To read this content please select one of the options below:

An effective members-adding method for truss topology optimization based on principal stress trajectories

Ge Gao (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China and University of Chinese Academy of Sciences, Beijing, China)
Yaobin Li (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China)
Hui Pan (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China and University of Chinese Academy of Sciences, Beijing, China)
Limin Chen (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China and University of Chinese Academy of Sciences, Beijing, China)
Zhenyu Liu (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 7 August 2017

255

Abstract

Purpose

The purpose of this paper is to provide an effective members-adding method for truss topology optimization in plastic design.

Design/methodology/approach

With the help of the distribution of principal stress trajectories, obtained by finite element analysis of the design domain, ineffective zones for force transmission paths can be found, namely, areas whose nodes may have ersatz nodal displacements. Members connected by these nodes are eliminated and the reduced ground structure is used for optimization. Adding members in short to long order and limiting the number of members properly with the most strained ones added, large-scale truss problems in one load case and multiple-load cases are optimized.

Findings

Inefficient members (i.e. bars that fulfil the adding criterion but make no contribution to the optimal structure) added to the ground structure in each iterative step are reduced. Fewer members are used for optimization than before; therefore, faster solution convergence and less computation time are achieved with the optimized result unchanged.

Originality/value

The proposed members-adding method in the paper can alleviate the phenomenon of ersatz nodal displacements, enhance computational efficiency and save calculating resources effectively.

Keywords

Acknowledgements

This work was supported by the Science and Technology Development Plan of Jilin Province [grant number 20140519007JH] and National Natural Science Foundation of China [grant number 51275504].

Citation

Gao, G., Li, Y., Pan, H., Chen, L. and Liu, Z. (2017), "An effective members-adding method for truss topology optimization based on principal stress trajectories", Engineering Computations, Vol. 34 No. 6, pp. 2088-2104. https://doi.org/10.1108/EC-05-2016-0166

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles