outputs. We
then define how components in a catalog shall be defined. However, we do not define a fixed
catalog. A definition of a specific catalog of components is up to a specific implementation of
the framework and a given catalog can be arbitrarily extended with new components.
However, any component must be an instance of one of the types from the conceptual level
which is fixed. This section ends with a formal definition of similarity pipelines and
presentations which shows how components from a catalog can be combined together. A
specific component catalog, specific similarity pipelines and presentations and how they can
be executed are presented in Section 4.

3.1 Conceptual layer
The conceptual layer defines the conceptual model for similarity production pipelines and
similarity applications. It ensures compatibility of components in pipelines as it defines
supported entity and component types. Each component type represents some action with a
given input and output. This defines not only supported actions but also possible ordering of
components in pipelines because it is necessary that their inputs and outputs are compatible.
3.1.1 Entity types. An entity type represents types of data entities handled during
similarity production pipelines execution. The conceptual model of possible entity types is
depicted in Figure 2. We distinguish the following entity types in this paper:

(1) Dataset represents a dataset D in a collection of datasets {Dy, ..., D,} or shortly
{D;} or {D;} when nis not important. The goal of a similarity production pipeline is
to produce similarities of datasets in {D;} among each other.

(2) Knowledge represents external knowledge which is used in a similarity production
pipeline. We distinguish three subtypes in this paper:

« KnowledgeGraph represents external knowledge structured as a graph
G = (N,E) where Nis a set of nodes,ECN X P X (NuU L) is a set of edges, P is a set
of all possible node properties and L is a set of all possible literal values. A literal
value is simply a string. For an edge (n, p, 0), n is called subject, p is called
predicate and o is called object. An edge (n, p, 0) s.t. 0 € N is called object edge.

Similarity-
based dataset
discovery
framework

513

DTA
96,4

514

Figure 2.

The conceptual model
of possible entity types
for similarity
production pipelines

An edge (n, p, 0) s.t. 0 € L is called literal edge. A reader may notice that the
knowledge graph model corresponds to the RDF data model (Cyganiak et al.,
2014), but this is not important at the conceptual layer.

NodeEmbedding represents external knowledge structured as a node
embedding./"¢ : N - R” of a knowledge graph G where N is the set of nodes of G.

WordEmbedding represents external knowledge structured as a word
embedding 7 : L - R" where L is the set of all possible literal values.

(3) Descriptor represents a descriptor of a dataset D. A descriptor of D is any collection
of data which describes D, for example, vector, a histogram, time-series, a set of
descriptors or a combination of other dataset descriptors. We distinguish three subtypes:

Similarity ranking

>I

Descriptor

‘I

Metadata represents a descriptor which describes D using metadata. Currently,
we consider only one possible kind of metadata descriptors which correspond to
the DCAT standard (see Section 2.4).

Mapping represents a descriptor which describes D by mapping its representation
{(d', ..., d™} toan external knowledge. A representation {d', ..., d™} of D is any set
of elements which characterize D. It is a generic concept which may comprise
elements of the data schema of D, all or chosen data elements from the content of D,
and it can also be D itself. A mapping of D to an external knowledge comprises
particular mappings of the elements of the representation.

If the external knowledge is a knowledge graph G, then the mapping is a set
{(D,d'{n,..., nﬁei H }ZZ . which maps each element d’ of a representation {d",
.., d"} of Dto a set of nodes {j, ..., } from G.

If the external knowledge is an embedding E, then_ the mapping is a set
{(D,d'{v,..., v}%})}il which maps each element & of a representation {d",
.., d"} of Dtovectors {v, . .., vﬁel } where each vector is a result of applying the

embedding E and some mapping logic represented by a concrete mapping
component.

SimilarityRanking represents a descriptor which describes D in a collection
{D;}! using similarity of D with other datasets in {D;}\{D} as a pair (D, {(D,s1), . - -,
(Dy, sn)}) where s; = similarity(D, D;) for some function measuring similarity of
datasets.

Data catalog source

catalogs

describes

provides

Dataset

Dataset source |—I>| Data source |

Metadata |

maps to

provides

Knowledge Knowledge source

| Mapping

N
>
<

Node embedding Word embedding

(4) DataSource represents an external source of a certain kind of data. An instance of Similarity-
a data source type is a concrete data source which can be accessed through an API to based dataset
extract data. We distinguish the following data source types. discovery

. DataCatalogSource represents a data catalog source DS, which provides framework
an API for extracting metadata descriptors. Currently, we consider only data
catalog sources providing DCAT metadata descriptors through a SPARQL
endpoint or for a bulk download. 515

« KnowledgeSource represents an external knowledge source DS, which
provides an API for extracting external knowledge. It can be a SPARQL endpoint
for extracting an RDF knowledge graph, a bulk download of a word embedding or
a set of documents on which a word embedding can be trained.

. DatasetSource representsa datasets source DS4 which enables downloading
a dataset described by a metadata descriptor. It can simply be the web where the
metadata descriptor provides a URL for downloading the content of the dataset.

3.1.2 Component types. A component type represents an operation. It is abstracted from a
concrete algorithm for that operation and its implementation. The concrete algorithm and
implementation is provided by a concrete component which is an instance of the
component type.

Formally, an operation operation(iny,...,in,,): out takes input parameters
{ini,...,in,} and produces an output out. An input in; is a regular expression T, T™,

T>l< or T’ meaning that one instance, one or more instances, zero or more instances, or zero or
one instance of an entity type T is provided on the input. The same is for the operation output.
The top-level component type is Component. It represents all possible components.
There are three more specific subtypes: Extractor, Processor and Presenter. The
full list of supported component types with their inheritance hierarchy is shown in Figure 3.
3.1.2.1 Extractors. Extractor represents an extractor. An extractor is a component
which performs an operation of extracting data from a data source. The conceptual model of
extractors is shown in Figure 4. We distinguish the following subtypes of Extractor:

(1) ExtractExternalKnowledge represents components performing

extract,(KnowledgeSource) : Knowledge
which extracts an external knowledge from a given external knowledge source.

(2) ExtractMetadataDescriptor represents components performing

7 N \J
Extractor] [Processor] [Presenter
Extract external knowledge [Refine descriptor Compute similarity] Similarity evaluation]
) _— ... ; Figure 3.
Extract metadata descriptor Refine external knowledge Fuse similarities Similarity explanation The conceptual model
of possible components
[Extract content descriptor [Refine mapping] Map dataset to knowledge] Similarity search] types for Slmllarlty

production pipelines

(A

DTA
96,4

516

Figure 4.

The conceptual model
of possible extractor
component types for
similarity production
pipelines

®)

extractyq,(DataCatalogSource) : Metadata™
which extracts metadata about datasets from a given data catalog source.

ExtractContentDescriptor represents components performing

extracty(DatasetSource,Metadata®) : Descriptor™
which extracts from a dataset source a descriptor for each dataset with a provided
metadata descriptor.

3.1.2.2 Processors. Processor represents a processor. A processor is a component
which performs an operation for processing input entities to output entities. The conceptual
model of processors is shown in Figure 5.

@

)

®)

@)

RefineDescriptor represents components performing

processyzi(Descriptor™) : Descriptor®
which transforms input descriptors to output descriptors.

RefineExternalKnowledge represents components performing

process,m(Knowledge) : Knowledge
which transforms an external knowledge to another external knowledge, for example,
transforming literal objects of literal edges to other literal objects in a knowledge graph,
removing some object edges from a knowledge graph or applying some vector
operation on the vectors in an embedding.

MapDatasetToKnowledge represents components performing

processyygy(Descriptor™, Knowledge) : Mapping™
which maps a set of datasets described by the input descriptors to an input external
knowledge. The resulting output mapping is created on the base of the input
descriptors, and it maps each dataset to the external knowledge.

RefineMapping represents components performing

Drocessyepm(Mapping™, Descriptor*, Knowledge’) : Mapping*
which transforms an input mapping of datasets to an external knowledge to another
mapping of the same datasets to the same external knowledge or another external
knowledge specified as an optional input. The new mapping is created using the
optional input descriptors of the datasets.

I |Data catalog source}—P{Extract metadata descrip\oH Metadata H

| Dataset source }—P{ Extract content descriptor }—>| Descriptor " | Knowledge source }—P{Extract external knowledge}—>| Knowledge |

Figure 5.

The conceptual model
of possible processor
component types for
similarity production
pipelines

| Descriptor H Refine

}—P{ Refine external knowledge}—>| Knowledge |

o] [

Descriptor

N |

Y o

:[Map dataset to knowledge H Mapping H ’ Mapping H—P{ Refine mapping }—P{ Mapping H

Knowledge

| Descriptor H Compute similarity }—P{ Similarity ranking H ‘ Similarity ranking H

Fuse similarities

}—P{ Similarity ranking H

() ComputeSimilarity represents components performing

processg,(Descriptor™) : SimilarityRanking™
which computes a similarity of each dataset described by an input descriptor with other
datasets described by the other input descriptors. The component uses the input
descriptors to compute the similarity.

(6) FuseSimilarities represents components performing

processp(SimilarityRanking®) : SimilarityRanking™
which performs multimodal fusion of two or more input similarities for a dataset to a
single similarity. For each dataset with specified similarities on the input, an output
similarity is produced.
3.1.2.3 Presenters. Presenter represents a presenter. The conceptual model of presenters
is shown in Figure 6. A presenter is a component which uses the products of dataset similarity
pipelines to present them to human users and provide them with some functionality.

(1) similarityEvaluation represents components performing

present,y(SimilarityRanking™, Descriptort)
which presents dataset similarities to a human user who evaluates the similarities. It
uses input descriptors of the datasets for presenting the datasets.

(2) similaritySearch represents components performing

presentsyy(SimilarityRankingt, Descriptor™)
which enables a human user to choose a dataset and then shows datasets similar to the
chosen one on the base of the input similarities. It uses input descriptors of the datasets
for presenting the datasets.

(3) SimilarityExploration represents components performing

present,y(SimilarityRanking®, Descriptor™, Knowledge*)
which explains similarities between datasets to a human user. For the explanation, it
uses the input similarity, dataset descriptors and optionally also external knowledge of
different kinds. Among the input descriptors, there are also mappings of the datasets to
the external knowledge if provided on the input. Descriptors may be used for
presentation as well as explanation purposes.

3.2 Catalog layer

The catalog layer contains the catalog of components experts may use to build their
similarity production pipelines and similarity presentations. Each component c in the catalog
is an instance of a component type T from the conceptual level which we write as c€ T. A
component c is described in the catalog with a record using the following structure:

type: specifies the type of ¢ from the conceptual layer

imput: specifies the inputs of ¢ from the conceptual layer using the entity types from the
conceptual layer

output: specifies the outputs of c from the conceptual layer using the entity types from the
conceptual layer

Knowledge
Similarity explanation

Similarity ranking | Similarity ranking | Similarity ranking I
SR —— S —|
Similarity i Similarity search
Descriptor Descriptor Descriptor

Similarity-
based dataset
discovery
framework

517

Figure 6.

The conceptual model
of possible presenter
component types for
similarity production
pipelines

DTA
96,4

518

description: describes verbosely the behavior of ¢

implementation: specifies a link or links to the source code and documentation of one or
more implementations of ¢

configurable: specifies whether and how the behavior of ¢ can be configured

configurations: if c is configurable there is a list of predefined configurations; for each
predefined configuration, a name and configuration specification is provided

As can be seen from the structure, a component has one or more executable implementations.
The implementations consume the same conceptual entities on the input, produce the same
conceptual entities on the output but they technically differ in data formats used to express
the inputs and outputs. Furthermore, a component’s behavior can be further specified by
configuring it. In case of a configurable component, some concrete configurations may be
predefined in the catalog. These configurations are then used by their name in pipeline
specifications in the next section which makes pipeline specifications clearer.

3.3 Pipeline layer

The components in the catalog layer represent concrete operations with their concrete
implementations. The pipeline layer contains concrete similarity production pipelines and
similarity presentations which put components together. In this section, we introduce a
formal algebraic model of similarity production pipelines and similarity presentations.
A pipeline expressed using the algebraic model cannot be directly executed. The algebraic
expression must be interpreted and translated to an executable script as described in
Section 4.4. The algebraic model enables one to define a pipeline without implementation
details so that it is more suitable for comparing different pipelines. Using the algebraic model,
it is easier to see what are the conceptual differences between given pipelines.

A pipeline fragment F is an expression.

(1) c(F,...,F,) where c€T is a component of type 7" performing an operation
operation(iny,...,iny) : outand Fy,.. ., F,, are pipeline fragments s.t. Vj € {1, . . .,
m} F;is compatible with the input parameter in; of operation. F; is compatible with an
input parameter #72; of a component type 7 iff the type of the result of execution of F; is
the same as the type of ;.

(2) FyUFywhere Fy, F5are pipeline fragments with their outputs being of the same entity

type, or
(3) s where s € DataSource.
An execution of F = c(F1, ..., F,) means executing the operation defined by c with the
results of executing Fy, .. ., F,, passed as parameters. An execution of F' = F; U F», means

creating the set union of the results of executing F} and Fs. An execution of F' = s where
s € DataSource is undefined.

A pipeline fragment F'is a similarity production pipeline iff F = c(Fy, ..., F,,) where
c € ComputeSimilarity U FuseSimilarity. A pipeline fragment F'is a similarity
presentation iff FF = c(F, ..., F,)where c € Presenter.

The introduced algebraic model does not allow for specification of component configurations.
If a component described in the catalog is configurable, its configurations must be defined and
named in the catalog, and only these named configurations can be used in pipeline specifications.

4. Dataset discovery framework proof-of-concept
In this section, we demonstrate the dataset discovery framework on a concrete component
catalog and similarity production pipelines constructed using the components from

the catalog. To demonstrate the framework, we apply the pipelines on a specific open
data catalog and external knowledge. We also show examples of similarity presenters which
we used for user evaluation of the resulting similarities, for example in Skoda et al. (2020).

4.1 Data and external knowledge used for proof-of-concept

For the framework demonstration purposes, we work with metadata from the Czech National
Open Data Catalog (NODC) [10] described in Klimek (2019), which is regularly harvested by
the European Data Portal (EDP). This metadata describes open datasets published by public
institutions in Czechia, such as the Czech Statistical Office, the city of Prague or the Czech
Social Security Administration. For illustration of how the framework can be used, we use the
most basic, textual metadata fields: title, description and keywords — which contain textual
descriptions of the datasets in Czech. The collection we work with contains approximately
6,600 datasets from 39 publishers.

Besides dataset metadata, we utilize multiple types of external knowledge. We choose to
employ Wikidata (Vrandeci¢ and Krotzsch, 2014), a collaboratively edited knowledge-base
with free access, as a knowledge graph source. In general, the Wikidata model is built around
the entities and their relations. The entities may represent concepts or real objects or people.
The relations are of various types, but for the framework demonstration we utilize only
instance of [11] and subclass of [12] relations. We have also used this model for computing
Node2Vec (Grover and Leskovec, 2016) text (labels) and concept (nodes) embeddings with
different hyperparameters. For comparison, we utilize two standard word embeddings:
Word2Vec (Mikolov et al.,, 2013) model trained on Czech Wikipedia articles and BERT (Devlin
et al., 2018) using the BERT-base, multilingual cased model.

Formally, we define the following entities (see Section 3.1.1), which will be used in the proof
of concept by components in pipelines:

(1) Nobc
type: CatalogDataSource

description: Snapshot of the DCAT-AP metadata dump from the Czech National Open
Data Catalog in the RDF TriG (Carothers and Seaborne, 2014) file format from 2020-04—
20. For practical reasons, datasets of the State Administration of Land Surveying and
Cadastre were omitted. It was approximately 120,000 datasets with very similar
metadata, which did not add any value for the purpose of the framework demonstration,
but unnecessarily increased the time and hardware requirements of the demonstration.

download: 2020.04.20-data.gov.cz-no-cuzk.trig [13] (Klimek and
Skoda, 2021a).

(2) w2v [CcSWiki]
type: KnowledgeSource
description: Word2Vec model for word embedding trained on Czech Wikipedia articles.
download: cswiki-latest-pages-articles.word2vec [14] (Bernhauer and Skopal, 2020).
() N2V [Wikidata Labels/80/40]
type: KnowledgeSource

description: Node2Vec model for word embedding trained on Czech labels of items
from the Wikidata knowledge graph, using the instance of and subclass of
directed edges. For this model, length of random walk is 80 nodes and number of
random walks per node is 40.

Similarity-
based dataset
discovery
framework

519

DTA
96,4

520

download: 1abels.80.40.d[15] (Bernhauer and Skopal, 2021d).
(4) N2V [Wikidata Labels/160/40]
type: KnowledgeSource

description: Node2Vec model for word embedding trained on Czech labels of items
from the Wikidata knowledge graph, using the instance of and subclass of
directed edges. For this model, the length of the random walk is 160 nodes and the
number of random walks per node is 40.

download: 1abels.160.40.d[16] Bernhauer and Skopal, 2021c).
() N2V [Wikidata KG/80/40]
type: KnowledgeSource

description: Node2Vec model for node (concept) embedding trained on the Wikidata
knowledge graph using the instance of and subclass of directed edges. For
this model, the length of the random walk is 80 nodes and the number of random
walks per node is 40.

download: concepts.80.40.d[17] Bernhauer and Skopal, 2021b).
(6) N2V [Wikidata KG/40/10]
type: KnowledgeSource

description: Node2Vec model for node (concept) embedding trained on the Wikidata
knowledge graph using the instance of and subclass of directed edges. For
this model, the length of the random walk is 40 nodes and the number of random
walks per node is 10.

download: concepts.40.10.d[18] (Bernhauer and Skopal, 2021a).
(7) BERT
type: KnowledgeSource

description: BERT is pretrained model for NLP tasks presented in Devlin ef al. (2018).
All pretrained models are officially available at https://github.com/
google-research/bert. In our experiments, we have used BERT-base,
multilingual cased model.

download: multi_cased_L-12_H-768_A-12.zip [19] (Devlin et al., 2018).
(8) wikidata knowledge graph
type: KnowledgeSource

description: Dump of Wikidata as available at https://dumps .wikimedia.
org/other/wikidata/. The dump contains information about Wikidata entities
and their relations.

download: 20181 217 json.gz [20] (Klimek and Skoda, 2021b).

4.2 Proof-of-concept component catalog

The full list of available components and links to their implementations can be found in
Appendix A. In this section, we list a subset of the components, which is used later by the
selected similarity production pipelines in Section 4.3. The components are color-coded

https://github.com/google-research/bert
https://github.com/google-research/bert
https://dumps.wikimedia.org/other/wikidata/
https://dumps.wikimedia.org/other/wikidata/

according to the type of their outputs: knowledge (violet), SimilarityRanking (pink), Similarity-

descriptor (green) and mapping (orange). based dataset
4.2.1 Extractors. discovery
e extractMetadata framework

type: ExtractMetadataDescriptor
input: catalog € DataCatalogSource 521

output: {descriptor;}" ; C Metadata™

description: Extracts metadata descriptors for all datasets from a given
catalog. An extracted descriptor contains a title, description and
keywords of a dataset if provided by the catalog.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/extractors/extract-metadata-descriptor/dcat-ap-extractor

o getVectorEmbeddingModel

type: ExtractExternalKnowledge
input: knowledgesource € KnowledgeSource
output: knowledge C Knowledge

description: Extracts external knowledge as an embedding model (i.e.
Word2Vec, Node2Vec, BERT, ...).

implementation: There is no implementation as these models can be
just downloaded.

configurable: Kind of embedding used.

configurations:
getWord2VecModel - Word2Vec embedding in Gensim format
getNode2VecModel - Node2Vec embedding in Gensim format

wikidataHierarchyExtractor

type: ExtractExternalKnowledge
input: knowledgesource € KnowledgeSource
output: knowledge C Knowledge

description: Extracts hierarchy, made of instance of and subclass
of edges, from the Wikidata knowledge graph.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/extractors/extract-external-knowledge/wikidata-hierarchy-extractor

wikidatalLabelsExtractor

type: ExtractExternalKnowledge
input: knowledgesource € KnowledgeSource
output: knowledge C Knowledge

description: Extracts item labels and aliases from the Wikidata knowl-
edge graph.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/extractors/extract-external-knowledge/wikidata-labels-extractor

DTA
96,4

522

4.2.2 Processors.

e projectDescriptor

type: RefineDescriptor

input: {descriptor,}’; C Metadata™

output: {descriptor’,}?; C Metadata™

description: Performs property projection on input descriptors.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/refine-descriptor/json-to-csv

configurable: Projected metadata property.

configurations:
projectToTitle - title property
projectToDescription - description property
projectToKeywords - keywords property

concatenate

type: RefineDescriptor

input: {descriptor;}? ; C Metadata™

output: {descriptor’,}? , C Metadata™

description: Refines two textual descriptors into one concatenated de-
scriptor.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/refine-descriptor/join

doLemmatization

type: RefineDescriptor
input: {descriptor;}?; C Metadata™
output: {descriptor’,}" , C Metadata™

description: Refines a textual descriptor by lemmatisation, i.e. trans-
forms each word into its lemma and eliminates stop-words. In this
case, the lemmatisation and optional stop-word elimination could be
separated, but it is more convenient work with NLP processor just
once.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/refine-descriptor/udpipe

type: MapDatasetToKnowledge
input: {descriptor,}? ; C Metadata™, knowledge C Knowledge
output: {mapping,}? ; C Mapping™

description: Maps textual metadata to provided embedding using the
average vector over all words.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/map-dataset-to-knowledge/vectorize

configurable: Kind of descriptor used.

configurations:
- textual descriptor
- Wikidata concepts

type: RefineMapping

input: {mapping;}!" ; C Mapping™, knowledge C Knowledge
output: {mapping;}?" ; C Mapping™

description: Map entities to their instance of ancestors.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/refine-mapping/instance-to-class

type: MapDatasetToKnowledge

input: {descriptor;}? ; C Metadata™, knowledge C Knowledge
output: {mapping,}!", C Mapping™

description: Maps textual metadata to provided textual entities.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/map-dataset-to-knowledge/bag-of-words-mapper

computeSimilarity

type: ComputeSimilarity

input: {descriptor;}? ; C Descriptor™

output: {similarityRa.nkingj j=1C SimilarityRanking™

description: Computes similarity for scalar-based descriptors such as
texts, sets of words or vectors.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/processors/compute-similarity/basic
configurable: Kind of similarity used.
configurations:
computeJaccardSimilarity - Jaccard distance, usable for texts and
sets of words
computeCosineSimilarity - Cosine distance, usable for texts and
vectors
computeTLSHSimilarity TLSH distance, usable for texts

4.2.3 Presenters.
(1) evaluateExactSize

type: SimilarityEvaluation
input: {similarityRanking;}’ ,CSimilarityRanking™,

. n . =1
{descriptor;};; CDescriptor

Similarity-
based dataset
discovery
framework

523

DTA
96,4

524

description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the 2NN query (Papadias, 2009) similarity search is performed. % is the
expected number of similarity datasets. Average ratio of observed and expected is
presented to the user.

implementation: https://github.com/mff-uk/simpipes-comp
onents/tree/main/presenters/similarity-evaluation/ex
act-size

(2) evaluateTopK
type: SimilarityEvaluation

lnput{SLmllarltyRankln%} CSimilarityRanking™,
{descriptor;}i.; C Descrlptor+

description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the ZNN query similarity search is performed. % is specified by user through
parameter, and it is a constant for each test case. Average ratio of observed and
expected is presented to the user.

Implementation: https://github.com/mff-uk/simpipes-components/
tree/main/presenters/similarity-evaluation/top-k

(3) evaluatePRCurve
type: SimilarityEvaluation

Input: {51mllarltyRank1ngj} CSimilarityRanking™,
{descriptor;}} 1CDescrlptor+

Description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the 11-point PR curve (Zhang and Zhang, 2009) is computed and presented to
the user.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/presenters/similarity-evaluation/pr-curve

(4) OpenDatalInspectorEvaluation
type: SimilarityEvaluation

input: {descriptor;}’, CDescriptor™,
{snnllarltyRanklng]} CSimilarityRanking™

description: OpenDatalnspector is a standalone tool. The evaluation module (see
Skoda et al, 2020) allows domain experts to evaluate similarity production pipeline
results.

implementation: https://github.com/mff-uk/simpipes-comp
onents/tree/main/presenters/similarity-evaluation/odin-
similarity

4.3 Proof-of-concept pipelines

In this section, we present four similarity production pipelines as examples. The full list of
currently available pipelines can be found in Appendix B. The pipelines demonstrate the
practical usability of our framework. For example, the first pipeline presented in Section 4.3.1
is an implementation of the solution employed by the EDP (see Section 2). In Section 2, we also

https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/exact-size
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/exact-size
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/exact-size
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/top-k
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/top-k
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/pr-curve
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/pr-curve
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/odin-similarity
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/odin-similarity
https://github.com/mff-uk/simpipes-components/tree/main/presenters/similarity-evaluation/odin-similarity

discussed discovery solutions which employed an external knowledge in a form of a
knowledge graph, for example, Brickley ef al (2019), The fourth pipeline presented in Section
4.3.4 is an implementation of a dataset discovery solution employing an external knowledge
in a form of a knowledge graph. In our case, the external knowledge is the Wikidata
knowledge graph. A similar solution is employed by Google in their dataset search
architecture with their own knowledge graph as described by Brickley et al (2019). Various
pipelines implementing existing as well as novel solutions can be constructed in our
framework. The results of similarity production pipelines can be used, for instance, for their
evaluation, both automatically and with assistance of domain experts. Later, in Section 4.5,
we show the usage of appropriate presenters.

4.3.1 TLSH similarvity production pipeline. TLSH similarity production pipeline
corresponds to the similarity feature implemented by the EDP. Note that
computeTLSHSimilarity can be split into hash computation and similarity function
computation, but in this case, these two parts are interconnected.

computeTLSHSimilarity(
concatenate(
projectToTitle(extractMetadata(NODC)),
projectToDescription(extractMetadata(NODC))

)
)

4.3.2 Metadata-based similarity production pipeline. The metadata-based similarity
production pipeline is one of the most straightforward pipelines. It relies on suitable usage of
dataset metadata such as title, keywords and description. The metadata is pre-processed by
lemmatization and by removing stop-words. Then, it is compared by the Jaccard similarity
function.

computeJaccardSimilarity(
doLemmatization(

projectToTitle(extractMetadata(NODC))

)
)

4.3.3 Text-based similarity production pipeline using Word2Vec embedding. This similarity
production pipeline is an example of text embedding used as external knowledge. The
lemmatization phase can be followed by various embedding mappings. In this case, we use a
mapping to a Word2Vec model trained on Czech Wikipedia articles. It helps to deal with
synonyms and words with similar meaning.

computeCosineSimilarity(
(
doLemmatization(
projectToTitle(extractMetadata(NODC))
)7
getWord2VeclModel(W2V [CSWiki])
)
)

Similarity-
based dataset
discovery
framework

525

DTA
96,4

526

4.3.4 Concept-based similarity production pipeline with additional external knowledge. In
some cases, it can be useful to enhance a similarity model with additional external knowledge.
For example, one part of external knowledge can provide information about mapping words
to concepts. Another part can embed the concepts into a vector space. In our case, both come
from the same database (i.e. Wikidata), but they are processed in different ways. Firstly, we
have mapped words and phrases to Wikidata concepts. Secondly, we have trained a
Node2Vec model using the Wikidata knowledge graph and applied a concept-to-vector
embedding. In contrast with the Word2Vec embedding, the external knowledge in this
pipeline is built using the Wikidata concept hierarchy instead of the natural language
processing of the Wikipedia articles.

computeCosineSimilarity(

(
projectToTitle(extractMetadata(NODC)),
wikidatalLabelsExtractor(Wikidata knowledge graph)
)7

wikidataHierarchyExtractor(Wikidata knowledge graph)
)u

(
projectToDescription(extractMetadata(NODC)),
wikidataLabelsExtractor(Wikidata knowledge graph)
);
wikidataHierarchyExtractor(Wikidata knowledge graph)
)u

(

projectToKeywords(extractMetadata(NODC)),
wikidatalLabelsExtractor(Wikidata knowledge graph)

)7

wikidataHierarchyExtractor(Wikidata knowledge graph)

)7

getNode2VecModel(N2V [Wikidata KG/40/10])

4.4 Pipeline implementation

In the previous section, we showcased a few selected pipeline definitions. The definitions
capture all important information that is relevant in order to compare different pipelines.
However, as the pipelines are described using the catalog layer model (see Section 3.2),
additional steps must be carried out to get an executable pipeline implementation. In the rest
of this section, we describe what a user needs to do in order to obtain an executable version of
apipeline in a step-by-step fashion. In addition, we provide an example of each step motivated
by the pipeline described in Section 4.3.3.

The first step is to employ the component catalog (see Section 4.2), resolve component
configurations and obtain links to component implementations in our GitHub repository:
https://github.com/mff-uk/SimPipes-Components. In the component
repository, each component has an implementation, input and output data sample and a
README.md file with details on how to use the component. The component description
consists of: textual description, requirements, input description, output description,
configuration and example execution script.

For example, the projectDescriptor component performs a projection of a given property
as described in the initial part of the README . md. However, the component implementation
also changes the data format from JSON to CSV, as can be seen from the following input and
output descriptions:

Format: Directory of JSON files.
Contents: Dataset descriptor.
Sample: Input sample

Format: CSV file.
Contents: CSV with iri and required property.
Sample: Output sample

Each input or output description consists of format specification, human readable description
of the content and link to a data sample.

Another important part of the description is the component implementation configuration.
The configuration is used not only to set the inputs and outputs of components, but also to
provide additional parameters to the implemented algorithms.

input - Path to datasets descriptor files.
output - Path to output file.

property - Name of property to project.
linePerValue - For each value create a new line.

The last part of the component description is an example of the execution script. Note that the
name of the component entry script, j son-to-csv. py, does not have to correspond to the
component name, JSON To CSV, nor to the component type name, refine-
descriptor.

python3 json-to-csv.py \
--datasets ./input-sample/datasets \
--output ./output/output.csv \
--property title

The next step is to create a component instance configuration. Most of the time, this needs to
be done manually, as the user needs to understand the configuration description in the
component catalog Section 4.2 and create a corresponding configuration for the component
instance based on the README . md file in the component repository.

For example, projectToTitle is a named configuration of the above-mentioned
projectDescriptor component. The configuration description of projectToTitle states
that the projected property is set to title. From the description configuration, the user
should be able to figure out that this can be archived by setting the property configuration
totitle.As titleisalready in the example, the property argument remains the same
here. The input and output arguments of the script should be changed to match the rest
of the pipeline.

Similarity-
based dataset
discovery
framework

527

https://github.com/mff-uk/SimPipes-Components

DTA
96,4

528

Once the configurations are ready, the user can use them to obtain commands that can be
used to execute the given components, and put those commands into a script that forms a
backbone of the pipeline implementation. However, as the pipelines algebra captures the
pipeline at the conceptual level, it leaves out some implementation details like utility
components.

Utility components are stored in the processors/utilities directory in the
repository. They do not change the contents or meaning of the data passed among the
individual components in the pipeline, but they might be necessary for operations like data
format changes, which make the inputs and outputs of the individual components in the
pipeline compatible. Therefore, the user now needs to take a look at the implementation
pipeline backbone and possibly insert necessary utility components.

A good example of the necessity to use a utility component is the pipeline union
described in Section 3.3 and used in Section 4.3.4. The pipeline produces several different
descriptors by using the component on descriptors computed from title,
description and keywords. In the next step, all the data should be put together by union.
While the union has no counterpart in the component catalog, there is a component in the
component repository that can carry on this operation called json-union.

With the complete script to run all the components, the last step is to make sure that
requirements of each component are fulfilled. An example of such a script can be found in
Appendix C.

Some components may require external data or installationn of additional libraries,
which are described in the component’s README . md file. As the components are written
in Python, their dependencies are provided as requirements.txt files. The
installation of the dependencies is then as simple as running pip3 install-r
requirements. txt for the used components. Once all the requirements are met and
the script is ready, the pipeline can be executed simply by running the script. While the
process is relatively straightforward, the user needs to have good knowledge of the
available components and their configurations as well as basic knowledge of data
processing techniques.

4.5 Proof-of-concept similarity presentation

The possibilities of usage of the results of similarity production pipelines is out of scope of
this paper. Nevertheless, we present at least two usage examples: manual and automatic
evaluation of results of various pipelines. 3

4.5.1 Manual evaluation. The manual evaluation process is fully described in Skoda et al.
(2020), showcasing, among others, the first three similarity production pipelines from Section
4.3. Note that the results of this evaluation led us to later replace the first pipeline (Section
4.3.1) with the last pipeline (Section 4.3.4) in further evaluation, which is used for illustration in
this paper.

The core idea of the manual evaluation protocol is to employ a set of predefined use
cases. Each use case defines a textual description of the user’s intent, which is used to set
up a scenario in which a user performs the search. In addition, the use case contains a
collection of the so-called starting datasets — datasets already verified to be relevant to the
user and their scenario. The user scenario definition is important as different scenarios
may lead to different results even with the same set of starting datasets. For the purpose
of the evaluation, all team members followed the same protocol as described in Skoda
et al. (2020).

We carried out the evaluation on selected pipelines from Section 4.3 using the
OpenDatalInspectorEvaluation presenter:

OpenDataInspectorEvaluation(
extractMetadata(NODC),
computeJaccardSimilarity(

doLemmatisation(
projectToTitle(extractMetadata(NODC))

The presenter provides not only an environment to run the evaluation but also the scripts that
can be used to gain basics insight into the evaluation and plot the results. In Figure 7, we can
see an example of one of those outputs. The values S1, S2 . . . S12 on the x-axis represent the
different use-cases as defined in Skoda et al. (2020). There are results for 10 methods, whose
algebraic definitions can be found in Appendix B. To briefly summarize the results, it is clear
that there is no one method that outperforms all others in all use-cases, which shows the need
for further research into the various types of use cases, various similarity production
pipelines and into the problem of how to select the best similarity for a given use case. These
findings correspond with those in Skoda et al (2020). 5

4.5.2 Automatic evaluation. During our previous experiments (Skoda et al, 2020), we
quickly found out that the time required for manual evaluation increases rapidly with the
increasing number of similarity production pipelines to be evaluated and their configurations
such as different embeddings and projections. This led us to investigate the possibilities of

Relative method ranking

S1 S2 S8 S11 S4 S9 S7 S12 S5 S10 S6 S3

B.1 cosine : description : bert

-+ B.2 hausdorff : description : [labels.80.40.d]

~+- B.3 cosine : description : word2vec[labels.160.40.d]
B.4 cosine : title : bert

= B.5 hausdorff : title : [labels.80.40.d]

~+ B.6 cosine : title [cswiki]

-+ B.7 cosine : title : word2vec[labels.80.40.d]

-— B.8 jaccard : title

~+ B.9 cosine : wikidata : word2vec[concepts.80.40.d]

~+ B.10 cosine : wikidata : word2vec[concepts.40.10.d]

Similarity-
based dataset
discovery
framework

529

Figure 7.
Normalized average
performance per model

DTA
96,4

530

Table 1.

Results of
evaluateTopK with
K = 20 for pipelines
presented in
Appendix B

automating at least a part of the evaluation process. We devised an automated similarity
production pipeline screening process — an automatic evaluation of the success potential of
different similarity production pipelines in the form of presenters. These presenters can
provide a quick estimate of the pipeline efficiency so that we can focus on a much lower
number of candidates for the manual evaluation.

However, the automatic evaluation relies on a user-defined baseline. To obtain the
baseline, we manually added the list of all relevant datasets from the given catalog for each
use case in Skoda ef al. (2020).

The evaluateExactSize and evaluateTopK presenters perform a kNN query
search, where k is the number of expected answers, or the specified constant, respectively. For
each use-case, the accuracy is computed as the ratio of expected datasets in the result. The
presenter evaluateTopK reflects more precisely the user-based evaluation as it is not
essential to have an exact match. For the users, it is a success if the expected datasets are
found in the first few results. The evaluatePRCurve presenter provides a more
comprehensive view of the issue. Instead of one number, the PR curve says how much effort
the users have to make to achieve the required precision.

In our experiments, these methods provided a good estimate for comparing similar
pipelines, especially with different kinds of external knowledge. They are also useful for
filtering out models with a great number of settings of hyperparameters. Example of results
for similarity production pipelines in Appendix B is shown in Table 1. The accuracy found in
the automatic evaluation correspondeds very well with manual evaluation. As expected,
methods based on word embeddings with a large dictionary (e.g. Word2Vec or BERT based
on Wikipedia) have been very successful. Worse, due to the specific domain, were approaches
based on smaller databases (e.g. Node2Vec).

Since we already know that different similarity production pipelines are successful for
different use cases and the results of the automatic evaluation represent an aggregation of
accuracy over all use cases, the results are not conclusive, and therefore we use them only for
the initial screening process.

4.5.3 Run-time evaluation. During the testing of various similarity models (pipelines), we
can measure pipeline run-time in addition to precision, recall, accuracy and other statistical
metrics. We can measure the run-time of entire pipelines, but we can also measure the run-
time of individual components due to the modularity of the proposed framework. This can be
very useful when comparing two implementations of the same component, where we replace
one implementation with another in an identical pipeline.

Table 1 shows the approximate run-time of each pipeline. Individual runs do not use
precomputed parts from previous runs but can use parallel processing. The computations
were run on a virtual machine running 8 cores with 32 GB of RAM running Ubuntu 21.10.
Testing on a virtual machine of course means that the measurements were influenced by

Pipeline Accuracy Run-time
B.1 cosine: description: bert 10.7% ~ 20m
B.2 hausdorff: description: [labels.80.40.d] 4.0% ~ 8m
B.3 cosine: description: word2vec[labels.160.40.d] 194% ~ 6m
B.4 cosine: title: bert 212% ~ 20m
B.5 hausdorff: title: [labels.80.40.d] 71% ~5m
B.6 cosine: title [cswiki] 34.9% ~d4m
B.7 cosine: title: word2vec[labels.80.40.d] 12.7% ~ 3m
B.8 jaccard: title 32.4% ~2m
B.9 cosine: wikidata: word2vec[concepts.80.40.d] 14.3% ~3h
B.10 cosine: wikidata: word2vec[concepts.40.10.d] 3.0% ~Th

other virtual machines running on the same hardware, and are therefore only very
approximate. Since our server does not support GPU acceleration, parts of pipelines B.1 and
B.4 were run externally using GPU acceleration within Google Colab service [21].

The longer run-time of pipelines B.9 and B.10 is caused by long-running knowledge
extraction components. Those components execution time alone accounts for roughly 3 and
3.5 I, respectively. The reasons for such long execution times are the size of the Wikidata
knowledge graph dump and the proof-of-concept single threaded implementation. As a result,
there is plenty of room for improvement that could significantly speed up the execution.

One of the indisputable advantages of our framework is the ability to use existing outputs
from common parts of pipelines. This allows us to test different pipelines that share similar
properties efficiently. At the same time, if pipelines are designed appropriately, it is also
possible to use parallel processing and, therefore, experimental evaluation of several
pipelines simultaneously. As a result, the framework allows efficient experimental evaluation
despite the inefficient implementation of components, which is very common in the
experimentation phase. Although our proof-of-concept implementation is not scalable in
terms of production deployment, scalability of experiments is achieved by reusing already
computed parts, which is one of the goals of our framework.

5. Conclusions

In this paper, we have introduced a modular framework for experimentation with dataset
discovery methods. We have presented the framework from a software-engineering
perspective, providing:

(1) formal conceptual definitions of framework components,
(2) a catalog of ready-to-use component implementations,

(3) production pipelines focusing on similarity-based methods and utilization of external
knowledge, such as knowledge graphs and embedding models and

(4) publication of the framework on GitHub.

An interested reader can dive from the conceptual level to the more detailed implementation
level, where the algebraic definitions of pipelines are translated into scripts that could be
directly executed as a piece of experimental software. The framework, including the
implementation, was published on GitHub and is ready to be freely used and extended.

Notes
1. https://data.europa.eu/catalogue-statistics/Evolution

2. Measured by a SPARQL query for selecting the number of distinct datasets on https://data.europa.
eu/data/spargl

3. https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/-/blob/master/src/
main/java/io/piveau/metrics/similarities/Similarity Verticle java

. https://data.europa.eu
. https://data.gov.cz
. https://www.data.gov/

N O U1 W

. https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-
application-profile-data-portals-europe

. https://www.w3.0org/TR/vocab-dcat-2/#Class:Dataset

. https://op.europa.eu/en/web/eu-vocabularies/authority-tables

© o

Similarity-
based dataset
discovery
framework

531

https://data.europa.eu/catalogue-statistics/Evolution
https://data.europa.eu/data/sparql
https://data.europa.eu/data/sparql
https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/-/blob/master/src/main/java/io/piveau/metrics/similarities/SimilarityVerticle.java
https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/-/blob/master/src/main/java/io/piveau/metrics/similarities/SimilarityVerticle.java
https://data.europa.eu
https://data.gov.cz
https://www.data.gov/
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-profile-data-portals-europe
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-profile-data-portals-europe
https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset
https://op.europa.eu/en/web/eu-vocabularies/authority-tables

DTA
96,4

532

10. https://data.gov.cz

11. https://www.wikidata.org/wiki/Q21503252

12. https://www.wikidata.org/wiki/Q21514624

13. https://zenodo.org/record/4433 464/files/2020.04.20-data.gov.cz-no-cuzk.trig?download =1
14. https://zenodo.org/record/3975 038

15. https://zenodo.org/record/4433 699

16. https://zenodo.org/record/4433 737

17. https://zenodo.org/record/4433 778

18. https://zenodo.org/record/4433 795

19. https:/storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
20. https://zenodo.org/record/4436 356/files/20 181 217 json.gz?download =1

21. https://colab.research.google.com/

References

Altaf, B, Akujuobi, U, Yu, L. and Zhang, X. (2019), “Dataset recommendation via variational
graph autoencoder”, 2019 IEEE International Conference on Data Mining (ICDM), pp. 11-20,
doi: 10.1109/ICDM.2019.00011.

Benjelloun, O., Chen, S. and Noy, N.F. (2020), “Google dataset search by the numbers”, Proceedings,
Part II. Vol 12507 of Lecture Notes in Computer Science, The Semantic Web - ISWC 2020-19th
International Semantic Web Conference, Springer, Athens, Greece, November 2-6, 2020,
pp. 667-682, doi: 10.1007/978-3-030-62466-8_41.

Berners-Lee, T. (2006), “Linked data”, available at: https://www.w3.org/Designlssues/
LinkedData.html.

Bernhauer, D. and Skopal, T. (2020), Word2Vec Model - Czech Wikipedia, Zenodo, Geneva, doi: 10.
5281/zen0d0.3975038.

Bernhauer, D. and Skopal, T. (2021a), Node2Vec Model - Czech Wikidata (Knowledge Graph/Concepts/
L40/Rw10), Zenodo, Geneva, doi: 10.5281/zenodo.4433795.

Bernhauer, D. and Skopal, T. (2021b), Node2Vec Model - Czech Wikidata (Knowledge Graph/Concepts/
L80/Rw40), Zenodo, Geneva, doi: 10.5281/zenodo.4433778.

Bernhauer, D. and Skopal, T. (2021c), Node2Vec Model - Czech Wikidata (Knowledge Graph/Labels/
L160/Rw40), Zenodo, Geneva, doi: 10.5281/zenodo.4433737.

Bernhauer, D. and Skopal, T. (2021d), Node2Vec Model - Czech Wikidata (Knowledge Graph/Labels/
L80/Rw40), doi: 10.5281/zenodo.4433699.

Bogatu, A., Fernandes, A.A.A., Paton, N.W. and Konstantinou, N. (2020), “Dataset discovery in data
lakes”, 36th IEEE International Conference on Data Engineering, ICDE 2020, IEEE, Dallas, TX,
USA, April 20-24, 2020, pp. 709-720, doi: 10.1109/ICDE48307.2020.00067.

Brickley, D., Burgess, M. and Noy, N.F. (2019), in Liu, L., White, R.W., Mantrach, A., Silvestri, F.,
McAuley,]J., Baeza-Yates, R. and Zia, L. (Eds), “Google dataset search: building a search
engine for datasets in an open web ecosystem”, The World Wide Web Conference, WWW
2019, ACM, San Francisco, CA, USA, May 13-17, 2019, pp. 1365-1375, doi: 10.1145/3308558.
3313685.

Browning, D., Beltran, A.G., Perego, A., Winstanley, P., Albertoni, R. and Cox, S. (2020), Data Catalog
Vocabulary (DCAT) - Version 2. W3C Recommendation, W3C, available at: https://www.w3.org/
TR/2020/REC-vocab-dcat-2-20200204/.

https://data.gov.cz
https://www.wikidata.org/wiki/Q21503252
https://www.wikidata.org/wiki/Q21514624
https://zenodo.org/record/4433	464/files/2020.04.20-data.gov.cz-no-cuzk.trig?download=1
https://zenodo.org/record/4433	464/files/2020.04.20-data.gov.cz-no-cuzk.trig?download=1
https://zenodo.org/record/4433	464/files/2020.04.20-data.gov.cz-no-cuzk.trig?download=1
https://zenodo.org/record/3975	038
https://zenodo.org/record/3975	038
https://zenodo.org/record/4433	699
https://zenodo.org/record/4433	699
https://zenodo.org/record/4433	737
https://zenodo.org/record/4433	737
https://zenodo.org/record/4433	778
https://zenodo.org/record/4433	778
https://zenodo.org/record/4433	795
https://zenodo.org/record/4433	795
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://zenodo.org/record/4436	356/files/20	181	217.json.gz?download=1
https://zenodo.org/record/4436	356/files/20	181	217.json.gz?download=1
https://zenodo.org/record/4436	356/files/20	181	217.json.gz?download=1
https://zenodo.org/record/4436	356/files/20	181	217.json.gz?download=1
https://zenodo.org/record/4436	356/files/20	181	217.json.gz?download=1
https://colab.research.google.com/
https://doi.org/10.1109/ICDM.2019.00011
https://doi.org/10.1007/978-3-030-62466-8_41
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.5281/zenodo.3975038
https://doi.org/10.5281/zenodo.3975038
https://doi.org/10.5281/zenodo.4433795
https://doi.org/10.5281/zenodo.4433778
https://doi.org/10.5281/zenodo.4433737
https://doi.org/10.5281/zenodo.4433699
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://www.w3.org/TR/2020/REC-vocab-dcat-2-20200204/
https://www.w3.org/TR/2020/REC-vocab-dcat-2-20200204/

Carothers, G. and Seaborne, A. (2014), RDF' 1.1 TriG. W3C Recommendation, W3C, available at:
https://www.w3.0org/TR/2014/REC-trig-20140225/.

Chapman, A., Simper], E., Koesten, L., Konstantinidis, G., Ibanez, L.D., Kacprzak, E. and Groth, P.
(2020), “Dataset search: a survey”, VLDB Journal, Vol. 29 No. 1, pp. 251-272, doi: 10.1007/
s00778-019-00564-x.

Chen, X, Gururaj, AE, Ozyurt, B, Liu, R,, Soysal, E., Cohen, T., Tiryaki, F., Li, Y., Zong, N., Jiang, M.,
Rogith, D., Salimi, M., Kim, H.-e., Rocca-Serra, P., Gonzalez-Beltran, A., Farcas, C., Johnson, T.,
Margolis, R., Alter, G., Sansone, S.-A., Fore, LM., Ohno-Machado, L., Grethe, J.S. and Xu, H.
(2018), “DataMed — an open source discovery index for finding biomedical datasets”, Journal of
the American Medical Informatics Association, Vol. 25 No. 3, pp. 300-308, doi: 10.1093/jamia/
ocx121.

Chen, Z., Jia, H, Heflin, J. and Davison, B.D. (2020), “Leveraging schema labels to enhance
dataset search”, in Jose,] M, Yilmaz, E., Magalhaes,]., Castells, P., Ferro, N., Silva, MJ. and
Martins, F. (Eds), Advances in Information Retrieval, Springer International Publishing, Cham,
pp. 267-280.

Cyganiak, R., Lanthaler, M. and Wood, D. (2014), RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation, W3C, available at: https://www.w3.0org/TR/2014/REC-rdf11-concepts-
20140225/

Das Sarma, A., Fang, L., Gupta, N.,, Halevy, A., Lee, H, Wu, F.,, Xin, R. and Yu, C. (2012), “Finding
related tables”, Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. SIGMOD’12, Association for Computing Machinery, New York, NY,
pp. 817-828, doi: 10.1145/2213836.2213962.

Degbelo, A. (2020), “Open data user needs: a preliminary synthesis”, Companion Proceedings of the
Web Conference 2020, WWW’20. Association for Computing Machinery, New York, NY,
pp. 834-839, doi: 10.1145/3366424.3386586.

Degbelo, A. and Teka, B.B. (2019), “Spatial search strategies for open government data: a systematic
comparison”, CoRR abs/1911.01097, available at: https:/arxiv.org/abs/1911.01097.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018), “Bert: pre-training of deep bidirectional
transformers for language understanding”, arXiv preprint arXiv:1810.04805, available at:
https://arxiv.org/abs/1810.04805.

Dutkowski, S. and Schramm, A. (2015), “Duplicate evaluation - position paper by fraunhofer FOKUS”,
Tech. rep., Fraunhofer FOKUS, available at: https://www.w3.0rg/2016/11/sdsvoc/SDSVocl6_
paper_24.

El-Sappagh, S., Hendawi, A. and El-Bastawissy, A. (2011), “A proposed model for data warehouse etl
processes”, Journal of King Saud University - Computer and Information Sciences, Vol. 23,
pp. 91-104.

Ellefi, M.B,, Bellahsene, Z., Dietze, S. and Todorov, K. (2016), “Dataset recommendation for data
linking: an intensional approach”, in Sack, H., Blomgqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
SP. and Lange, C. (Eds.), The Semantic Web. Latest Advances and New Domains - 13th
International Conference, ESWC 2016, Proceedings, Springer, Heraklion, Crete, Greece, May 29 -
June 2, 2016, pp. 36-51, doi: 10.1007/978-3-319-34129-3_3.

Fellbaum, C. (2005), “WordNet and wordnets”, in Brown, K. (Ed.), Encyclopedia of Language and
Linguistics, 2nd ed., Elsevier, Oxford, pp. 665-670.

Fernandez, R.C., Abedjan, Z., Koko, F., Yuan, G., Madden, S. and Stonebraker, M. (2018), “Aurum: a
data discovery system”, 34th IEEE International Conference on Data Engineering, ICDE 2018,
IEEE Computer Society, Paris, France, April 16-19, 2018, pp. 1001-1012, doi: 10.1109/ICDE.
2018.00094.

Gregory, K., Groth, P., Scharnhorst, A. and Wyatt, S. (2020a), “Lost or found? Discovering data needed
for research”, Harvard Data Science Review, Vol. 2 No. 2, available at: https://hdsr.mitpress.mit.
edu/pub/gw3r97ht.

Similarity-
based dataset
discovery
framework

533

https://www.w3.org/TR/2014/REC-trig-20140225/
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1093/jamia/ocx121
https://doi.org/10.1093/jamia/ocx121
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1145/2213836.2213962
https://doi.org/10.1145/3366424.3386586
https://arxiv.org/abs/1911.01097
https://arxiv.org/abs/1810.04805
https://www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_24
https://www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_24
https://doi.org/10.1007/978-3-319-34129-3_3
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICDE.2018.00094
https://hdsr.mitpress.mit.edu/pub/gw3r97ht
https://hdsr.mitpress.mit.edu/pub/gw3r97ht

DTA
96,4

534

Gregory, KM., Cousijn, H., Groth, P., Scharnhorst, A. and Wyatt, S. (2020b), “Understanding data
search as a socio-technical practice”, Journal of Information Science, Vol. 46 No. 4, pp. 459-475,
doi: 10.1177/0165551519837182.

Grover, A. and Leskovec,]. (2016), “node2vec: scalable feature learning for networks”, Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Klimek, J. (2019), “DCAT-AP representation of Czech national open data catalog and its impact”,
Journal of Web Semantics, Vol. 55, pp. 69-85, doi: 10.1016/j.websem.2018.11.001.

Klimek, J. and Skoda, P. (2021a), Dump of Metadata from the Czech National Open Data Catalog, 2020-
04-20, State Admunistration of Land Surveying and Cadastre Datasets Removed, Zenodo,
Geneva, doi: 10.5281/zenodo.4433464.

Klimek, J. and Skoda, P. (2021b), Wikidata Dump from 2018-12-17 in JSON, Zenodo, Geneva, doi: 10.
5281/zenodo.4436356.

Koesten, L. (2018), “A user centred perspective on structured data discovery”, Companion Proceedings of
the The Web Conference 2018. WWW’18. International World Wide Web Conferences Steering
Committee, CHE, Republic and Canton of Geneva, pp. 849-853, doi: 10.1145/3184558.3186574.

Leme, L.A.P.P., Lopes, GR., Nunes, B.P., Casanova, M.A. and Dietze, S. (2013), “Identifying candidate
datasets for data interlinking”, in Daniel, F., Dolog, P. and Li, Q. (Eds), Web Engineering,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 354-366.

Martins, Y.C, da Mota, F.F. and Cavalcanti, M.C. (2016), DSCrank: A Method for Selection and
Ranking of Datasets, Springer International Publishing, Cham, pp. 333-344, doi: 10.1007/978-3-
319-49157-8_29.

Mikolov, T., Chen, K., Corrado, G.S. and Dean, J. (2013), “Efficient estimation of word representations
in vector space”, available at: http://arxiv.org/abs/1301.3781.

Miller, RJ., Nargesian, F., Zhu, E., Christodoulakis, C., Pu, K.Q. and Andritsos, P. (2018), “Making open
data transparent: data discovery on open data”, IEEE Database Engineering Bulletin, Vol. 41
No. 2, pp. 59-70, available at: http://sites.computer.org/debull/A18june/p59.pdf.

Mountantonakis, M. and Tzitzikas, Y. (2018), “Scalable methods for measuring the connectivity and
quality of large numbers of linked datasets”, Journal of Data and Information Quality, Vol. 9
No. 3, doi: 10.1145/3165713.

Mountantonakis, M. and Tzitzikas, Y. (2020), “Content-based union and complement metrics for
dataset search over RDF knowledge graphs”, Journal of Data and Information Quality, Vol. 12
No.2, doi: 10.1145/3372750.

Oliver, J., Cheng, C. and Chen, Y. (2013), “TLSH — a locality sensitive hash”, 2013 Fourth Cybercrime
and Trustworthy Computing Workshop, pp. 7-13.

Papadias, D. (2009), Nearest Neighbor Query, Springer, Boston, MA, pp. 1890-1890, doi: 10.1007/978-0-
387-39940-9_245.

Skoda, P., Klimek, J., Necasky, M. and Skopal, T. (2019), “Explainable similarity of datasets using
knowledge graph”, Similarity Search and Applications - 12th International Conference, SISAP
2019, Proceedings, Springer, Newark, NJ, USA, October 2-4, 2019, pp. 103-110, doi: 10.1007/978-
3-030-32047-8_10.

Skoda, P., Bernhauer, D., Necasky, M., Klfmek, J. and Skopal, T. (2020), “Evaluation framework for
search methods focused on dataset findability in open data catalogs”, Proceedings of The 22nd
International Conference on Information Integration and Web-based Applications and Services
(UWAS2020), Chiang Mai, Thailand, November 2020, pp. 200-209, available at: http://www.
iiwas.org/conferences/iiwas2020/proceedings/proceedings_iiwas_2020.pdf.

Skopal, T., Bernhauer, D., Skoda, P., Klimek,]. and Necasky, M. (2021), “Similarity vs relevance: from
simple searches to complex discovery”, Similarity Search and Applications - 14th International
Conference, SISAP 2021, Proceedings, Springer, Dortmund, Germany, September 29 - October 1,
2021, pp. 104-117, doi: 10.1007/978-3-030-89657-7_9.

https://doi.org/10.1177/0165551519837182
https://doi.org/10.1016/j.websem.2018.11.001
https://doi.org/10.5281/zenodo.4433464
https://doi.org/10.5281/zenodo.4436356
https://doi.org/10.5281/zenodo.4436356
https://doi.org/10.1145/3184558.3186574
https://doi.org/10.1007/978-3-319-49157-8_29
https://doi.org/10.1007/978-3-319-49157-8_29
http://arxiv.org/abs/1301.3781
http://sites.computer.org/debull/A18june/p59.pdf
https://doi.org/10.1145/3165713
https://doi.org/10.1145/3372750
https://doi.org/10.1007/978-0-387-39940-9_245
https://doi.org/10.1007/978-0-387-39940-9_245
https://doi.org/10.1007/978-3-030-32047-8_10
https://doi.org/10.1007/978-3-030-32047-8_10
http://www.iiwas.org/conferences/iiwas2020/proceedings/proceedings_iiwas_2020.pdf
http://www.iiwas.org/conferences/iiwas2020/proceedings/proceedings_iiwas_2020.pdf
https://doi.org/10.1007/978-3-030-89657-7_9

Speer, R., Chin, J. and Havasi, C. (2017), “Conceptnet 5.5: an open multilingual graph of general
knowledge”, in Singh, S.P. and Markovitch, S. (Eds), Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI Press, San Francisco, California, USA, February 4-9,
2017, pp. 4444-4451, available at: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/
view/14972.

Straka, M. and Strakovd, J. (2019), Universal Dependencies 2.5 Models for UDPipe (2019-12-06),
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics
(UFAL), Charles University, Faculty of Mathematics and Physics, Institute of Formal and
Applied Linguistics, Prague, available at: http://hdlhandle.net/11234/1-3131.

Vrandecié, D. and Krotzsch, M. (2014), “Wikidata: a free collaborative knowledgebase”,
Communications of the ACM, Vol. 57 No. 10, pp. 78-85, doi: 10.1145/2629489.

Wagner, A., Haase, P., Rettinger, A. and Lamm, H. (2014), “Entity-based data source contextualization
for searching the web of data”, The Semantic Web: ESWC 2014 Satellite Events, Springer
International Publishing, Cham, pp. 25-41.

Yakout, M., Ganjam, K., Chakrabarti, K. and Chaudhuri, S. (2012), “Infogather: entity augmentation
and attribute discovery by holistic matching with web tables”, Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. SIGMOD’12, Association for
Computing Machinery, New York, NY, USA, pp. 97-108, doi: 10.1145/2213836.2213848.

Zezula, P. (2015), “Similarity searching for the big data - challenges and research objectives”, Mobile
Networks and Applications, Vol. 20 No. 4, pp. 487-496, doi: 10.1007/s11036-014-0547-2.

Zhang, S. and Balog, K. (2018), “Ad hoc table retrieval using semantic similarity”, Proceedings of the
2018 World Wide Web Conference. WWW’18. International World Wide Web Conferences
Steering Committee, CHE, Republic and Canton of Geneva, pp. 1553-1562, doi: 10.1145/3178876.
3186067.

Zhang, E. and Zhang, Y. (2009), Eleven Point Precision-Recall Curve, Springer, Boston, MA,
pp. 981-982, doi: 10.1007/978-0-387-39940-9_481.

Appendix
The Appendix is available online for this article.

Corresponding author
Jakub Klimek can be contacted at: jakub.klimek@matfyz.cuni.cz

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Similarity-
based dataset
discovery
framework

535

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://hdl.handle.net/11234/1-3131
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2213836.2213848
https://doi.org/10.1007/s11036-014-0547-2
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1007/978-0-387-39940-9_481
mailto:jakub.klimek@matfyz.cuni.cz

	Modular framework for similarity-based dataset discovery using external knowledge
	Introduction
	Paper contributions

	Related work
	Importance of dataset discovery
	Dataset discovery techniques
	Similarity-based dataset discovery techniques
	Data catalogs and metadata
	Modularity and reusability of existing solutions

	Architecture of dataset discovery framework
	Conceptual layer
	Entity types
	Component types
	Extractors
	Processors
	Presenters

	Catalog layer
	Pipeline layer

	Dataset discovery framework proof-of-concept
	Data and external knowledge used for proof-of-concept
	Proof-of-concept component catalog
	Extractors
	Processors
	Presenters

	Proof-of-concept pipelines
	TLSH similarity production pipeline
	Metadata-based similarity production pipeline
	Text-based similarity production pipeline using Word2Vec embedding
	Concept-based similarity production pipeline with additional external knowledge

	Pipeline implementation
	Proof-of-concept similarity presentation
	Manual evaluation
	Automatic evaluation
	Run-time evaluation

	Conclusions
	Notes
	References
	AppendixThe Appendix is available online for this article.

