To read this content please select one of the options below:

Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures

Slawomir Koziel (School of Science and Engineering, Reykjavik University, Reykjavik, Iceland AND Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland)
Adrian Bekasiewicz (School of Science and Engineering, Reykjavik University, Reykjavik, Iceland AND Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland)

Engineering Computations

ISSN: 0264-4401

Article publication date: 13 June 2016

169

Abstract

Purpose

The purpose of this paper is to investigate strategies for expedited dimension scaling of electromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.

Design/methodology/approach

A fast inverse surrogate modeling technique is described for dimension scaling of microwave and antenna structures. The model is established using reference designs obtained for cheap underlying low-fidelity model and corrected to allow structure scaling at high accuracy level. Numerical and experimental case studies are provided demonstrating feasibility of the proposed approach.

Findings

It is possible, by appropriate combination of surrogate modeling techniques, to establish an inverse model for explicit determination of geometry dimensions of the structure at hand so as to re-design it for various operating frequencies. The scaling process can be concluded at a low computational cost corresponding to just a few evaluations of the high-fidelity computational model of the structure.

Research limitations/implications

The present study is a step toward development of procedures for rapid dimension scaling of microwave and antenna structures at high-fidelity EM-simulation accuracy.

Originality/value

The proposed modeling framework proved useful for fast geometry scaling of microwave and antenna structures, which is very laborious when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted dimension scaling of microwave components at the EM-simulation level.

Keywords

Citation

Koziel, S. and Bekasiewicz, A. (2016), "Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures", Engineering Computations, Vol. 33 No. 4, pp. 1095-1113. https://doi.org/10.1108/EC-07-2015-0192

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles