To read this content please select one of the options below:

An approach for the numerical prediction of the compressible supercavitating flows over ultrahigh-speed underwater object

Ying Chen (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)
Chuanjing Lu (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)
Xin Chen (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)
Jie Li (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)
Zhaoxin Gong (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 7 November 2016

182

Abstract

Purpose

Ultrahigh-speed projectile running in water with the velocity close to the speed of sound usually causes large supercavity. The computation of such transonic cavitating flows is usually difficult, thus high-speed model reflecting the compressibility of both the liquid and the vapor phases should be introduced to model such flow. The purpose of this paper is to achieve a model within an in-house developed solver to simulate the ultrahigh-speed subsonic supercavitating flows.

Design/methodology/approach

An improved TAIT equation adjusted by local temperature is adopted as the equation of state (EOS) for the liquid phase, and the Peng-Robinson EOS is used for the vapor phase. An all-speed variable coupling algorithm is used to unify the computations and regulate the convergence at arbitrary Mach number. The ultrahigh-speed (Ma=0.7) supercavitating flows around circular disk are investigated in contrast with the case of low subsonic (Ma=0.007) flow.

Findings

The characteristic physical variables are reasonably predicted, and the cavity profiles are compared to be close to the experimental empirical formula. An important conclusion in the compressible cavitating flow theory is verified by the numerical result that, at any specific cavitation number the cavity’s size and the drag coefficient both increase along with the rise of Mach number. On the contrary, it is found as well that the cavity’s slenderness ratio decreases when Mach number goes up. It indicates that the compressibility has different influences on the length and the radius of the supercavity.

Originality/value

A high-speed model reflecting the compressibility of both the liquid and the vapor phases was suggested to model the ultrahigh-speed supercavitating flows around underwater projectiles.

Keywords

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant No. 11472174). Its financial support is gratefully acknowledged.

Citation

Chen, Y., Lu, C., Chen, X., Li, J. and Gong, Z. (2016), "An approach for the numerical prediction of the compressible supercavitating flows over ultrahigh-speed underwater object", Engineering Computations, Vol. 33 No. 8, pp. 2356-2376. https://doi.org/10.1108/EC-06-2015-0171

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles