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Abstract

Purpose — The goal of this paper is to give a comprehensive and short review on how to compute the first- and
second-order topological derivatives and potentially higher-order topological derivatives for partial differential
equation (PDE) constrained shape functionals.

Design/methodology/approach — The authors employ the adjoint and averaged adjoint variable within the
Lagrangian framework and compare three different adjoint-based methods to compute higher-order
topological derivatives. To illustrate the methodology proposed in this paper, the authors then apply the
methods to a linear elasticity model.

Findings — The authors compute the first- and second-order topological derivatives of the linear elasticity
model for various shape functionals in dimension two and three using Amstutz’ method, the averaged adjoint
method and Delfour’s method.

Originality/value — In contrast to other contributions regarding this subject, the authors not only compute
the first- and second-order topological derivatives, but additionally give some insight on various methods and
compare their applicability and efficiency with respect to the underlying problem formulation.
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1. Introduction

In this paper we provide a review of techniques for the computation of the first- and second-
order topological derivatives. We compare and apply three techniques to the following model
problem: Let D c R, d = 2, 3, be a bounded and smooth domain. Let I' € 4D, Ty := dD\ I'and
I',,, € I’y be given. The goal is it to compute the topological derivative of the cost functional

7(Q) = yf/fg.ug de+ yg/ Vite — Viea? dx + ym/ o — up’dS, (L)
D D T

V5 Yo Im ER 7g=vm =0ind = 2,u; € H' (D), u,, € Ly(T,,)) subject to a design region Q c D
and the displacement field uo € H' (D)d satisfies uq|r = up and solves the equation of linear
elasticity

/Cge(ug):e(go) dx — /fg’go dx+/ un-@dS forallpe HL(D),  (12)
D Jo Ty
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where HL(D)*:={o€H'(D): ¢ =0onTI'} denotes the standard Sobolev space. Here,
up € Ly(T), uy € L»(T'y) are given functions and the coefficient functions Cg, fq are defined
piecewise by

Co = Cl){g + C2){D\§7 fa :flﬂ(g +f2)(D\§7 1.3

where C;, C: R?*? - R¥*? are linear functions, f;, f; € H' (D)" N C2(B;(x0))”, 8 > 0 and ()
denotes the symmetrised gradient of #, that is, e(u) = (Vu + Vu ).

Let x; € D be a given point and @ c R? a smooth open set containing the origin 0 € .
Moreover, denote by @, =%y + ew, € > 0 small the perturbation at x, by the inclusion w. We
are going to discuss the asymptotic expansion of J of a singularly perturbed domain by
adding the inclusion w. C D\ Qto Q, that is, Q, = Q U @, and x, € D\ Q For the sake of
simplicity of the presentation, we are going to consider the case Q =@. However, we note that
the other scenario where Q # @ and Q, = Q\ w, (i.e. xo € Q) can be treated in a similar fashion
leading only to minor changes in the presented derivations.

The topological derivative was first introduced in Eschenauer et al (1994) and later
mathematically justified in Sokolowski and Zochowski (1999), Garreau et al (2001) with an
application to linear elasticity. Follow-up works of many authors studied the asymptotic
behaviour of shape functionals for various partial differential equations (PDEs). For instance,
for Kirchhoff plates Amstutz and Novotny (2010), electrical impedance tomography
Hintermiiller and Laurain (2008), Hintermiiller et al. (2011), Maxwell’s equation Masmoudi
et al (2005), Stokes’ equation Hassine and Masmoudi (2004) and elliptic variational
inequalities Hintermtller and Laurain (2011). We also refer to the monograph Novotny and
Sokolowski (2013) for more applications and references therein.

The idea of the topological derivative is to perturb the design variable with a singular
perturbation and study the asymptotic behaviour of the shape functional 7. The asymptotic
expansion encodes information about the optimal topology of the design region and can be
used numerically either in an iterative level-set method Amstutz and Andra (2006) or one-
shot-type methods Hintermiiller and Laurain (2008), Sokolowski and Zochowski (1999) to
obtain an optimal topology of the design region (in the sense of stationary points). Higher-
order topological derivatives are a viable means to improve the accuracy of one-shot-type
methods as done in Hintermiiller and Laurain (2008), Bonnet and Cornaggia (2017). Finally,
let us also mention a one-shot Newton-type method as described in Chapter 10 of Novotny and
Sokotowski (2019) using higher-order topological expansions. The idea is to consider m
inclusions (typically ball-shaped) at the same time and compute their topological expansion.
This expansion is then used to solve a Newton-type equation leading to an efficient and
robust way to determine inclusions (also called anomalities, inhomogeneities or obstacles)
even when noise is present. An application to electrical impedance tomography can be found
in Hintermiiller et al. (2011), Canelas et al. (2015) and (Novotny and Sokotowski, 2019, Chap.
11). We refer to (Novotny and Sokotowski, 2019, Chap. 10) and references therein for further
applications, such as inverse conductivity, electromagnetic casting and obstacle
reconstruction.

Higher-order topological derivatives are less studied, but have been computed for several
problems. For instance, in Hintermtiller and Laurain (2008), second-order topological
derivatives for an electrical impedance tomography problem are studied. In Bonnet (2018),
higher-order topological derivatives in dimension two for linear elasticity using the method of
Novotny et al. (2003) are established. In Bonnet and Cornaggia (2017), the expansion of higher-
order topological derivatives for a least square misfit function for linear elasticity in
dimension three exploiting a Green’s function is established. In Bonnet (2018), a similar misfit
function subject to a scattering problem is expanded.
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The first ingredient to compute higher topological derivatives is the asymptotic behaviour
of the solution of the state equation, in our concrete example this is Equation (1.2). The second
ingredient is an expansion of the shape function and is mostly, although not necessary, done
via the introduction of an adjoint variable. As is well known from optimal control and shape
optimisation theory (see, e.g. Hinze et al., 2009; Ito and Kunisch, 2008), the advantage of using
an adjoint variable is the numerically efficient computation of the topological derivative.
First-order topological derivatives for ball inclusions and linear problems can be computed
solely from the knowledge of the state variable and the adjoint state variable; see, for example,
in Sokolowski and Zochowski (1999). For higher-order topological derivatives in most cases,
additional exterior partial differential equations, so-called corrector equations, have to be
solved, although in some cases these can also be solved explicitly; Hintermiiller and
Laurain (2008).

While most papers deal with linear partial differential equations, also nonlinear partial
differential equations have been studied. We refer to Iguernane et al (2009), Beretta et al.
(2017), Sturm (2020), Amstutz (2006b) for the study of first-order topological derivatives for
semilinear elliptic partial differential equations. To the authors’ knowledge, there is no
research for higher-order topological derivatives for these equations and thus remains an
open and challenging topic. Also, quasi-linear problems have been studied first in Amstutz
and Bonnafé (2017) and more recently in Gangl and Sturm (2020a), Amstutz and Gangl (2019),
Gangl and Sturm (2021). In particular in Gangl and Sturm (2020a), a projection trick is used to
avoid the use of a fundamental solution, which is in contrast to most works on semilinear
partial differential equations.

An established method to compute the topological derivative and higher derivatives is the
method of Amstutz (2003). It amounts to study the asymptotic behaviour of a perturbed
adjoint equation, which depends on the unperturbed state equations. It has been used in some
of the papers mentioned above such as Masmoudi ef a/. (2005), Hassine and Masmoudi (2004)
and also Amstutz (2006a, b), to only mention a few. The advantage of the method is that it
simplifies the computation of the topological derivative compared to a direct computation of
the topological derivative by expanding the cost function with Taylor’s expansion.

A second method, which has been introduced in the context of shape optimisation and the
computation of shape derivatives, was used in Sturm (2020) to compute topological
derivatives for semilinear problems. It has been extended in Gangl and Sturm (2020a) to
compute topological derivatives for quasi-linear problems. In contrast to Amstutz’ method,
the averaged adjoint variable also depends on the perturbed state equation, which makes the
anaylsis of the asymptotic behaviour of the adjoint variable more challenging. However, the
advantage is that it seems to be readily applicable to a wide range of cost functions, and also
the computation of the final formula for higher-order topological derivatives is straight
forward once the asymptotics of the averaged adjoint variable is known.

A third method was introduced in Delfour (2018) and uses the usual unperturbed adjoint
variable. The advantage is that no analysis of a perturbed adjoint variable is required, but, as
shown in Gangl and Sturm (2020a), it seems to be more difficult to apply this method to
certain cost functions, such as the Lo-tracking-type cost functions.

Finally, let us mention the method of Novotny ef al. (2003), where a method to compute the
topological derivatives is proposed as the limit of the shape derivative. This method is not
always applicable, but it provides a fast method to compute also higher-order topological
derivatives; see Silva et al (2010).

In this paper we thoroughly study and review the first three mentioned methods and
apply them to the model problem of linear elasticity introduced in (1.2). We first exam the
asymptotic behaviour of (1.2) up to order two and then study the asymptotic behaviour of
Amstutz’ perturbed adjoint variable and the averaged adjoint variable. We then apply the
three methods to compute first- and second-order topological derivatives for three types of



cost functions, the compliance, a boundary tracking-type cost function and a tracking-type
cost function of the gradient.

1.1 Structure of the paper

In Section 2, we discuss three different teqhniques to compute the topological derivative.
This is done by introducing the Lagrangian setting, which simplifies the notation. In
Section 3, we derive the complete asymptotic analysis for a linear elasticity model
including remainder estimates. The section covers both the two-dimensional and three-
dimensional cases, whose analysis differs since the fundamental solution of the linear
elasticity equation has a different asymptotic behaviour. In Section 4, we derive the
asymptotic analysis for the adjoint and averaged adjoint variable, respectively. This is
done in a similar fashion to Section 3. In Section 5, we employ the previously
derived results to compute the topological derivative. That is, we apply the
theoretical background derived in Section 2 to our elasticity model and a versatile cost
function.

1.2 Notation

In the whole paper we denote by Wl( ) (resp. their vector-valued counter parts by Wl( ) )
for 1 < p < oo standard Sobolev spaces equipped with the usual norm. The grachent of a
function ¢ € Wp( ) (resp. ¢ € W})( ) ) will be denoted V. Directional derivatives of
functions f: U C E —» Rat x € E defined on an open subset U C E of a Banach space E will be
denoted by df(x)(v), x € U, v € E whenever it exists. Similarly for functions («, v) = flu,v) : E X
F — R, we denote their partial derivative with respect to the first (resp. second) argument by
9,01, x2)v) (resp. d,/(x1, x2)(w)). We further define for 1 < p < oo

BLP(Rd)d:{ eW!, (D) : V@ELP(D)dXd}.

Then we define the Beppo-Levi space BLp(Rd)d:BL(Rd)d/R equipped with
el g, mey = IVl iy @ € [, [¢] €BLy (R?)?. Here /R means that we quotient out

constants.

The Euclidean norm on R? will be denoted as |-| and the corresponding operator norm
R%“/ will be also denoted as |-|. The Euclidean ball of radius # > 0 located at x, € R? will
be denoted as B,(xy). Additionally, for a domain  with suff1c1ently smooth boundary 0Q, we
denote the outer normal vector as 7. The Slobodeckij seminorm |- \ P for  c RY is defined

by
l, //‘ LRl
u1 xay
xy|d+l

For convenience we will later on use the abbreviated notation of the averaged integral defined

as
]{;f dxzzﬁ/gf dx,

ol

for a bounded set Q@ c R%.
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2. Lagrangian techniques to compute the topological derivative

In this section we review Lagrangian techniques to compute topological derivatives. While it
is well established in optimisation algorithms to compute derivatives of PDE constrained
problems with the help of Lagrangians, it seems rather new to the topology optimisation
community. However, we will show that actually Amustutz’s method can be interpreted as a
Lagrangian approach by introducing a suitable Lagrangian function and recasting his
original result in terms of this Lagrangian. More recently, another Lagrangian approach was
proposed in Delfour and Sturm (2016), where essentially an extra term appears when
differentiating the Lagrangian function. Finally, we will review Delfour’s approach of
(Delfour, 2018, Thm.3.3) using only the unperturbed adjoint state variable.

2.1 Abstract setting
Let V, W be real Hilbert spaces. For all parameter £ > 0 small consider a function u, € V
solving the variational problem of the form

a.(te, ) = fo(p) foralloeWw, 2.1)

where a, is a bilinear form on V X WWand f, is a linear form on W, respectively. Throughout
we assume that this abstract state equation admits a unique solution and that #, — u, € WWfor
all &, where u#, € V denotes the unperturbed state variable satisfying

ao(uo, @) = fole) forallpewW, 2.2

and «ay, fo are the unperturbed counterparts to the bilinear form @, and linear form £,
respectively. Consider now a cost function

j(e) =Je(u,) €R, 2.3)

where for all € > 0, the functional /, : V — Ris differentiable at #,. In the following sections we
review methods how to obtain an asymptotic expansion of j(¢) at & = 0. For this purpose we
introduce the Lagrangian function

Le,u,v) =J.(u) + a:(u,v) — f:(v), w€V, vew.

2.2 Amstutz’ method

We first review the approach of Amstutz (2003); see also (Amstutz, 2006a, Prop. 2.1). This
approach has been proved to be versatile and has been applied to a number of linear and non-
linear problems. For instance, in Amstutz (2006a) a linear transmission problem was
examined and its first-order topological derivative was computed. In Amstutz ef al. (2014), the
topological derivative of elliptic differentiation equations with 2 differential operator was
derived. In Amstutz (2006b), the topological derivative for a class of certain non-linear
equations has been studied.

Proposition 2.1. (Amstutz, 2006a, Prop. 2.1). Assume that the following

hypotheses hold.
(1) There exist numbers s¢™ and 5" and a function ¢, : Rt — R™ with lim ¢; () =0,
such that eno
(ae — ao)(uo, pe) = £1()6a™ + o(£y(¢)), (24)

(fe = f)(Be) = ta(e)sfV +o(tr(e)), 2.5)



where p. € W is the adjoint state satisfying
ae(@, pe) = —0/:(uo)(¢) foralloe. 2.6)

(2) There exist two numbers §/ 51) and &/ ;1), such that
Je(ue) = Jo(uo) + 0T (o) (ue — o) + C1(€)8]1” + 0(t1(e)), 2.7)

Jeluo) = Jo(uo) + 1(e)] + o(ty(e)). 2.8)

Then the following expansion holds

jle) =5(0) + t(e) (30— o7 + 87 + &) + ol (e)). (2.9)

We will reformulate and generalise the previous result in terms of a Lagrangian function
L(e,u,v) and additionally state a result for the second-order derivative. Therefore, note
that po € W denotes the unperturbed adjoint state variable satisfying

ao(¢. o) = —0/(uo)(¢) forallpeV. 2.10)
Proposition 2.2.
(1) Let /4 :R" — R* be a function with lim ¢;(¢) = 0. Furthermore, assume that the
limits eno
L(e, e, pe) — L(&, o, De)

1) 1
R (uo,p0) - 11{% A6 , 211)
. L(e,uo,pe) — L(0,uo, )
M — 0
L£(0,u9,p0) 11{13 A , (212
exist. Then we have the following expansion:
(€)= 3(0) + () (R (w0, ) + 3 LO0,10,00) ) +0(ti(e)). @13

In particular, R (s, p0) + 9" L(0,uq, po) = 6a'V) — 6fV + §J\ + &\, where 5a',

sV s 51)7 8 S) are as in Proposition 2.1.

@ Let £, : RT - R" be a function with hm ez( & = 0. Furthermore, assume that the
assumptions under (1) hold and that the hmlts

_ _ 1)
=1]In £(€7 ué‘ubs) (87 M()?pé') 61(8)72 (u()apo)’ (214)
eNo0 éz(é‘)

R (uo, po)

= lim E(E’, u()vpe) B L(Ov uOvps) B Kl (E)aél)‘c(ov uOvPO) (215)

622)£(0a anPO) en0 62(8) )

exist. Then we have the following expansion
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j(e) =7(0) + ti(e) (R<”(uo,po) + 9.0, uo,po)) + b (e) (R<2‘>(u0, o)
L2, uo,po)) +o(la(e)).

Proof. ad (1): Using that L(e, u,,0) = L(&, e, pe) and L(0, ug, pe) = L(0, up,0) we get.

j(e) —j(0) = L(e,ue,0) — L(0,u,0) (2.16)
= L(e,te,pe) — L(& o, Pe) 2.17)
+ ‘C(Ea u()ape) - [’(07 uOvps)' (218)

Now, the result follows by dividing by ¢;1(e) for € > 0 and passing to the limit & \ 0.
ad (2): This follows the same lines as the proof of item (1) and is left to the reader. [

Remark 2.3.

(1) Checking the expansions (2.12), (2.15) in applications usually requires some regularity
of the state u, and knowledge of the asymptotics of the adjoint state p, on a small
domain of size e.

(2) The computation of the asymptotic expansions (2.11), (2.14) requires the study of the
asymptotic behaviour of #, on the whole domain D. This often causes problems,
especially in dimension two. The reader will find an application of this method in
Section 5.1.

2.3 Averaged adjoint method

Another approach to compute topological derivatives was proposed in Sturm (2020) and
applied to non-linear problems in Gangl and Sturm (2020a), Sturm (2020), Gangl and Sturm
(2021) and used for the optimisation on surfaces in Gangl and Sturm (2020b). Recall the
Lagrangian function

L(e,u,v) =J(u) + a.(u,v) — f:(v), w€V, veW. 2.19)
We henceforth assume that for all (¢,q) €V X W and ¢ > 0 the function
s 0,L(e,su: + (1 —s)ug,q)(¢) : [0,1] >R (2.20)

is continuously differentiable. With the Lagrangian we can define the averaged adjoint
equation associated with state variables #, (solution of (2.1) for £ > 0) and « (solution of (2.1)
for & = 0): find ¢, € W, such that

1
/ 8, L(e,sue + (1 —8)up,q:)(9)ds =0 forallpe . 2.21)
0

In addition, plugging ¢ = u, — ug into (2.22), one obtains L(e, ue,0) = L(e,uo,q) for € >0,
so the Lagrangian only depends on the unperturbed state #, and the averaged adjoint
variable ¢g.. We henceforth assume that the averaged adjoint equation admits a unique
solution and denote as ¢, the unperturbed averaged adjoint state satisfying

1
/ 3.L(0, 5110 + (1 — )10, qo) (¢) ds = 0 forall e V. 222)
0



Proposition 2.4. Adjoint-based

(1) Let ¢4 :R" — R* be a function with lim ¢;(¢) = 0. Furthermore, assume that the methods
limits eno
. L(e,u0,q:) — L(&,up, q0)
M — ) )
R (o, q0) lim e , (2.23)
67
: L(E,M ,q )7£(0’u07qo)
(1) o 0540
a[ ‘C(Oa Ug, qo) T 113(} ‘gl (8) ) (224)
exist. Then we have the following expansion
(€)= 5(0) + tr(e) (R wo, o) + 9V L0, o, 0) ) +0(s(e)). (225)

@ Let 4, : Rt - R™ be a function with hm éz( & — (. Furthermore, assume that the
assumption under (1) holds and the 11m1ts

L(Ev U, QE) - 5(87 U, qO) - gl (S)R(l)(u()a QO) (2 26)
62(8) ’ ’

R(z) (Mo, qo) = 111’1’1
eN0

_ _ 1)
(952)[,(07 Mo,Qo) :=1lim £(€7 Mo,(]()) E(Ov %076]0) El(g)al ‘C(Ov Mo,l]o)’ (2.27)
N0 2 (g)

exist. Then we have the following expansion
(€)= 3(0) + 1(e) (RY (o, o) + 3" £(0,0,q0) ) + ae) (R® (1, o)
PL0,0,00)) +o(La(e)).

Proof. ad (1): Recalling L(e, u.,0) = L(&, uo, q.) we have

j(e) —7(0) E(e U, ) L(0,u,0)
L(e,uo,q:) — L£(0,u0,q0)
= L(e,u0,q.) — L(e,u0,q0) + L(&,%0,q0) — L(0, 10, qo)-

Dividing by ¢X(e) for £ > 0 and passing to the limit £ \, 0 yields the result.

ad (2): Similar to item (1). O
The previous result can be readily generalised to compute the nth-order topological
derivative as shown in the following proposition.

Proposition 2.5. (nth topological derivative). Assume that the following hypotheses hold.
(1) There exist numbers s and 62,7 = 1,2, ..., n and a function ¢; : R* - R with
lir% 41(e) = 0, such that )
N n—

(ac — ao)(u0,qo) = €1(e) Y _ €6 + o("ty(e)), 228

=0



EC
39,1

68

—

n—

(f. — fo) (o) = £1(e) Y €6 4 0(e"ty(e)), (2.29

i

Iy
S

-1

(e —Jo) (o) = £1(e) ) €8] 4 o(e"y(e)), 2.30)

i=0

(2) There exist numbers SA? and 6F?, i = 1,2, ..., n, such that

n—1
(@ — ao)(uo, qe — qo) = L1 (e ZelaA D 4 o(e(¢)), 2.31)
(f = f)(@e — q0) = ti(e) Z €6F Y 1 o(et(e)), 2.32)

i=0
where g, € V is the averaged adjoint state satisfying

1
a.(¢,0e) = —/0 A/ (su. + (1 — s)up)(¢) ds  forallpew. (2.33)

Then the following expansion holds
n—1

Je(ue) = Jo(uo) + () Y & (82" — f D 4 8AWY — 5FED) 4 o(e'4y (¢)). (2.34)

=0

Proof. Similar to the proof of Proposition 2.4, we write
Je(ue) — Jo(uo) = L(&,uo,q.) — L(&, o, q0) + L(&, o, q0) — L(0,u0,q0).  (2.35)

The second term on the right-hand side reads

L(e,u0,q0) — L(0,u0,90) = (Je — Jo)(u0) + (@ — ao)(u0,q0) — (fe — /o) (o).  (2.36)

So using (2.28)—(2.30), we can expand each difference in this expression. As for the first
difference on right-hand side, one has
L(e,uo,qe) — L&, u0,q0) = (@ — a0)(uo,qe — qo) — (f — /o) (@ — qo)
+ao(to, 4 — qo) fo( o)

=0

Therefore, employing (2.31), (2.32), we can also expand these two differences and obtain
the claimed formula (2.34). O

Remark 2.6.

(1) Checking the expansions (2.24), (2.27) in applications usually requires some regularity
of the state #y and adjoint state g, = po. However, the computation of this expansion is
a straightforward application of Taylor’s formula. The reader will find an application
in Section 5.2



(2) The computation of the asymptotic expansions (2.23), (2.26) requires the study of the
asymptotic behaviour of ¢, and therefore also of #,. This is the most difficult part and
can be done by the compounded layer expansion involving corrector equations (see
for instance, Mazya et al, 2000b; Mazya et al., 2000a) as is presented in Section 4.2

2.4 Delfour’s method

In this section we discuss a method proposed by M.C. Delfour in (Delfour, 2018, Thm.3.3). The
definite advantage is that it uses the unperturbed adjoint equation and only requires the
asymptotic analysis of the state equation, but it seems to come with the shortcoming that it is
only applicable to certain cost functions; see Gangl and Sturm (2020a). As before, we let Lbe a
Lagrangian function and denote as #,, the perturbed state equation (solution to (2.1) for £ > 0)
and p, the unperturbed adjoint equation (solution to (2.6) for & = 0). Using the perturbed state
and the unperturbed adjoint equation, Delfour proposed the following result for computing
the first-order topological derivative, where we also incorparate the second-order topological
derivative.

Proposition 2.7. (Delfour, 2018).

(1) Let#;:R™ — R be a function with ¢; > 0 and hm ¢1(¢) = 0. Furthermore, assume

that the limits
Ry (a0, ) = hggu)[z(e sther Do) = L(&,to, po) = L{e, o, po) (e — o)), 2.37)
1
Ry (w0, po) = B s (BuL e, po) = L0, ) e = ), 238)
. 1
0, w0, po) = Timy o (£(e, 0, p0) = £(0,10,p0)), (239

eNo 61(8)

exist. Then the following expansion holds:

j(e) = 7(0) + ta() (R (uo, o) + RE (o, o) + 01" L (0,10, 00) ) + 0((1(e)). (240)

2 Let¢y:RT — R be a function with £, > 0 and 111’1(1) %3 = 0. Furthermore, assume
~

that the assumptions under (1) hold and that the limits

. 1
RY (o, po) = lim ———~ [L (e, e, po) — L(&, 1o, po) — L (&, o, po) (e — )
N0 £a(e) (2.41)

—b (S)Rgl)(uo,f?o)} ;

. 1
RY (o, po) = Hm ——[(3,L (e, o, po) — L0, g, po)) (1t — 1)
>0 £a(e) (2.42)

~6(eRY (o, o).
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. 1
0,7 £(0, uo, po) =lim D) [z:(s, o, p0) — L£(0, 10, p0) — t1(€)d}” L0, uo,poﬂ, (243)

exist. Then, we have the following expansion:
J(e) = j(0) + ti(e) (Ri”(uoypo) + R (o, po) + 9V L0, %071)0))
+ 6o(e) (R (10, 00) + RE (10, p0) + 0 L0, o, p0)) +0(bo(e)). @44

Proof. ad (1): Firstly, note that by definition the unperturbed adjoint state p satisfies
au‘c(oa anPO)(QD) =0 forqDEW.

Thus, we can write j(e) — j(0) in the following way:

j(e) =1(0) = L(e, ue, 0) — L£(0,u,0)
= L(&,ue, po) — L(0,u, o)
= L(&,ue,po) — L(& o, po) — 0,L(&, o, po) (e — uo) (2.45)
+ 04 L (&, uo, po) (e — to) — 3,L(0, g, po) (ste — to)
+ L(&,u0,00) — L(0,up, po)-

Now, dividing by #¢1(g), € > 0 and passing to the limit & \ 0 yield the result.
ad (2): This can be shown similarly to (1). O

Remark 2.8. Similarly to Amstutz’ method and the averaged adjoint method, Delfour’s
method requires the asymptotic behaviour of «#, on the whole domain to
compute (2.37), (2.41). This may be challenging in the analysis in
dimension two for some cost functionals. Additionally, (2.38), (2.42) can be
checked by smoothness assumptions on pg and o and the knowledge of
the asymptotics of #, on a small subset of size e. The remaining terms
(2.39), (2.43) usually are computed making use of Taylor’s expansion of u
and p, respectively.

2.4.1 Ouverview of the employed adjoint equations. The methods reviewed in the previous
sections make use of three different adjoint equations. The method of Amstutz (2006a) uses
an adjoint equation which depends on the unperturbed state variable:

D €W 0,L(e,up,pe)(¢) =0 forallpeV.

Delfour’s method uses the unperturbed adjoint equation:
DoEW : 0,L(0,up,p0)(¢) =0 forallpeV.

Finally, there is the averaged adjoint method, which employs the averaged adjoint equation
Sturm (2015) and Delfour and Sturm (2016):

1
GeEW: / OuL(e, sy + (1 — $)ttg, q.) (@) ds = 0 forall g V.
0



3. Analysis of the perturbed state equation
Let © c D open, » C R? be a bounded domain containing the origin 0 €  and let x, € D.
Moreover, we define the perturbation w,:=x + ew for £ > 0 at x,. Consider the perturbed

state solution of (1.2) for Q = w,, that is, find «, € H* (D)d, such that u.|r = up and
/C,,,ye(us) s e(p) dx = /f,,,;go dx+/ uy-@ dsS forallgoeHll_(D)d. 3.1
D D

Iy

In the following sections we are going to derive the asymptotic expansion of #, using the
compounded layer method; see, Mazya et al. (2000a, b). We note that this expansion has already
been computed in Bonnet and Cornaggia (2017) by means of Green’s function and earlier in
Ammari et al (2002) for fo = 0. In the following two sections we state some preliminary results
regarding the scaling of inequalities and remainder estimates, which will be needed later on.

3.1 Scaling of inequalities
In this section we discuss the influence of a parametrised affine transformation ®, : R? - R? onto
norms and the scaling behaviour of some well-known inequalities with respect to that parameter.

Definition 3.1. For & > 0 we define the inflation of D by D, := d);l(D), where the affine
linear transformation ®, is given by ®.(x):=x, + ex, for a fixed
point xy € D.

For convenience, we denote the inflated boundary Iy := @;1 () as well as Ty o= <I>€‘1 (Tn)

and Iy, .= (ID;l (Ty)- Since @, is a bi-Lipschitz continuous map, it holds ¢ € H, %(D)d if and
only if O®, e H 11- (DE)d; see (Ziemer, 1989, p. 52, Thm.2.2.2). Furthermore, since the
transformation @, leads to a sclaing of the H! norm, we use the following notation.

Definition 3.2. For & > 0 and ¢ € H'(D,)" let

HQD||€::5H<PHL2(D€)“ + ”-Vﬁf’HLZ(Dé.)“"- 32
Lemma 3.3. Let D c R? be a bounded Lipschitz domain and let & > 0.
(1) For1<p < ooand @eLy(D,)" there holds

d _
SPH‘PHLP(DP)L’ =lle- ‘DelHLp(D)m 33)

(?) For1<p < coand@eW)(D,)’ there holds
d_ _
&b 1‘|.V¢||Lp(Dt)dxd = ||.V(q0 ° q)el)HLp(D)dXd' (34)

3) For ¢ € H'(D,)" there holds

— d_
lo > @ [l oy = &7 ]l (35)
Proof.
(1) A change of variables yields
» _ o -1 Jr — o=l o 10
Il o0 = [ o2 @71 ds = el e @7 66

where we used |det(V®;!)| = ¢
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EC (2) Taking into account that V(¢ © ®;!) = ¢7!'V¢g o @1, a change of variables yields
39,1 » _ N _ _ _
y ”V@HZ(D[)“'” =¢ 1fD‘V¢OCDe1|p dx=¢ def’/D‘V(<po<I)€1)|l’ dx = ¢ dHV((poq)sl)”Z(D)””'

3.7

79 (3) This follows from item (1) and (2). O

Lemma 3.4. Let D c R? bea bounded Lipschitz domain, I' ¢ D and let & > 0. Recall the
definitions D, = ®.!(D) and T, = ®.(I").

(1) For1l <p <q < oo, there exists a constant C > 0, such that
d_d
||‘P||Lﬂ([);,)d <Ce 1’”%"“1‘,,([)},)’!- 338)

(2) Letd>3and2* denote the Sobolev conjugate of 2. There exists a constant C> 0, such
that

¢l 0, < Clell. 39

(3) Letd = 2and a > 0 small. There exists a constant C > 0 and § > 0 small, such that
el 0,0 <Celgll. (310)

@) For ¢ € H'(D,)" we have
Il < Ce¥llg]- (3.11)

() Given a smooth connected domain I" C dD, there is a continuous extension operator
Zr, : Hi(T,) > H(D,)", such that

1200 <CE el + 1l )0 forallpe BT, (12

where C > 0 is independent of e.
(6) Let I' c aD have positive measure. There exists a constant C > 0, such that

I¢ll;, 0,0 < Ce |Vl xa, forall@eHy, (D). (3.13)

Proof.
(1) This is a direct consequence of Lemma 3.3 item (1).

(2) We use Lemma 3.3 item (1) and (2) and apply the Gagliardo—Nirenberg inequality
(Evans, 2010, p. 265, Thm. 2) to the bounded domain D.



d
3 _
lell, «(De! TE? e ° q%lHL*(D)d
2 2

d
B3 _ 3.14
< Ce 2l ° O g e

[N

_L*_l
=ce el

Now the result follows from ¢ — 2% =1

(3) We apply the Gagliardo—Nirenberg inequality with respect to p:=2 — § < 2 and use
the continuous embedding Lz(D)<Ly_5(D) on the bounded domain D:

lell, oy = S R % (D)
-9 -9
< _(Z’%Vk o ! H o @l xz)
< Ce (o2 @7 o+ [V (0 0 @00 (315
< CS_(Z’T’X( ‘(p ° q)e_lHLg(D)d + HV(QD ° (Ds_l) ||L2(D)zl><d)
e
= Ce o],

Since (2 — 8§)* diverges to co as § N\ 0, the result follows.
(4) This follows from a change of variables and the continuity of the trace operator.

(5) From (Wloka, 1987, p. 129, Thm. 8.8), we know there exists a continuous extension
operator Zr : H' %(F)d —-H 1(D)“’. Thus, a scaling argument similar to the previous
ones yields the result.

6) TItems (1) and (2) of Lemma 3.3 and an application of Friedrich’s inequality yield the
result. u

3.2 Remainder estimates
We begin this section with the following auxiliary result.

Lemma 3.5. Let V:R? - R?eH] (R?)! satisfy

V@)l =ald™ +0(k ™). [VVE)| = el +0(1d™), @16

for x € B5(0)°, where § > 0 is fixed, m € R and ¢y, ¢z > 0 are constants. Then there is a
constant C > 0, such that for 'cdD and & > 0 sufficiently small the following
estimates hold:

DVl rye <€

2mA2-d

@) |V, 0 SCEH

@) [Vl g, yoes <CE*F

A
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Proof.
(1) Let M:= m€1%1|x — 0| > 0 and & sufficiently small, such that the leading term of V'
X

dominates the remainder for x € I's. Then we conclude
VI e = [ IVE S <In(eb) ™ <ceien, 617
I.

Now taking the square root shows the result.

(2) Let 0 < <rysuchthatdD c S, where S:=B,,(%0)\ By, (). Additionally, let & be
sufficiently small, such that p < & 17;. Now we apply a change of variables to
integrate over the fixed domain and split the norm into two terms, which are treated
separately. Therefore, fix some & > 0 sufficiently small. Then

|V /DW — Vo)t dS,ds,

=y
ZZd//‘V ol X) _<10:)1|(y)) as,ds;
L ) Vo e
Ix ¥
71 2
//D\B |J)C y( - (y))| as,ds, (3.18)

V(0 (x)) — V(o))
+ gz—dfa[)fa[)mB(;(xJ ( ( )|_9)C —yd( (y))| dSder (319)

In order to compute the first term (3.18), we consider for each pair (x,y) € 9D X dD a
smooth path ¢, :[0, 1] — Ssatisfying ¢, ,(0) = xand ¢,,(1) = y. Since Vis smooth in ®(S),
we can apply the mean value theorem to the function F(¢):=V (®; (e, »(1))) and consider
V(@) = e, to get

1
V(@ () — V(7 (1)) = / EIVV (@ (01, (5))) @y ) d. (320)
0
Thus, by Holder’s inequality we conclude

| V(q)s_l (y)) - V(q)s_l (x)) ‘ <&’ va(q)e_l ((Px.y( ) ))) ||L°°(0,1)d><d ||¢;y|lLl(0.1)‘l' (3.21)
Since this inequality holds for every smooth path Py connecting x and v, the estimate holds
for dg(x,y):= [lé’llf @51l 01" Furthermore, since S is bounded and path connected, the

following estlmate holds (see Delfour and Zolésio, 2011, Thm 5.8).
ds(x,y)<Clx —y|, forx,yeS (3:22)

for some constant C > 0 that only depends on S. Additionally, considering the representation
formula of V, we have ||V V (x)|| = cz|2|™" + O(|x|”"~%). Hence, choosing & small enough,



such that the leading order term dominates the remainder, we get

IVUD(D] (@1(9))) | e 01y1x0 Smax| VU (@ (2)) | < Ce™*.
’ zeS

As a result, we conclude

_ V(0 () - V(7' (x)[
& dj;?DfaD\Ba(x) P 7y‘d dS,dS;

C€2m+2 |x yl
lw =

C £2m+2

< g_dfanaD\B,, 52 dS,dS;

< C€2m+2—d .

< S_dfanaD\B,, ds,dS;

3.23)

(3.24)

The key here was to choose the set Ssuch that @' O ¢, »([0,1]) € B,(0)“ for every path ¢,,.

The second term (3.19) can be estimated by using a straight line connecting x € dD and
y € 0D. Therefore, let ¢, ,(#):=x + Hy — x), for ¢ € [0, 1]. Since we only need to consider
(x,¥) €9D X 9D such that v — y| < 8, @' O¢,,([0,1]) CB,(0)° can be guaranteed by

choosing § sufficiently small. Again, an application of the mean value theorem yields

V(@7 (@) = V(@] ) <e”*max|VV (] (2)) "l 1",
2€S;
where S5 = |J,cspBs(¥). Furthermore, a similiar estimation to (3.23) yields

max|VV (@] (z))[* < Ce+.

2€Ss

Plugging this estimate into (3.19), yields

o d V(@' (%)) = V(@' ) [
¢ /a i /a i dS,dS.

e — |’

max|VV (®;(2))
_ 2€S;s
<gd// : o dSS,
aDJaDrBs(x) lx — ]

1
comadf [ 1
ap.JapnBs(x)|x — |

3.25)

(3.26)

3.27)

To finish our proof, we need to show that the integral on the right-hand side is finite.

Therefore, let A;(x) :=Byu-j5(x)\ Bys(x), for j € N. Hence,

Bs(x) = | JAj().

7=l
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Now we can split the inner integral into layers according to these sets:

1 i 1
—m b = / —
/oomgm\x 7y\d 2 ; aDnA,(x)| % 73’\d 2
1
< —dy
;./HD'\A,(X) [2-i5)""

< 21254 (0)| (3.28)

21

_ 627!122;'/172;' [C(z(lfj)/léd _ 27/'11511)}

jz1

=8"CY 20421 = CY (1) < co.

Hence, combining (3.24) and (3.27) and using |V|*, ,<|V[?, , for A C B, the result
follows. HA) HB)

(3) The proof follows the lines of item (1) and is therefore left to the reader. O

3.3 First-order asymptotic expansion
Letuy e H! (D)d denote the unique solution of the state equation (1.2) for ¢ = 0. We henceforth
refer to u, as the unperturbed state variable. By definition #, satisfies uo|r = #p and

/Cze(uo)  €(g) di = /fg'(p dx+/ uv-@dS forallpeHLD)Y.  (329)
D D 7

Iy

Assumption 1. We henceforth assume that the u, € C3(Bs(xo)) for a small radius & > 0.
Lemma 3.6. There is a constant C > 0, such that for all £ > 0 sufficiently small there
holds Jate — ol o < G- (3:30)

Proof. Subtracting (3.1) for € > 0 and (3.29) yields

/ C,elte — up) - €(g) di / (Co — C)euo) : €(g) dx
° o (3.31)
+/ (h —f)-¢dv foralloeHL(D)".

Therefore, testing with ¢:=u, —uy € H %(D)d, applying Korn’s inequality to the gradient

term on the left-hand side followed by Friedrich’s inequality and using Holder’s inequality to
estimate the right-hand side leads to

2
Jate = 05 oy < C(INC2 = COYEU) 05+ Vi = Folly ) Nt = 0l o B:32)

for a positive constant C > 0. In view of Assumption 1, we have uo € C3(B;(xo)) for 5 > 0 small
enough and thus (3.32) can be further estimated to obtain

Jate = ol oy < Cve

Now, the result follows from +/|w,| = |w|eg. U

(2 — o) o + i~ Flleye)- 639



Definition 3.7. For almost every x € D, we define the first variation of the state «, by

U (x) = (” )oq>( ), e>0. (334)

€

The second variation of #, is defined by

1) _ 77 _ ad-1,,(1)
U@ ()= e () - U0 - e7u00D (3.35)

€ £

More generally, we define the i-th variation of «, for i > 2 by
UY(x) - U (x) — 24P O @,
8 )

U (x)= £>0. (3.36)
Here, U? : RY - R? are so-called boundary layer correctors and « : D — R? are regular
correctors. The functions U? aim to approximate U, (- however, they introduce an error at the
boundary of D, which is corrected with the help of u(l)
By extending u#, and uo, outside of D by a continuous extension operator
E : H{(D)! - HY(R%)", one can view U as an element of the Beppo-Levi space BL(R?)“.
In the following, we show that the first variation of the state converges to a function
U € BL(RY)? and determine an equation satisfied by this limit. The next Lemma helps us to
handle the inhomogeneous Dirichlet boundary condition on I',.

Lemma 3.8. Let A:R**? » R**?be uniformly positive definite, F, : Hy, (D ) > Rbe

a linear and continuous functional with respect to|| -]le and ge € H(T,)".
Then there exists a unique V. € H 1( 6) , such that
/ Ac(V,) - e(@) dv = F.(¢) forallpe HL (D,)", (3:37)
Velr, = & (3.39)

Furthermore, there exists a constant C > 0 such that
1
IVelle < CAIFN + elgelly, o + 18el 3 ) (339)

Proof. Let a.(u,v):= [, Ae(u) : €(v) dx, u,ve H'(D ) Thanks to our assumption, 4 is
uniformly posmve deflnlte and thus one readily checks that a, is an elliptic and

continuous bilinear form on H 11}( ¢) endowed with the scaled norm ||-||,. Furthermore,
let Zr, denote the right-inverse extension operator of the trace operator 7r, and
define G, =7 (g.) e H'(D,)".
Now consider Fy(¢):=F¢(¢) — a.(Ge, ¢). Since
Fe@)l < IFe)] + [ac(Ge, @)l

o (340)
<ClFlell. + CliGel.llell. <Cllell,  foralle € Hr, (D;)",

for a constant C> 0, F, is continuous wih respect to || - ||,. Thus, by the Lax—Milgram theorem,
there exists a unique «, € H }e (Dg)d, such that
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a. (s, ¢) = F.(¢) forallpeHy, (D,)". (341)

Hence, we conclude that V,:=u, + G, satisfies (3.37) and (3.38). Uniqueness is guaranteed by
the ellipticity of a,.. Applying the triangle inequality and using the continuity of Z, to
estimate ||G,||, yields

IVl < e, + 16N, <C(IB] + 1G], ) <CIR] + [1Gel)

1
< CUIFN + gl e+ I )

which shows (3.39) and finishes the proof. O
Lemma 3.9. There exists a unique solution [U] € BL(R?)" to
. d
Coe([U)) : €(@) dx = /(CZ — C1)e(uo)(x0) : €(e) dx forallgoeBL(Rd) . (342

RY ®

Moreover, there exists a representative U € [U], which satisfies pointwise for x| = oo

M (x) = RO (x) + (’)(|x|’d>7 (343)
where RV : R? - R satisfies
-1
(1) _ b2|x| ford = 27 3.44
(=] {b3|x|‘2 ford = 3, G44)

for some constants b, b3 € R.

Proof. Unique solvability of (3.42) follows directly from the Lemma of Lax—Milgram. Thus,
the only thing left to show is the asymptotic behaviour (3.43) of U, For this we first note that
U can be characterised by the following set of equations:

—div(Ce(UM)) =0 ino, (3.45)

—div(Ce(UM)) =0 i, (346)

(UM =[UY]"  onde, (347)

[Cle(UM)n] ™ — [Coe(UD)n]™ = (C; — Ce(UM) (xo)n  onda. (348)

By (Ammari, 2008, p. 76, Thm. 3.3.8) there are f, ¢ € Ly(0w)?, such that
[SL7]" - [S¢]” =0, ondw
[Cie(Sf)n] " — [Coe(S2g)n]” = (Co— C1)e(UD) (xo)n,  ondw,
where S " f denotes the single layer potential on 0w with respect to the fundamental solution

T, that is, S’ h(x = [, Ti( h(y) dS(y), i € {1, 2}. Additionally, since [3,(C; —
Ce(UM)xom dS 0 it follows that Jowg dS = 0. Thus,

(3.49)



U0 — { Slf mao,

2 1 n —C
S, mo,

satisfies (3.45)-(3.48). Furthermore, considering [5,¢ dS = 0, a Taylor expansion of Iy(x — y)
iny = 0 yields the desired asymptotic behaviour (3.43). O

Theorem 3.10. Let U 21) be as in Definition 3.7 and a € (0, 1). There exists a constant

C >0, such that
||U(1) . Uu)H < { Ce ford = 3,

Ce'™ ford = 2, (3.50)

for & sufficiently small.

Proof. We start by deriving an equation for U f:l). For this purpose, we change variables in
(3.31) to obtain

D»Cwe(UE})) e(g) dv = / (Cy — C)e(uo) ° @, - €(¢) dx

3.51)
+€/(f1 —f2) o D@ dx forallgpeH%[(Dg)d.

Splitting the integral on the left-hand side of (3.42), integrating by parts and using
Div(Coe(U'Y)) = 0 in @° yields

/DCu,e(U(l)) s e(p) dx =/(C2 —Ce(xo) : €(e) dx — /R"\D Coe(UW) : €() dx
:/ (Co— Ch)e(xo) : €(g) dr — / Coe(UM)it- dS
? e (352
+ / div (Coe(U™)) - dx
R%\ D,

:/ (Cy — Cy)e(xo) : €() dx + / Coe(UM)n- g dS,

® ne
where o € H }E(De)d, ¢ denotes an extension to the whole domain and 7 denotes the outer
normal vector on D, Subtracting (3.51) and (3.52) results in

/D cwe(Uf;) - U“>) Ce(e) dx = / (C — C)[e(utg) © @, — e(uto) (x0)] : () dx
+e/(f17f2) ° B, dr (353)

—/ Cge(U(l))nwp as

Iye

for all ¢ eH%é}(DS)d. Now, we apply Lemma 3.8 to V,:=U" —U®, g,:= — UM |, and F!
defined as the right-hand side of (3.53). Thus, we conclude that there exists a constant C > 0,
such that

1
1T = U, < CUF + MUV, pe + 100500 354)

To finish our proof, we need to estimate the norms of F* l and UP, which appear in (3.54). For the

sake of clarity, we split the functional F i according to (3.53) and treat each term separately.
Let p € Hy. (D).

Adjoint-based
methods

79




EC (1) Atfirst, we consider [,(Cs — Cy)e(uo)° @, — €(uo)(¥o)]: e(g) dx. Since ug € C¥Bs(x0)),

39,1 we get
€(uo) (%0 + €x) = €(uo) (%) + Ve(uo)(x0)ex + o(ex). (3.55)

Together with an application of Holder’s inequality, we conclude

/[f(uo) ° D, — €(uo)(%0)] - €(¢) dx‘ < Clle(uo) © @ — €(uto) (x0) |, o | €(@)| o<
< Cellel@)l, @< < Cellell,-

80

(3.96)

(2) Next, we consider & [,,(fi — f2)°®, - ¢ dx. Since we want to apply the Gagliardo—
Nirenberg inequality, we need to distinguish between dimensions d = 2 and d = 3.

For d = 3, an application of Holder’s inequality with respect to p = 2* and Lemma 3.4, item (2)
yield

<Cellgll,- 357)

E/(fl —f)O®,. ¢ dx

For d = 2 we apply Holder’s inequality with respect to p = (2 — 5)* for § > 0 sufficiently small
and Lemma 3.4, item (3) to obtain

g/(;q —£)O®, ¢ dx| <Celg].. (3.59)

for a constant C > 0.

(3) Finally, the last term can be estimated using Holder’s inequality and the scaled trace
mequality (Lemma 3.4 item (4)):

/ Coe(UM)n-@ dS SCHG(U(l)) 2, 60,74 || @1l 1, 60,2 (3.59)
ITne
<CeH|e(UD) Iy op, e (360)
Thus, Lemma 3.5, item (3) with m = d — 1 yields
/ Coe (UM dS| < Céfl .. (361)
Ty,
Combining these estimates results in
1 Ce ford = 3,
Il < { Ce'™ ford = 2, (362)

for a constant C > 0. Furthermore, Lemma 3.5 item (1) and (2) with m = d — 1 yield
S d
| 1y <Ce7, U |H’£(l‘;)" <Ce. (3.63)

Now plugging (3.62) and (3.63) into (3.54) finishes the proof. O



Remark 3.11. Rewriting U} — U" leaves us with the first-order expansion
e (x) 2o (x) + €U (] (x)),

where ,
(9(85“) ford = 3,
e — [ug + €U O @ ||y oy = (364)

d

(’)(85“‘“) ford =2,a > 0.

3.4 Second-order asymptotic expansion

As mentioned earlier, the boundary layer corrector U introduces an error at the boundary
of D. Therefore, we introduce the regular corrector #”, which compensates the boundary
error. Additionally, in order to obtain a second-order expansion, we introduce the second-
order approximations U? and «®. In contrast to the first-order approximation, we need to
split the boundary layer corrector U® into two terms, where one solves a lower-order
equation and the other solves an analogue to U, Furthermore, we need to add the regular
corrector #® to compensate the error introduced by U?. The following lemma describes
each corrector:

Lemma 3.12.
(1) Thereis a unique solution #M) € H l(D)d with «V(x) = — RP(x — xo) on T, such that
/ Cae(u®) : €(g) dx = — / Cae(RY) (x — x)n- dS, (365)
JD Iy
for all € HL(D)".
(2) There is a solution [U] EBLP (Rd)d to
/ Coe([U)) - ) dr = / (Co — C)[Ve(u) (xo)x] : e(0) dx,  (366)
R 0
for all ¢ € BLy (R%)", where
_J2+56 ford = 2,
b= 2 ford = 3,

. .o ~® . e
and 6 > 0 small. Moreover, there exists a representative U & [U], which satisfies
pointwise for |x| — oo:

0% ) = B () + o), (367)

~@ s g
where R~ : R* = R satisfies

=@, [t In(|x]) ford =2,
IR (x)| = { il ford — 3. (368

for some constants ¢, ¢; €R.

Adjoint-based
methods

81




EC
39,1

82

(3) There exists a solution [U] GBLp(Rd)d to

| Corl0) s ele) dr = [ [t x0) = )] .69)
for all ¢ € C}(R?)", where
(245 ford = 2,
P=129 ford = 3,

. . =2 . .
and & > 0 small. Moreover, there exists a representative U ®e [U], which satisfies
pointwise for |x| — oco:

7% =R () + o(|x|1*d), (3.70)
where I?(Z) : RY > R satisfies
=@, . [Cn(|x]) ford =2,
IR (%) = {Esm_l ford — 3. 3.71)

for some constants ¢,,¢3 €R.
(4) There is a unique solution #® € H'(D)? with «®(x) = — R?(x — xo) on T, such that

/ Cae(u®) : €() dx = — / Coe(R?) (x — xo)n- ¢ dS, (372)
D I'y

for all ¢ € H.(D)", where R® =R” + k.
Remark 3.13. Note that the requirement for p to be greater than 2 in dimension two is
necessary to guarantee that the gradient of U @ and U ® IS in
Lp(Rd)dXd, which is not true for p = 2. In fact, there is a solution
[U] € BL(R?) of (3.66), but no representative U € [U] has the desired

asymptotic representation.
Proof. Unique solvability of (3.65) and (3.72) follows from the Lax—Milgram theorem. In order
to show the existence and the desired representation formula of U (2), we use single layer

potentials. Note that a solution U € BL,, (Rd)d of (3.69) can be characterised by the following
set of equations:

—div(Ce(U)) = [(h(x) — f2(x0))]  nw, 373
—div(Ce(U) =0 inar, (3.74)

U] =[U]  ondw, (3.75)
[Cre(Un]* = [Ce(U)n]”  ondw. (3.76)

Now consider the volume potential u(x):= [, I'1(x —3)[(/,(x0) — folto)] v, for x € w, which
satisfies the inhomogeneous equation inside @. By (Ammari, 2008, p. 76, Thm. 3.3.8) there are
. & € Ly(0w)”, such that.



(8L - [S2e]” =—ul,, ondw, 3.77)
[Cre(SLf)n]" — [Coe(S2)n]” = —(Cie(u)n)],, ondw. (378)
Finally,
-2 {u+8§j, inw,
07=3", e
S, g, in@*.

satisfies (3.73)(3.76) and a Taylor expansion of S ig shows the asymptotic representation of
(3.70). The proof for U @ is similar and therefore omitted. O

Remark 3.14. As a consequence of the equivalence relation defining the Beppo-Levi

space, the function U® is defined up to a constant. Thus, we are

allowed to add arbitrary constants to the boundary layer corrector U?.
As a result of the additive property of the leading term R®(x) = In(x),
we need to add the & dependent constant clIn(e), with a suitable
constant ¢ € R in dimension d = 2. In dimension d = 3 this problem
does not appear since the leading term |x| ' is multiplicative and
therefore can be compensated by the factor ¢ 2 found in
Definition 3.7.

Remark 3.15. A possible approach to approximate the solution U @ of (3.69)
numerically is to consider for each & > 0 the unique solution

o
K. e W; (D)d satisfying

& /D Coe(K.) : €(g) dx — / [0 (50) — fo (o)) dx (3.79)

o
forall p € W}; (D)d. Applying Holder’s inequality and the Gagliardo—Nirenberg inequality,
we get 1

*
[ 1)~ stenie @ <lonl ) 19l (850)

and thus follow "
@) -

E3
|V, ||, oyi<a < Ce )

7

for a constant C> 0. Now a change of variables yields || V(K. O ®,)]|,, p,) < C. Hence, K. @,

is bounded in BLP and therefore has a weakly convergent subsequent with limit [U]
satisfying (3.69).

Theorem 3.16. Let U £2> be as in Definition 3.7 and a € (0, 1).
(1) There exists a constant C > 0, such that
U —UP — 2?0 @,(x)||, <Ce  ford =3, (381)
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|U® — U — e424® o @,(x) + cln(e)||, <Ce'™  ford =2, 3.82)

for & > 0 sufficiently small and a suitable constant ¢ € R.
©2) Ford e {2,3}, there holds liir(l)Hs‘l(V U —vuy-vU®@ I, @yexe = 0.

Proof.ad (1): Similar to the estimation of the first-order expansion, we aim to apply Lemma 3.8
in order to handle the inhomogeneous Dirichlet boundary condition on I',. Hence, we start by
deriving an equation satisfied by U® — U® — £4-242 O @, (x) = eU'. Dividing (3.53) by
& >0, changing variables in (3.65) and (3.72) and integrating by parts in the exterior domain of
(3.66) and (3.69) yield

/ Coc(eU¥) - o) dx = F(g) + Fi(g), foralleHL(D,), (389
D,
where

Fim [ [(@.0) ~ @) ~ Gitw) — o)) d

+/ (Cy — Cy) e (e(uo) O, — €(uo)(x0)) — Ve(uo)(x0)x] : €() dx (3.84)

16 (€= ) e @0) + u(@.)] - el di

€

Fr= —e1 [ [Coe(UD) — iChe(RM) (ex)|n- @ dS

| (Ge(U) (RY)

Ne (385)
- / [Coe(U®) — e1Coe(R?) (ex)]n- ¢ dS.

Iye

Since the bilinear form only depends on the symmetrised gradient of U EB), one readily
checks that eU f’) + cln(e) satisfies

/ Coc(eUS + cln(e))  elg) dx = FX(¢) + F(¢), forall g€ HL (D). (380
De

Now we can apply Lemma 3.8 to

Ve eU® ford =3,
© | eUY +cn(e) ford = 2,
F,=F:+F;
and
_ (sd‘2R<1)(ex) _ S_IU(D)|D + (Sd—zR(z) (ex) — U<2>)|rs ford = 3,
£ (2R (ex) — e UD) |, + (¢72R? (ex) — U + cn(e)) |y, ford = 2.

C (3.87)
Hence, we get the apriori estimate

IVl SCUEN + lll e+ gl ) 659



Due to great similarity between d = 2 and d = 3, we will discuss both cases together and A djoint-based

only highlight the terms that have to be treated separately. Thus, if not further specified, let
d = 2, 3. Again, we start by estimating ||F,||. Let ¢ € H, %g (De).

(1) A Taylor expansion of (f1(®(x)) — fo(®.(x))) at xo, Holder’s inequality and Lemma 3.4,
item (2), (3) yield

/ (@4 (x)) — (@0(2))) — ((x0) — Fos0))] -

<{ Cellell. ford =3,
= Ce e, ford=2,a >0,

(3.89)
for a constant C > 0.

(2) Since u is three times differentiable in a neighbourhood of x,, there is a constant
C > 0, such that |871(E(M0)°(I)8 — €(uo)xo) — Ve(up)xo)x| < Ce, for x € w. Hence,
Holder’s inequality yields

/(CZ —C))[e7" (e(uo) ° D — €(u0)(x0)) — Ve(uo)(x)x] : €(¢p) dx

<Celle],. 3:90)

(3) Furthermore, by Holder’s inequality we get

gl / (Co — C) [e(uV (®,)) + e(u®(®,))] : e(¢) dr| <Cellgl, BN

for a constant C > 0.
Next we consider the boundary integral terms:

(4) Here, we note that (") — e%e(R™)(ex) cancels out the leading term of U™ on 9D.
Thus, we can apply Holder’s inequality, Lemma 3.5, item (3) with 72 = d and the scaled
trace inequality to conclude

<Cé||oll,, (392

e / [Coc(UY) - Coe(RY) (ex)] - dS
e

for a constant C > 0.

(5) Similarly, we deduce from Lemma 3.5, item (3) with # = d — 1 that there is a constant
C >0, such that

/ [Coe(U?) — e1Coe(R?) (ex)]m- ¢ dS| < Ce? o], (3.93)
Ine
Combining the previous estimates yields
Ce ford = 3,
HFEH < { C[:'l_a ford = 27 (394)

for a constant C > 0. Finally, we recall that g, is defined in (3.87). At this point we choose the
constant ¢ € R, such that

R (x) = R®(ex) +cln(e) ind = 2.

Then, by Lemma 3.5, item (1), (2) with m = d and m = d — 1 respectively, there is a constant
C > 0, such that
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1 d
Ez”gean(n)d + |g€|H%(Fp)d <Ce. (3.95)

Now we can plug (3.94) and (3.95) into the a priori estimate (3.88), which shows (3.81).
ad (2): By the triangle inequality, we have
e (V (UQ)) _ V(U(”)) _ V(U<2>) HLZ(U;)d” < ||V(U§2) _ U@ _ gd2,@) o q)e) HLZ({“)M

+ 8‘1_1||V(M(1)) ° (I)EHLZ(w)dxd + ed‘1||V(u(2>) ° (I)EHLZ(w)dxd < C{;‘l_a,
(3.96)

for a positive constant C. This shows (2) and therefore finishes the proof. O

Remark 3.17. Note that by the triangle inequality one has
e (U0 = 00) = U@, < |02 - U® - 22 0@, (@), + |e2u) O, ()],

€

+ ||e2u® O @, (x)|],
< C(E + 6%),

for d = 3and a constant C > 0, Thus in dimension d = 3, the correction of #® is not necessary
to achieve convergence of U 22). In fact, sparing the corrector results in a slower convergence

of order & compared to the corrected order e.

Remark 3.18. In order to give a better understanding of the scheme of the asymptotic
expansion, we would like to point out the main difference between the first-
and second-order expansion, which is the slower decay of the boundary
layer corrector U compared to UW. As a result, there was no necessity to
introduce the regular corrector %Y in the first-order expansion, whereas #®
was needed to obtain the desired order of at least & ~%, for a > 0 small.
Additionally, one should note that boundary layer correctors appearing in
higher-order expansions have asymptotics similar to U? and therefore
demand a correction of the associated regular correctors. Thus, the scheme
of the asymptotic expansion of arbitrary order resembles the second-order
expansion given in this chapter, rather than the first-order expansion.

4. Analysis of the perturbed adjoint equation

In this section we study the asymptotic analysis of the Amstutz’ adjoint equation and the
averaged adjoint equation for our elasticity model problem. We shall first exam Amstutz’
adjoint and derive its asymptotic expansion up to order two.

4.1 Amstutz’ adjoint equation
The adjoint state p,, £ > 0 satisfies

pe€HLD), d.L(e,u0,pe)(¢) =0 forallpeHL(D)", A1)

where we recall the Lagrangian
L(g,u,v) = J.(u) + a.(u,v) — f:(v). 4.2



With the cost function defined in (1.1), this equation reads explicitly

/c,,,ée : €(p,) dx — —yf/fmk@dx 2ym/( )9 dS
r 43)

—27/0/ [Vug — V) : Vo dx,
forall pe H( ! ) Similarly, the unperturbed adjoint equation reads

/Cgé : €(po) dx = —Vf/fz o dx— 27;71/ (4o — ) @ dS
Do 4.4)
—Zyg/[Vuo — Vuy) : Ve dx,
D

forall e H }(D)d. Note that the & dependence of p,, is only via the coefficients C,, and £,
This is a definite advantage over the averaged adjoint method, where also the perturbed state
variable u, appears.

We now compute an asymptotic expansion of p, in a 51m11ar fashion to the direct state «,.
Therefore we define the variation of the adjoint state P for i > 1 in analogy to the definition
of the variation of the direct state (Defmltlon 3.7), Where we replace the boundary layer
correctors U? by similar correctors P? adapted to the new inhomogeneity and the regular
correctors «? are replaced by correctors p® matching P?.

Lemma 4.1. There exists a solution [P] € BL(R?)" t

Coele) : €(|P]) dr = / (Cy — C)e) : e(po)(x0) dr, (45)

R(l

for all goeBL(Rd)d. Moreover, there exists a representative PY € [P], which satisfies
pointwise for |x| — oco:

(1) — SM -d
o Pw=s () +0([x), (46)
where S : R? —» R? satisfies
-1
SO ()] = { Dol ford =2, A7
ISTON= gy ford = 3, @)

for some constants bs, b3 € R.

Proof. Using the adjoint tensor C; :RY4 5 RY% we can rewrite (4.5) to get

/ ) : Clel(P]) dr = / e(0) : (C] — €7 )e(py) (x0) d. 49
R ®
Thus, using single layer potentials, the proof follows the lines of Lemma 3.9. O
Theorem 4.2. For a € (0, 1) and & > 0 sufficiently small there is a constant C > 0, such
that
(1) ford = 3,
PPl <{ G gy 49

Proof. Similarly to the analysis of the direct state, we derive an equation of the form

/ Cocle) : e(PV —PV) dr = Gi(e) forallpeHL (D), 4.10)
D
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where the right-hand side satisfies

1 Ce ford =3,
Gl < { Cel-a ford — 2. (411)

A detailed derivation and estimation of the functional GZ. can be found in the Appendix
(Section Al). In view of Lemma 3.8, we now estimate the boundary integral terms. Since
Pi.l) |, = 0 we follow from Lemma 3.5 item (1), (2) with m = d — 1 that there is a constant
C >0, such that

L pa 1 d
&||PY = PO, e+ 1PV — PO o S Ce- 4.12)

Thus, considering (4.11) and (4.12), an application of Lemma 3.8 with A = C; shows (4.9),
which finishes our proof. O
We now continue with the second-order expansion. Similar to the state variable
expansion, we therefore introduce a number of correctors in the following Lemma, which
approximate the first-order expansion inside w, and on the boundary dD respectively.

Lemma 4.3.
(1) There is a unique solution p!) € H*(D)* with p(x) = — S¥(x — x¢) on T, such that

/ Caelp) : (p) = — / C; e(SV) (v — xo)n- g dS, @13)
D Ty
for all € H-(D)".
(2) There is a solution [P] € BL,(R%) to
Rdee((p)  €([P)) dx = / (Co — C)e(e) : [Ve(po) (x0)x] dx, (4.14)

forall o€ BLp/ (Rd)d, where

(2456 ford =2,
b= 2 ford = 3,

. .52 . e
and § > 0 small. Moreover, there exists a representative P = € [P], which satisfies
pointwise for |x| — oo:

P00 =5%w + o[+, (4.15)
P
where S : R — R” satisfies
<@, o [T In(lx]) ford =2,
IS ()l = {Egm-l ford = 3, (416

for some constants ¢z, ¢; €R.
(3) There is a solution [P] € BL,(R%) to

| Cocte) s ellP) ds =1, [ olan) —iGan)] - @17



forall pe C} (R)", where

_J2+56 ford =2,
b= 2 ford = 3,

. e . .
and 6 > 0 small. Moreover, there exists a representative P? e [P], which satisfies
pointwise for |x| — oo:

P =590 + 0((x|1—d) : 419)
where $? : RY - R satisfies
@ ¢z In(|x]) ford = 2,
150l = {63\x| ford = 3, (19
for some constants ¢s, ¢c3 € R
(@) There is a unique solution p® e H' (D) with p(z) — S®(x — x) on T, such that
/ Caele) : (p?) = / CT e(S?) (x — x)n-¢ dS 4.20)
D

for all ¢ € H-(D), where S© =5" +5%.

Proof. Rewriting these equations with the help of the adjoint operator CJ leads to a proof
similar to Lemma 3.12. O

Now we are able to state our main result regarding the second-order expansion of the
adjoint state variable p,:

Theorem 4.4.
(1) There exists a constant C > 0, such that
|P? — P& — ¢2p? o || < Ce  ford =3, (4.21)
[P — PP — ¢2p2 o d, +cIn(e)||, < Ce'™®  ford =2, 4.22)

for e sufficiently small and a suitable constant ¢ € R.
(2) Ford e {2,3}, there holds lim||e™! (V(PLY) = V(PU)) = V(P@)| , oxa = 0.
eNo 2(@)

Proof.ad (1): For the sake of clarity, we restrict ourselves to the case of d = 3. Dimension d = 2
can be treated in a 51m11ar fashlon In view of the auxiliary result Lemma 3.8, we seek a
governing equation for eP® = PP _ P _ ¢-2p(2) O @,. Such an equation can be found
using similar techniques to the analysis of the direct state. Thus, we refer to the Appendix
(Section A2) for more details regarding the exact computation and only mention that there are

functionals G2 G3 such that

/c e(o )dx—GZ( ) +Gg) foralleH] (D), 4.23)

where Gf, k = 2, 3, satisfy
Gyl < Ce, (4.24)
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for k € {2,3} and a constant C > 0. The exact formulas of the functionals G, G® can be found
in the Appendix (Section A2). Since

ePV|. = (728" (ex) — e PY)| + (6728 (ex) — POy,
it follows by Lemma 3.5 item (1), (2) with m = d — 1 and m = d respectively that

1 d
&|ePP||,, 0 + P iy S CE- (4.25)

Hence, considering (4.24) and (4.25), Lemma 3.8 shows (4.21).
ad (2): By the triangle inequality we have

||€—1 (V <P£.1)> — V(P(l))) *V(P(Z))HLz(w)““

< Hv (P@ — PP — PO cbg) Iy @y

(4.26)
+et- lHV O‘D ||[2 ixa + 471 V(p(Z))O(DE-”LZ(w)dw
< Cel a’
for a positive constant C. This shows (2) and therefore finishes the proof. O

4.2 Averaged adjoint equation
The averaged adjoint state ¢, satisfies

. €H-D), ade,q.) =— / lafg(sus—l—(l—s)uo)(go) ds forallpe H-(D)". (4.27)
0

With the cost function defined in (1.1), this equation reads explicitly
/Cm;e(go) : 6(6]5) dx = ~Vm (MO + U — 2%;,1) @ dS — Tr /fmp"P dx
D JD

—Vg/ [Vuo + Vu. — 2Vuy| : Vo dx,
D

J

4.28)

forall peH }(D)d. Similarly, the unperturbed adjoint equation reads

/Cze(go) : e(qo) dx — —2ym/ (4o — 10,) - ¢ dS — yf/fg'(p dx
D L, b 4.29)
—Zyg/ [Vug — Vuy) : Vo dx,
~JD

forallo e H ]r ( D)d. Considering (4.4), we would like to point out that pyand g, satisfy the same
equation and due to unique solvability it follows py = q,. Note that for the sake of simplicity
we have choseny, = y,, = 0ind = 2, as these terms lead to a more complicated analysis of the
asymptotic expansion of ¢,.

We now introduce the first terms of the asymptotic expansion:

Lemma 4.5.
(1) There exists a solution [Q] € BL(R?) to

/ Coelg) - e((Q)) dr = / (G — C)e(g) : elgo)(x0) ., (4.30



, . ..
for all ¢ € BL(R?)". Moreover, there exists a representative Q( ‘e [Q], which satisfies Adjoint-based

pointwise for |x| - oo:

0w ="+ O(|x|_d), @31)

0 d d .o
where T~ : RY - R” satisfies

o~ N _1 —
70 ) = § el ford =2, (432)
bs|x] ford = 3,

for some constants 32,33 eR
2) There exists a solution [Q] € BL(R®)® to

/ Cocle) : €((Q)) dr = —, / VU : Vo d, (433)
R¢ R?

. . ! . .
for all ¢ eBL(RS)S. Moreover, there exists a representative Q( ) € [Q)], which satisfies
pointwise for |x| — oo:

~(1) (1) _
Q") = 1" +o(m()lx ), (4.34)
where Tm : R > R? satisfies
(1) P
] |7 ()] = balal (4.35)
for a constant b3 € R.
Now let
~(1 ~
Q= Q(1) + Q(l) ford = 3,
@( ) ford = 2,
and similarly
T .— ;]\1(1) + T(l) ford = 3,
'_ ~(1
7" ford = 2.
Proof. Similar to Lemma 4.1, but due to the inhomogeneity in the exterior domain, we use a
Newton potential to represent the solution. |
Theorem 4.6. For a € (0, 1) and & > 0 sufficiently small there is a constant C > 0, such
that
Ce? ford = 3,
10" — @]l < (4.36)
Cel ford = 2.

Proof. We only show the case of d = 3, since the proof for d = 2 follows the same lines. Again,
we start by deriving an equation of the form

/ Cocle) : (@~ QU) dx = G(g), 437)
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for all ¢ € H}. (D,)", where
IGH <Ce. 4.39)

A detailed derivation and estimation of the functional G‘: can be found in the Appendix
(Section A3). In view of Lemma 3.8 we now estimate the boundary integral terms. Since

QED |r, = 0 we deduce from Lemma 3.5 item (1), (2) with m = d — 1 that there is a constant
C > 0 satisfying

2|V — Q| e +1QV — QY| , , <Cél. (4.39)

Thus, considering (4.38) and (4.39), an application of Lemma 3.8 shows (4.36). O

We now continue with the second-order expansion. Similar to the previous asymptotic
expansions, we therefore introduce each component in the following lemma. Note that the
regular correctors aim to approx1mate UY in addition to their approximation of the occurring

boundary layer correctors @\, Q2. This is a result of the appearance of U, () on the right-
hand side of (4.37), (A.17).

Lemma 4.7.
(1) There is a unique solution q(l) eH'(D )d with q(l)(x) = — T9(x — x0) on T, such that

/ Caelo ) dv = - / T e(TV) (x — xo)n- dS, (4.40)
for all p € H-(D)".
(2) There is a solution [@] eBLﬁ(Rd)d to
/ Coelg) : €([Q)) dx — / (Cy — C)e(e) : [Ve(go) (xo)x] dx

4.41)
—yg/ vVU® : Vo drx,
R{l

for all o € BLy (R where

_J2+6 ford =2,
b= 2 ford =3,

. . ~(2) . s
and § > 0 small. Moreover, there exists a representative ¢ €[], which satisfies
pointwise for |x| — oco:

o ) O(\xrl) ford = 2,
Q (W)=T (x)+ . (4.42)
(’)(ln(|x|)|x| ) ford = 3,
where 7'(2) : R - R satisfies
2@, o [CIn(|x]) ford =2,
7@l = {63 (|| )] ford = 3, @43

for some constants ¢z, ¢; €R.



(3) There is a solution [Q] € BL,(R%)" to Adjoint-based

Adca,6(¢) : 6([@}) dx = 7f/[][2(x0) _fl(xo)] - dx, (4.44) methods
for all ¢ € C!(R%)", where
246 ford = 2,
b= {2 ford = 3, 93

. .= . e
and § > 0 small. Moreover, there exists a representative Q( ) € [Q), which satisfies
pointwise for |x| - oco:

PP = 7% @) + (’)(’x|l_d>, (4.45)
where T@ : R? > R? satisfies
=@, o [ CeIn(|x]) ford =2,
T (%) = { G ford — 3 (4.46)
for some constants ¢s, ¢3 € R
4) Thereisa unique solution qg) eH! (D)d, such that
/cze ) dx =1, ROz~ 20)-0 S — 1, u)- ¢ dS
ymfr x xO as — mermu ¢ as
—yngVu Vo dy—y, [,Vu® : Vo dx (447)
Ve Jr, VRV (¥ — x0)n-¢ dS
Ve, VR (¥ — x0)n-¢ dS
for all € H-(D)".
() There is a unique solution q ' eH (D ) with ¢¥() = — T® — x) on T, such
that
/ Coe() + (4 dx = / C] e(T?) (v — xo)n- dS (4.49)
forallpe H}(D)d, where
22 502
7@._) T +T ford =2,
: ~2)
T ford = 3.

Furthermore, we define ¢ :=qg) + qg )

Proof. Similar to Lemma 3.12 and Lemma 4.5. O
Now we are able to state our main result regarding the second-order expansion of the
averaged adjoint state variable g



EC Theorem 4.8.

39,1 (1) Leta e (0,1). There exists a constant C > 0, such that for d = 3 and d = 2, we have
respectively:

le [@) = QY — 24V Od,| - Q) — &P Ody||, <Celln(e™)  (449)

24 *1[@5”7@“)78 ch} Q2 — 2@ 0d, +cln(e)||, <Ce-* (450)

for & sufficiently small and a suitable constant ¢ € R.
(@) Ford e (2,3}, there holds lim e (VM — vy —v® I, @y = O

Proof. ad (1): Similar to the proof of the second-order expansion of the adjoint state variable,
we restrict ourselves to the case of d = 3. The proof for dimension d = 2 follows the same lines
and is therefore omltted In view of the auxﬂlary result Lemma 3.8, we seek a governing
equation for V,:=g~ [Q -QW] - DO®, — Q¥ — 9242 O @,. Such an equation
can be found using similar techmques to the analysis of the direct state and the derivation will
be discussed in detail in the Appendix (see Section A4). We just note that there are functionals

GS, GS, such that

/ Coelp) : €(V2) di = G3(g) + G(g) forall pe HL. (D, )", (51)

where Gf, k =5, 6, satisfy
IGH] < CeébIn(e™), 452

for £ € {5, 6} and a constant C > (. The exact formulas of the functionals Gf, Gg can be found
in the Appendix (Section A4). Since

Velp, = (¢™2TW(ex) — 7' QW) |, — @7,
it follows with a similar argument to Lemma 3.5 that there is a constant C > 0 satisfying

Vel e + | Vel g S Cetln(e™). (453)

In view of (4.52) and (4.53), Lemma 3.8 shows (4.49).
ad (2): Let d = 3. By the triangle inequality we have

e (V@) = V(@) ) =9 (@)l 0y«
< eV (@) - Q) = V(gD 0®,) — V(724D O, yp0es
+ &2V (g1) 0@l o0 + €71]|V (0) O D v

<Cerln(e™),
454

for a positive constant C, which shows (2). The proof for d = 2 follows the same lines and is
therefore omitted. U



5. Computation of the topological derivatives for linear elasticity problem
In this section we compute the first- and second-order topological derivatives of our elasticity
problem introduced in (1.1), namely

J(Q)=/(9,M)=7/m/ |M7”m‘2dS+7//]2)F'de+Yg/|Vu7V”d|2dxa (6.1)
Ty D D

subject to u € H'(D)? solves #|r = up and

/Cge(u):e(go):/fg-qa dx-i—/ uy-@dS forallpe H (D). 52)
D D .

Iy

Definition 5.1. For & >0let Q, c Dbea singularly perturbed domain with perturbation
shape w and Q:= Q. Additionally let ¢;, £, : R™ — R™ be two functions

converging to 0 for ¢ \y 0 and 2—8 — 0 for & \u 0. Then the first-order
topological derivative is defined as

L JQ) - T (Q)
dJ(Q,w) = ll{% —he

Similarly, the second-order topological derivative is given as
J(Q) = T(Q) — ti(e)dT (Q)
162 (8 ) '

T (Q,w) = lim
exo0

More specifically, since we considered Q =@, we compute the topological derivative at a
point x € D and derive the asymptotics of J (w,) with @, :=® (), ®.(x):=2x( + ex. Recall
the Lagrangian function

L(e,u,v) = J.(u) + ac(u,0) — f:(v), u€V,veW,

with V = {u € H'(D)"ju = uponT}, W = H-(D)" and

Jw =7, / e~ w, P dS + 7, /wag'%dx-wg / Vu-Vulde, 63
G(u,0) = / Coelu) : €(v) dx, (5.4)

D
fv) = /D fo v dx. 55)

We compute the topological derivatives using Proposition 2.2 (Amstutz’ method),
Proposition 2.4 (averaged adjoint) and Proposition 2.7 (Delfour’s method).

Remark 5.2. We would like to point out that, contrary to the setting in Section 2, Vis a
affine space spanned by W and not a vector space itself. Yet, it can easily
be verified that the Lagrangian techniques can still be applied, as the
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EC construction of V allows derivatives of L(g,u,v) with respect to the
391 second variable in direction W.
b

Remark 5.3. Note that the more general case Q # @, 1o € D\ Qand Q, = QU w, canbe
treated in a similar fashion. The main difference is that the unperturbed
state equation and unperturbed adjoint state equation respectively
depend on Q and therefore #( and p vary. Furthermore, as the boundary

96 layer correctors coincide in both cases, the regular correctors need to
compensate in Q. At last, the computation of the topological derivative for
X0 € Qand Q. = Q\ w, can be done analogously to the presented one and
only results in a change of sign.

5.1 Amstutz’ method
In order to compute the first-order topological derivative, let ¢1(¢):= |w,|. By Proposition 2.2,
item (1), we have

4T (@, w)(x0) = RW (uo, po) + 8" L(0, ug, po), (5.6)

where

‘6(87 uf?pf) - ‘C'(Ev M(),pg)

R(])(uo,j)o) :li{ré A0 , (5.7)
L0, u0,p0) = lim L, uo,pgélzg)ﬁ(o, uo,pe)7 (.8

if the above limits exist. Thus, we start with the first quotient R (o, po):

Lletebe) — L&) _ Ly 4o p) = Fi(9) — () — (o ) + (5]

bi(e) o]
1
= m []s(us) _]E(u()) + ae(ue - Mﬂvps)}
1 ' 2 2
‘w |7m [‘ug - um‘ - |M(] - um' - 2(”0 - um)(us - Mo)} dS
€ T
e / [1Vte = Vaal? — [Vity — Vual? — 2(Vito — Vaeg)(Vaee — V)| d
€ JD
1 2 1 2
=—, e — uo|” dS + —yg/\Vug — Vuy|” dx.
|| JTm || Jo

(5.9)

Now, a change of variables leads to |w|7m||U HLZ et T \w|7g||VU HL yixa- On the one
hand, we have

€ 1) 12
U0 < ||(EIIU = Ul (5, T ellU” ”u(rmd)

< c(||U§1> —UW|P 4 ed) <Cer,

(5.10)



for a arbitrarily small and a constant C > 0. Here, we used Lemma 3.4, item (4), Lemma 3.5
item (1) with m = d — 1 and Theorem 3.10. On the other hand, Theorem 3.10 shows that

vUY - vU® in L,(RY)**“ for £ s 0. Now, passing to the limit in (5.9) yields
RO o p0) = o [ [VUO d
|o|™¢ Jre

Next, we consider 621)/3(0, Uy, po)- Splitting the quotient, one observes

Elevtn ) = SOMOP) ) + i) = ) = o) = el 5) + (0]

= =R + (€ — Celws) - <) — (h — fo)pe] d

= yf][(fl°<1>€7f2°d>€)~u0°d>gdx
[0

H (€= Coew) e 0 (B (6.11)

Jo

+]{)(C1 — Cy)e(g) © @, = €(po) © @, dx
7{](]3 2, fy o @) (PY) dx
7{0(;3 o ®, — fo 0 ®,) Py ° D, dr.
By Holder’s inequality, Lemma 3.4, item (2), (3) and Theorem 4.6 one readily checks that
PV - PO in L () and €(QY) — e(QV) in Ly(w)™“. Hence, we deduce
0 L0.t0p0) = (€= Coeuo)x) : e(PV)

+77(fi(x0) = fa(%0)) - ¢t0(%0) (6.12)
+(C1 — Co)e(uo) (x0) = €(po)(x0)
—(fi(x0) — f2(%0)) Do (x0)-

Therefore, the first-order topological derivative is given by
dj(@,a))(xo) = f(C] — CQ)G(M())(X()) : E(P(1>) dx+ (C] — CQ)G(M())(X()) : E(Po)(xo)
+7(f1(x0) — fa(%0)) o (x0) — (f1(%0) — f2(%0)) - Po (o) (5.13)
1 M2
+ |w|yg./Rd’VU 2 dr,

with PP defined in (4.5) and UV defined in (3.42). Next, we compute the second-order
topological derivative. Therefore, let ¢5(¢):=&f1(g). By Proposition 2.2, item (2), we have

P T(@,) (%) = RP (g, po) + 3 L(0, uo, o), (5.14)
where
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EC @ o L(eue, ) — L&, 10, pe) — (&) R™ (w0, po)
39,1 R (u()vpo) - 1{% 162 (8) )
_ _ (2)
022)[’(0’ Mo,Po) — lim £(€7 u()vps) ‘C(Oa MOape) 61(8)6[ ‘C(Oa anPO)’
eN0 U5(¢)
98 if the above limits exist. Dividing (5.9) by e, it follows that

@ —lim %=
R (uo, po) i{%g

- 1133 Ye |:/D,.<U£1) + U(1>) . (8—1 [Uﬁ” _ U(l)D dx — g /R[I\DFWU(])'z dx] (.15)

:2yi vUW . vU® gx,
g‘w‘ R?

/|VUS>|2—WU<1>\2 dx—/ VU dx
Jo. JR\D,

where we used that VU — VU in L,(R?)**? (see Theorem 3.10)and e (VU — VU1

->VU® in Lz(Rd)dXd (see Remark 3.17). The integral term over the exterior domain
vanishes due to the asymg))totic behaviour of U®.

In order to compute 62 L(0,ug, po), we use (5.11) to get

L(e,uo,be) — L£(0,u0, be) — £1(€)0" L(0, g, po)
[2(6)

4 _7£8‘W<f1 © .~ fo 0 @) — (i) — o)) o © @, dy
+7f]£(fl(x0) — fol(%0)) €7 [ttg © P, — ug(%0)]

+]£(C1 - Co)e(uo) ° @, : e(s‘l {PQD _ PO)]) di

16 Ce i) @, ) () d

. (5.16)
*J{)(Cl = Co)e(wo) ° ®e : &7 [elpy) © @e — €(po) (x0)]

*]{}Cl — Co)e[e(uo) © @, — e(uo) ()] = €(po) (o) v

oo () i

*]{u(ﬁ ° D, —fy 0 D) py © D — pol0)] dx

7[5—1[@1 o ®, — f, 0 ®,) — (fi(t0) — fo(x0))] - polixo) d.

Now, considering Theorem 4.4, item (2), we have £~ [(PV) — ¢(P1)] — €(P?)) in Ly(w)*?
and by Theorem 4.2 and the Gagliardo—Nirenberg inequality, we get Pgl) - PW in L)%
Thus, passing to the limit & N\ 0 in (5.16) we conclude



3LO,up0) = 7, %V[fl(xo) o) r-to(x0) dr+ 7, ][[fl(xo) — Fy(x0)]- Vit (xo)x dx
+7/(C1 — Cz)é(%o)(xo) : G(P(Z)) dx + 7[((:1 — Cg)[VG(Mo)(%o)x] : G(P(l)) dx
+][(C1 — Cy)e(uo) (x0) = [V(€(po))(x0)x] dx

@ (5.17)

+][ (Cr = Co)[V(e(uo)) (x0)x] : €(po)(x0) dx

~f 1) — o)) V(o) s — f VIf(sa) ~ Flala-ols) s

~f Ghtoa) = floa))-(P) .

Thus, the second-order topological derivative is given by

T (@, 0)(x) = }’f][v[fl(xo) = fo(x0)Jx-uo(%0) dx + V/J[Lﬂ(xo) — fo(x0)]- Vo (x)x dx

-‘r][ (C1 — C)e(uo) (x0) : €(P?) dx +][(C1 — C)[Ve(uo) (x0)x] = €(PV) dx
+7[ (Ci — C)e(uo) (x0) : [V(e(po))(x0)x] dx
o (5.18)
+][ (C1 = Co)[V(€(uo)) (x0)x] : €(po) (o) dx

7[ [ () — fo(50)] - Voo d — f VI (x0) — o) )-po(x) di
*][(fl(xo) — fa(%0))+ (p(l)) dx + 2yg\%|/ vUWb . vU® gy,
) R?

with PV defined in (4.5), UV defined in (3.42), P defined in (4.14), (4.17) and U® defined in
(3.66), (3.69).

5.2 Averaged adjoint method
We start with the first-order topological derivative. Therefore, let ¢;(¢) := |@,|. By Proposition
2.4 item (1) we have

47 (@, 0)(x0) = RN (uo, q0) + 8" L(0, 0, 40), (5.19)
where
7 ‘C yYe *,C s s
RY (uy, qo) = 1»1{% (e,u0,q )fl(s) (,uo 40)7
i £ i 7‘607 5
O L(0,u0,q0) = 113‘1(1) (8,”0,40;1 6 (0,29 CIo)7

if the above limits exist. Thus, we start computing R (u, o):
L(e,u0,qe) — L(&,40,90) 1

4i(e) = o] Ve(uo) + a:(uo, ) — fe(qe) — Je(uo) — a:(uo,q0) + fe(qo))
= ﬁ [ac (0, g — q0) — fe(qe — q0)]
lz (5.20)
o [/ (€1~ Coeu): . ~an) e~ [ (i ~F)-(a. ~ ) dx]

=][ (Ci = C)e(uy) OD, - E(Qi_m) dx — g][(fl —£)0d, (QEU) dr.
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EC Since uy € C3(Bs(xo)) for 5 > 0 small and by Theorem 4.6 €(Q)) — €(QW) in Ly(w)™? as &
391 tends to zero, we have

lim [ (C — Cy)e(uo) © @, - E(Qg”) dx = / (C — Co)eluy) (x0) : €(QV) dx.  (5:21)

eNo /,

Furthermore, applying Holder’s inequality, Lemma 3.4 item (2), (3) and Theorem 4.6, one
100 readily checks that Q" — Q1 in L;()®. Thus, we deduce

lime / [(fi —f2) ° ®,)-QY dx = 0. (6.22)

It follows that R™ (up,qo) = 4 (C1 — Cy)e(up) (x0) : QM) dx. Next, we compute 9"

L(0, 10, qo). For this, we note for'e > 0:
L(&,u0,q0) — £(0, 9, q0) _ 1
51(8) | |

- {y// (h —fo)-uo dx+/ (Ci — Co)e(uo) : €(qo) dx

@]

]([w(fl =) dx}

= Gi-f v o de—f (i— ) e B @

(o) — Jo(uo)) + (ae(uto, q0) — ao(uo, qo)) — (f2(q0) — fo(qo))]

+][ (C] — Cg)f(uo) ° ®g : e(qg) ° (I)g dx.

w

(5.23)
Now, since u, qo, f1, f> are smooth in a neighbourhood of x,, we get

80 L(0,u0,00) = [1/(fi — o) tto + (C1 — Ca)e(uo) : (o) — (i —fo)-@o] (x0).  (5:24)

Hence, the first-order topological derivative is given by

dJ (@, w)(x0) = ][(Cl — Cy)e(up) (x0) : €(QW) dx + (Cy — Co)e(uo) (x0) : €(go)(%0)
+w7f(f1(x0) — fa(0)) -1 (%0) — (f1(%0) — f2(%0)) - Go (o),

with QW defined in (4.30), (4.33).

Remark 5.4. An elegant way to represent the topological derivative is by the use of a
polarisation tensor (see Novotny and Sokolowski, 2013; Ammari et al.,
2005). For this, note that the mappings

}-1:Rdxl;z_)Rd><d7 CH][C(@S)) dr.,

2 RR e (@) i

are linear, where Q solves

. d
/C{,,e )dx-/(Cg—Cl)e(go) Cdr forallpeBL(RY)

(5.25)



~(1
and Qé ) solves

/ C,,,e(go):e(@éw) dx =, / VUV Vo dx forall¢eBL(Rd)
R? ~JR?

d
)

with U, (Cl) satisfying
/ Coe(UD) < ) dr = / (C.—C)C:elg) ds forall e BL(RY)
R* )

d

Hence, there are tensors P, P? representing F', F? respectively, which we refer to as
polarisation tensors. With their help we are able to rewrite (5.25) the following way:

dj(&a))(xo) = (Cl — Cz)é(%o)(Xo) : PIG(QO)(JC()) + (Cl — Cz)é(%o)(XQ) : sz(uo)(xo)
(5.26)

+[r(h = f2)uo + (Cr — Cy)e(uo) : €(qo) — (fi — f2)qo] (x0). (6.27)

Next we compute the second-order topological derivative. Therefore, let £o(e):= ef1(g). By
Proposition 2.4 item (2) we have

P T(@,)(x) = R? (1o, q0) + 9" £(0, 10, q0), (5.28)

where

E(S, Uo, QE) - [’(87 Uy, qO) B Zl (E)R(U (Mo, qO)
l>(¢) ’
‘6(87 Uo, qo) — [’(0’ U, QO) - gl (8)622)‘6(07 Uo, 6]0)

@) — 1
a(’ £(0ﬂ MOaQO) - }?1\1:% 62(8) )

@ — lim
R (uo,q0) 1_135

if the above limits exist. We start computing R® (u, o). Using (5.20) we get
R (u0,0) = Tim b[ (€~ C)e(u) 0@, : e[ QY) dx - ][ (h~£)0w, (V) dr
—][ (C] — CQ)G(M())(.X()) : G(E_IQ(D) dx}
= 111’13 |:][ (C1 — Cz) [871(6(140) O¢€ — 6(140)(.%0))} : ((Qil)) dx

N

+][ (C1 — Co)e(up) (x0) : e(e'l QY — ¢ Q“)) dx (5.29)

9]

+][(f1 — /)0, (QL”) dx}
_ ][ (C1 — Co)[Velto) (o) = €(QV) i + ]/ (€1 — Co)elto) (o) : €(Q) dx

® ®

_][(fl(xg) — fa(x0)) - (Q(l)) dx,

where we used Q" - QM in L)’ e(Q")— €(QV) in Lyw)® and by Theorem 4.8

€

e (e(QM) — e(QM)) — €(Q®) in Ly(w)™. Next, we compute 81 £(0, u, o ):
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EC

0, £(0,m0,q0) = lim {yf ][ (i = fo) ° Perttg ° @e = (filx0) — folxo)) o (o)

39,1
—0—][8’1[(C1 — Cz)f(uo) ° q)e : G(QU) ° q)e — (Cl — Cz)é(uo)(xO) : G(QU)(XQ)} dx
e =) > @0 @ (i) — i) o)

102

= J’f'/[V[(fl = J2)](x0)x - uto(x0) dx + Vf‘/é[fl(xo) — fo(%0)]- Vatg (20 )x dx

w

€ CaTeun)) s elan) )
(€= Copeun) o)+ (9l o)
~f 96 =)l auton) s = F i) = o)) VG i
(5.30)

where again we used the smoothness of uq, go, /1, /2 in a neighbourhood of %, in the last step.
This is the claimed formula (5.23). Furthermore, combining (5.29) and (5.30), we obtain the
final formula for the second-order topological derivative:

ET@.0)w0) = 17 (VU sl dis -+ 1, 4 [ ) — ftoo)]- V()
(€ = €29 et 0] = elan)x)
€1 = Gt o) : (9 (ela0) )] d
903 = on)-aoton) s = f 17 a0) — o)) Vaoto)
(€= ColVelu) ]+ (@) di + 4 (€1 = Coeu) ) : (@)
~f (i) o)) (@) di,
(5.31)

with Q defined in (4.30), (4.33) and Q@ defined in (4.41), (4.44).

5.3 Delfour’s method
At last, we consider Delfour’s method to compute the topological derivative. Therefore, recall
that by Proposition 2.7 item (1) we have

4T (@, 0)(x) = R (1o, po) + Ry (9, po) + L0, o, o), (5.32)

where we let ¢1(e):=|w,| and assume that the limits.

. 1 1
Rgl)(m},po):yg& m /0 (0,L(g,sute + (1 — S)uo, po) — 9, L(&,10,10)) (e — 1o) ds, (5.33)

. 1
RY (g, po) = 1{% m(auﬁ(& o, Po) — 0, L(0, o, po)) (st — o), (6.34)



1
(1)[:(0, uo,ﬁo) = 11\0 fl( ) (5(87 uo,po) — E(O, Mo,po)), (535)

exist. We now compute the limit of each term. Plugging in the definition of L(e, u, v), we get
for e > 0,

1
L/ (0. L(&, st + (1 — S)uto, po) — 0, L(&, 0, D0)) (e — to) ds
t(e) Jo

1
— ﬁ/o 0] (&, sue + (1 — 8)utg, po) (e — to) — 8.J (€, o, po) (e — to) ds

1 )2
= \a)| mllUe H (r?z)d +m7g”VU£;)HLZ(DF)dX”"

(5.36)

Hence, passing to the limit & \, 0 yields Rf) (ug,p0) =
Furthermore, we have

1
(0uL(&,u0,p0) — 0.L(0, 10, p0)) (e — tg) = WY/’/ (h —fo)- (e — uo) dx

wvo® H, Ry (see (5.9)).
1
Z](é‘)

1
+ﬁ (Cl — Cz)é(ug — u(]) : é(p()) dx

(.37)
_ eyf][(fl oD, —f 0 @) <U§>) dx

+]/ (€ — cg)e(Ug“) : e(po) ° @, dx.

Since U, ) 5 W in Ly(w)? and €U )) —¢e(U 2 in Lo(w)?*? for & \, 0, which can be seen
51m11ar1y to the analogous results for PV and QW it follows

RY (o, o) = ]’ (C1 — Co)e(UM) : epy) (x0) di. (539

A similar computation yields
VL(0,u0, p0) = [r,(fi = f2) -t + (C1 — Co)e(uo) = €(po) — (i — f2)-po] (%) (6.39)

A more detailed derivation of 9'! ) E(O, Uy, po) can be found in (5.23) by substituting p, for go.
Combining these limits yields

dj(@, 0))(.76()) = _fw(cl — Cz)G(U(])) : é(po)(X()) dx + (Cl — CZ)G(MQ)(X()) : 6@)0)(}60)
+ 77 (fi(x0) — fo(x0)) - u0(x0) — (f1r(%0) — fa(%0)) - Po(x0)

1
2
+yg|w|/Rd|VU |” dx,
(5.40)

with U defined in (3.42). Next, we compute the second-order topological derivative. In view
of Proposition 2.7, item (2), we first show that the following limits exist:
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I?::9C 1 R (. ) =lim ——

1
lim 62(8)/0 0,L (e, su: + (1 — s)ug, po)

(5.41)
—3,L (&, o, po) (tte — 1tg) ds — &1(€) R (1o, po),

104 R (1) =l s (00610 80) = D00, 10, 0) 0 = ) = 6 RS )], 642
.1
97 £(0, 10, po) =l [z:(e, o, po) — L(0, 0, po) — £1(€)d}" L(0, uo,poﬂ . (543)

where /o(g):= ef;(¢). Then the topological derivative is given by

T (Q)(x0) = RY (1o, p0) + R (o, po) + 97 L0, 10, po).
Similar to (5.15) it follows that

1
Rgz)(umpO) = ZygmAdVU(l) : VU(Z) dx.
Furthermore, we have

1
%) (0uL(e,up,po) — 8,L(0,u0,p0)) (e — 1) — 61(8)72;1)(%,170)

= yf][m oq>g—fzo<1>s)-(Ug“) dx

(5.44)
+][ (C, — cz)e(g-l {Ug” - U“)D “e(po) © @, dx
+][(C1 = Co)e(UY) : [e7(e(po) ° @ — €(po)(x0))] dx.
Hence, passing to the limit £ \. 0, we deduce
R (u9, po) = ][ (C1 — C)e(U?) - e(po) (x0) dx + ][ (€ — Cre(UWY)
 Velpo)loa)e] s+ 77— [ (o) = o)- U 6545

where we used e [e(UY) —e(UM)] = e(U?) in Ly(w)™? and UY - UD in L)

€

Additionally, from (5.30) we get
00, 0.0) =7y VIG0) = Fsl-solsn) i+ 7 f o) — o) -Vaa (o) i
+ (€1 = CoIV(eun)) sl epo) )
4 (€= Copewn) ) [V(etpo) )] s

®

—][ VI (x0) — foloo)-Boliy) dx — ][ [ (30) — fo(30)] - Vo ) .
(5.46)



We obtain

T (@,0)x) = 1 ][ (A (o) — Folxo))- U™ di + 2&%’ /R YU VU
+]£(C1 —Co)e(U?) : e(po) (x0) dx +]£(01 — Co)e(UD) : [Ve(po) (x0)x] dx
1y VIR Gon) = ool e+, ) = o))V d
(€= Vet ) - o)
€= et 9t o) di

7[ VI (i) — folo) - polxo) dx — ][ [ (30) — Foto)] - Vo o) i,
(5.47)

with U defined in (3.42) and U® defined in (3.66), (3.69). This finishes the proof of the
computation of the second-order topological derivative using Delfour’s method.

Remark 5.5. We would like to point out that using the defining equations of the
boundary layer correctors, one can show that all three expressions of the
second-order topological derivative coincide and therefore all methods
lead to the same result. To get an idea, we show that the first-order
topological derivative of Amstutz’ approach and the averaged adjoint
method are the same. Plugging in ¢ = Q" in (342) yields

/ (C1 — Co)e(uo) (x0) : €(Q) d = /R Coe(U) : (@) dr.

Additionally, by choosing ¢ = PV in(4.5) and ¢ = UV in (4.30), (4.33) we get
/ (C1 — Co)e(uo) (x0) : €(PY) dx + / VUD|? dx
w RrRY

= _/ C,e(UY) : ¢(PV) dx+/(cz — C)e(qo) (x0) : €(UD)dx
R .

=0

_ DY . (1)
Rdee(U ).e(Q )dx.

Now using po = qo it follows that both results (5.13), (5.25) coincide.

6. Conclusion

In the present work we review three different methods to compute the second-order
topological derivative and illustrate their methodologies by applying them to a linear
elasticity model. To give a better insight into the differences of these methods, the cost
functional consists of three terms: the compliance, a L, tracking type over a part of the
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Neumann boundary and a gradient tracking type over the whole domain, whereas the first
one is linear and the latter two are quadratic.

Amstutz’ method to compute the topological derivative requires besides the analysis of
the direct state u, also the analysis of the adjoint state p.. Even though this seems to lead to
additional work, we would like to point out that, due to the e-dependence of the defining
equation of the adjoint state variable, the analysis of p, resembles the analysis of the direct
state and can be done in a similar way. The computation of the topological derivative for the
compliance term is straightforward, whereas checking the occurring limits for the
nonlinearities requires the asymptotic analysis of #, on the whole domain.

The averaged adjoint method shifts the work from the computation of the topological
derivative to the asymptotic analysis of the averaged adjoint variable ¢,. Since the defining
equation depends on the state variable u,, the asymptotic analysis of p, does not resemble the
analysis of u#,, and therefore needs to be treated differently. In fact, we would like to mention
that again the non-linearities of the cost functional are the reason for additional work during
this process. When it comes to the computation of the topological derivative, the averaged
adjoint method simplifies the procedure as it only requires convergence of g, on a small
subdomain of size e.

Finally, Delfour’s method resembles Amstutz’ method as it requires the asymptotic
analysis of #, on the whole domain, yet it does not need the analysis of the adjoint state p,.
This advantage seems to come with the shortcoming, that this method is only applicable to a
selective set of cost functions.

To recapitulate, each method proposed in this work has some advantages and
disadvantages over the others. The decision on which method fits the actual problem
setting the best greatly depends on the actual cost function as well as the properties of the
underlying partial differential equation.

References

Ammari, H. (2008), An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, Berlin
and New York.

Ammari, H,, Kang, H. and Kim, K. (2005), “Polarization tensors and effective properties of anisotropic
composite materials”, Journal of Differential Equations, Vol. 215 No. 2, pp. 401-428.

Ammari, H, Kang, H, Nakamura, G. and Tanuma, K. (2002), “Complete asymptotic expansions of solutions
of the system of elastostatics in the presence of an inclusion of small diameter and detection of an
inclusion”, Journal of Elasticity and the Physical Science of Solids, Vol. 67 No. 2, pp. 97-129.

Amstutz, S. (2003), “Aspects théoriques et numériques en optimisation de forme topologique”, PhD
thesis, L'institut National des Sciences Appliquées de Toulouse.

Amstutz, S. (2006a), “Sensitivity analysis with respect to a local perturbation of the material
property”, Asymmetrical Analysis, Vol. 49 No. 12, pp. 87-108.

Amstutz, S. (2006b), “Topological sensitivity analysis for some nonlinear PDE systems”, Journal de
Mathématiques Pures et Appliquées, Vol. 85 No. 4, pp. 540-557.

Amstutz, S. and Andrd, H. (2006), “A new algorithm for topology optimization using a level-set
method”, Journl of Computational Physics, Vol. 216 No. 2, pp. 573-588.

Amstutz, S. and Bonnafé, A. (2017), “Topological derivatives for a class of quasilinear elliptic
equations”, Journal de Mathématiques Pures et Appliquées, Vol. 107 No. 4, pp. 367-408.

Amstutz, S. and Gangl, P. (2019), “Topological derivative for the nonlinear magnetostatic problem”,
Electronic Transactions on Numerical Analysis, Vol. 51, pp. 169-218.
Amstutz, S. and Novotny, A.A. (2010), “Topological asymptotic analysis of the Kirchhoff plate

bending problem”, ESAIM: Control, Optimisation and Calculus of Variations, Vol. 17 No. 3,
pp. 705-721.



Amstutz, S., Novotny, A.A. and Van Goethem, N. (2014), “Topological sensitivity analysis for elliptic
differential operators of order 2m”, Jowrnal of Differential Equations, Vol. 256 No. 4,
pp. 1735-1770.

Beretta, E., Manzoni, A. and Ratti, L. (2017), “A reconstruction algorithm based on topological
gradient for an inverse problem related to a semilinear elliptic boundary value problem”,
Inverse Problems, Vol. 33 No. 3, 035010.

Bonnet, M. (2018), “Inverse acoustic scattering using high-order small-inclusion expansion of misfit
function”, Inverse Problems and Imaging, Vol. 12 No. 4, pp. 921-953.

Bonnet, M. and Cornaggia, R. (2017), “Higher order topological derivatives for three-dimensional
anisotropic elasticity”, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 No. 6,
pp. 2069-2092.

Canelas, A., Laurain, A. and Novotny, A.A. (2015), “A new reconstruction method for the inverse source
problem from partial boundary measurements”, Inverse Problems, Vol. 31 No. 7, p. 24, 075009.

Delfour, M.C. (2018), Control, Shape, and Topological Derivatives via Minimax Differentiability of
Lagrangians, Springer INAAM Series, Springer International Publishing, Cham, pp. 137-164.

Delfour, M.C. and Sturm, K. (2016), “Minimax differentiability via the averaged adjoint for control/
shape sensitivity”, IFAC-PapersOnLine, Vol. 49 No. 8, pp. 142-149.

Delfour, M.C. and Zolésio, J.-P. (2011), Shapes and Geometries: Metrics, Analysis, Differential Calculus,
and Optimization, SIAM, Philadelphia, PA.

Eschenauer, H.A., Kobelev, V.V. and Schumacher, A. (1994), “Bubble method for topology and shape
optimization of structures”, Structural Optimization, Vol. 8 No. 1, pp. 42-51.

Evans, L. (2010), Partial Differential Equations. Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI.

Gangl, P. and Sturm, K. (2020a), “A simplified derivation technique of topological derivatives for
quasi-linear transmission problems”, ESAIM Control Optimisation and Calculas of Variations,
Vol. 26, p. 20, Paper No. 106.

Gangl, P. and Sturm, K. (2020b), “Topological derivative for PDEs on surfaces”, SIAM Journal on
Control and Optimization, Society for Industrial and Applied Mathematics (SIAM).

Gangl, P. and Sturm, K. (2021), “Asymptotic analysis and topological derivative for 3D quasi-linear
magnetostatics”, ESAIM Mathematical Modelling and Numerical Analysis, Vol. 55 No. Suppl,
pp. S853-S875.

Garreau, S., Guillaume, P. and Masmoudi, M. (2001), “The topological asymptotic for PDE systems: the
elasticity case”, SIAM Journal on Control and Optimization, Vol. 39 No. 6, pp. 1756-1778.

Hassine, M. and Masmoudi, M. (2004), “The topological asymptotic expansion for the quasi-stokes problem”,
ESAIM Control Optimisation and Calculas of Variations, Vol. 10 No. 4, pp. 478-504.

Hintermiiller, M. and Laurain, A. (2008), “Electrical impedance tomography: from topology to shape”,
Control and Cybernetics, Vol. 37 No. 4, pp. 913-933.

Hintermiiller, M. and Laurain, A. (2011), “Optimal shape design subject to elliptic variational
inequalities”, SIAM Journal on Control and Optimization, Vol. 49 No. 3, pp. 1015-1047.

Hintermiiller, M., Laurain, A. and Novotny, A.A. (2011), “Second-order topological expansion for electrical
impedance tomography”, Advances in Computational Mathematics, Vol. 36 No. 2, pp. 235-265.

Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S. (2009), Optimization with PDE Constraints, Springer,
New York.

Iguernane, M., Nazarov, S., Roche, J.-R., Sokolowski, J. and Szulc, K. (2009), “Topological derivatives
for semilinear elliptic equations”, International Journal of Applied Mathematics and Computer
Science, Vol. 19 No. 2, pp. 191-205.

Ito, K. and Kunisch, K. (2008), Lagrange Multiplier Approach to Variational Problems and Applications,
Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Adjoint-based
methods

107




EC
39,1

108

Masmoudi, M., Pommier, ]. and Samet, B. (2005), “The topological asymptotic expansion for the
Maxwell equations and some applications”, lnverse Problems, Vol. 21 No. 2, pp. 547-564.

Mazya, V., Nazarov, S. and Plamenevskij, B. (2000a), “Asymptotic theory of elliptic boundary value
problems in singularly perturbed domains”, in Volume 111 of Operator Theory: Advances and
Applications, Birkhauser Verlag, Basel, Vol. L.

Mazya, V., Nazarov, S. and Plamenevskij, B. (2000b), “Asymptotic theory of elliptic boundary value
problems in singularly perturbed domains”, in Volume 112 of Operator Theory: Advances and
Applications, Birkhauser Verlag, Basel, Vol. IL

Novotny, A.A. and Sokotowski, J. (2019), Applications of the Topological Derivative Method, Springer, Cham.

Novotny, A.A. and Sokolowski, J. (2013), Topological Derivatives in Shape Optimization, Springer,
Berlin and Heidelberg.

Novotny, A.A., Feijéo, R.A. Taroco, E. and Padra, C. (2003), “Topological sensitivity analysis”,
Computer Methods in Applied Mechanics and Engineering, Vol. 192 Nos 7-8, pp. 803-829.

Silva, M., Matalon, M. and Tortorelli, D.A. (2010), “Higher order topological derivatives in elasticity”,
International Journal of Solids and Structures, Vol. 47 No. 22, pp. 3053-3066.

Sokolowski, J. and Zochowski, A. (1999), “On the topological derivative in shape optimization”, SIAM
Journal on Control and Optimization, Vol. 37 No. 4, pp. 1251-1272.

Sturm, K. (2015), “Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained
shape functions without saddle point assumption”, SIAM Journal on Control and Optimization,
Vol. 53 No. 4, pp. 2017-2039.

Sturm, K. (2020), “Topological sensitivities via a Lagrangian approach for semilinear problems”,
Nonlinearity, Vol. 33 No. 9, pp. 4310-4337.

Wloka, J. (1987), Partial Differential Equations, Cambridge University Press, Cambridge,
Cambridgeshire, and New York.

Ziemer, W.P. (1989), “Weakly differentiable functions”, in Volume 120 of Graduate Texts in
Mathematics, Springer-Verlag, New York.

Appendix
Here we derive equations satisfied by the variations of the adjoint and average adjoint variable
respectively.

A1 Derivation and estlmatlon of Equation (4.10)
In order to compute G we subtract (4.3) and (4.4) to obtain

/Cwee(qo) 2 €(pe — po) dx 2/ (C:— Ci)e(e) : €(po) dx
5 o A

/(fz f)-e ds,

for all peH! (D) Next we change variables according to the transformation y = ®,(x), multiply with
e'"?and subtract

/Ce Te )dx—/w(Cg Ce(o) : €(po)(x0 dx+/Ce Nn-@dS (A2)

to conclude

/gmm%ﬂhﬂﬂw:Q@, (A3)
D,

for all g € HY, (D,)" with the notation



(o) = / (Co — Cr)e(e) : [e(po) ° Pe — €(po)(x0)] dx
+eyf/(fz—f1)°®e-sodx (A4)

— | CJe(PV)n-gas.

Ine
Now we can find a constant C > 0, such that the following estimates hold:
@) |/, (Ca—Cr)e(e) : [e(po) ° De—€(po)(x0)] dx| < Cell@ll,, which follows from a Taylor’s
expansion of €(p0) e ®@= in x0 and Holder’s inequality.
@ e, [, (fr=f1) © o dal <Celg] . ford = 3and |er; [, (2 ~fi) > @~ dx| < Cell ][, for
d = 2 which is a consequence of Holder’s inequality and Lemma 3.4 item (2) and (3).
® ) Jr, € POy dS| < Cé?||¢||,, which follows from Holder’s inequality, Lemma 3.4 item (4)
and Lemma 3.5, item (3) with m = d — 1.
Combining the previous estimates yields

1 Ce ford = 3,
IGll- < { Ce'™ ford = 2. (A4.5)

A2 Derivation and estimation of Equation (4.23)

We start by dividing (Section A3) by e and subtract (4.13), (4.20), which can be formulated on the domain
D, by a change of variables. Next we subtract (4.14) (4.17), whereas these equations can be restricted to
the domain D, by splitting the integral over R? and integrating by parts in the exterior domain. These
operations leave us with

[ Cucte) s e(eP) dr = Gilo) + il (A6
for all € Hy, (D,)’ where
Gio) = [ (€= Culeli) s 7 (elp) = @ = o)) = V(o) )]
47 [ 10 =) = @, = () — i) d (A7)

e [ (€= Cele) s [ep?) = @+ <) @] d,

Gie) =~ [ 167 e(PY) — T efSV) (e0)}-0 dS
e (A8)

- / [C] (P?) — ¢1C] ¢(S®) (ex)]n- g dS.

Now we want to estimate the norm of G’; k€ {2, 3}. Therefore let p € H } (Dg)d.

(1) Since py is three times differentiable in a neighbourhood of x, there is a constant C > 0, such that
le Me(po) ° @, — €(po)xo)) — Velpo)xo)x| < Ce, for x € w. Hence, Holder's inequality yields

/(Cz = Ci)e(e) : [e7' (€(po) OP: — €(po) (x0)) — Ve(po) (xo)x] dx| < Celle],. (A9)
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39,1
b [16:-R)O®, - (o) ~ Al 0 & <Cellel,. (AT0)
for a constant C > 0.
110 (3) Furthermore, by Holder’s inequality we get

7 [(€ = Cele): [el67) O, + (p) O]

<Celel., (A11)

for a constant C > 0.
Combining the above results leaves us with ||G§ || < Ce for a constant C > 0. Next we consider the
boundary integral terms:

(4) From Holder’s inequality, Lemma 3.5 item (3) with 7 = d and the scaled trace inequality we get

<Cllg].., (A12)

= / [CT €(P1) — 1C] €(S") (ex)] - dS
ITne

for a constant C > 0.
(5) Similarly, we deduce from Lemma 3.5 item (3) with 2 = d — 1 that there is a constant C> 0, such that

/ [C) e(P?) — &71C) €(S®) (ex)]n- ¢ dS| < Cé || .. A13)
I'ne

Thus, these estimates result in ||G§ || < Ce for a constant C > 0.

A3 Derivation and estimation of Equation (4.37)
In order to compute a governing equation for Qf?l) — QW we start by subtracting (4.28) and (4.29).
Rearranging these terms leaves us with

/DCa,ée(gp) c€(qe —qo) dx = / (Co— Cy)e(e) : €(qo) dx

s [ (=)o ds
(A14)
- }'m/ (ue - MO)"P dS

L

-7, | [Vue — V] : Vo dx,
"Jo

for all <peH1r(D)d. Thus, considering the definition of U S), a change of variables followed by
subtracting

Coe(o) : G(Q(l)) dx = /(Cz —Ci)e(e) : €(qo)(x0) dx — yg/ VUD : Vo dx

De e

T 1Yy Dyy.
+/mcz (QM)n cpdS-i—/ VUn- dS AL5)

Tve
+/ [div(C, (@) +7,AUY] - dx,
RY\ D,

=0

yields



where

Coe(e) : e(eQ§?>) dx = G(g), (A.16)

Gile) = /(Cz —Ce(e) : [e(q0) ° P: — €(g0)(x0)] dx
+eyf/of2 o ®, —fi°®,) ¢ dx

feym/ ( 1) ¢ dS

(A17)
/ Cl (@) dS

—yg/ VU dS
Iy

N

—yg/Di(VUil) - vU<1>) : Vo dx,

forall g€ H}. (D )
Now let ¢ € Hr- .(D ) . There is a constant C > 0 independent of & and ¢, such that.

@

@

®)

@
®)

©)

}fw (C2—Ci)e(e) : [e(qo) ° D — €(q0)(x0)] dx| < Ce||¢||,, which can be seen by a Taylor’s
expansion of 0 in x0 and Holder’s inequality.

levs [, (foO®e—fi © @)@ dx| < Ce| @l|,, which is a consequence of Hélder's inequality and
Lemma 3.4 item (2).

| fr C2 (QWYn-¢ dS| < Ce2 lle||, which is a consequence of Holder’s inequality, Lemma 3.5
1tem (3) with m = d — 2 and the scaled trace inequality.

Ve )i,V U(l)n @ dS|<Cé
\eymfr ) @ dS| < C€||<p||€, which follows from Hoélder’s inequality, splitting
||U ol LT )[1 < ||U6. Ol L T D] LT the scaled trace inequality, Theorem
3.10 and Lemma 3.5 itern 1) withm =d — 1.

which can be seen similarly.

|7, fD[,(V U E.l) - vUW) : Vo dx| < Ce||¢l|,, which is a consequence of Holder’s inequality and
Theorem 3.10.

Combining the above results leaves us with

GY|. < Ce.
£

A4 Derivation and estimation of Equation (4.51)

Due to the high number of terms, we derive the governing equation in more detail. Therefore, we
formulate (4.40), (4.47), (4.48), (4.41) and (4.44) on the domain D, by scaling arguments and splitting of the
integral domain respectively, to get

/ Coclp) : (6% 0 @,) dr= — et / C] e(TV) (ex)n- g dS
De

(A18)
g / (C1 — C)e(g) : e(g™) * @, d,
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EC /D Cuelo) e(@(Z) ) dv= / (Cy = C)e(e) : [Velqo) (xo)a] dx

39,1
—}/g/ vU® : Ve dS
‘ (A19)
+74 / VU@ dS
112
/ ] @ )n-o ds,
| Cucte )di= 1, / o(x0) — fu(xo)] - d
(A.20)
+/ c;e(Q )n-qu as,
Tye
Coe(p): €(e¥%q® o (I)g) dx = J/m/ RO (ex)- ¢ dS — eym/ (e2u) o @,)- ¢ dS
D, Lne
—ed‘lym R®(ex)- ¢ dS — sym/ (e™2u® o @,)- ¢ dS
FWI r?ﬂ,.‘
dzyg/DV(u Ve dy — e yg/DV(u@)‘)CI)S):V(pdx
g1 / V(RY) (ex)n-¢ dS — &' / V(R®)(ex)n- ¢ dS
Ty.
+£‘H/(C] —Cy)e(o) : €(¢?) ° @, d.
(A21)
Now dividing (A.16), (A.17) by & and subtracting (A.18)—(A.21) leaves us with
/ Coele) : €(V2) dx = G(¢) + Go(), (A22)

where we remember the simplified notation V,:=¢~[Q" — Q1] - ¢¥3¢M o @, — Q® — 2@ o P,
and

Clg) = / (G — C)e(g) : [ (elao) ° @, — e(go)(x)) — Velqo) ()] d

+yf/[(fz ©®, — fi 0 ®,) — (folx0) — i(10)] - do

—yg/ [s‘l (VUE,” - VU<1>) — V(UM o @) — VU — V(g2 o cpg)} Ve dx
Jo,
+£d'2/(C1 —Coe(g) : €(qV) o @, dx

ed_l/(Cl —Cye(e) : e(q(z)) o @, dx,
(A.23)



Gie) = —ern | (U = 2R (o) - el o T, — R er) ~ % < T,) -0 dS Adjoint-based
o methods
s / CT [e(QV) — ¢ ¢(TW) (ex)]n- dS
Ine

f/ T e(Q®)n-¢ dS
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e / [VU® — 49 (RD) (ex)]n- dS
Ine

—7, / [VU® — &1V (R®) (ex)]n- ¢ dS.

Iy,
(A.24)

In the following let ¢ € H } (Dg)d and C denote a sufficiently large constant independent of ¢ and &. We
now want to estimate the operator norm of Gﬁ, k € {5, 6} with respect to |- ||

(1) A Taylor’s expansion and Holder’s inequality yield

/(Cz —Ci)e(e) : [e7(e(g0) ° e — €(go) (x0)) — Ve(qo) (x0)] dx| < Cell¢l],-

(2) A Taylor’s expansion followed by an application of Holder’s inequality with respect to p = 2*
and Lemma 34 item (2) yield

‘yf e @ fi o @) = Gala) — )]

<Celle|..

(3) From Theorem 3.16 we deduce

7/g/ [6_1 (VUS) _ VU“)) — V(e e @,) — VU® — v (e o@s)} Ve dr|<Ce|¢l,.
De

(4) Furthermore, from Holder’s inequality it follows

ed-z/(c1 ~C)el) : e(q") ° @, dr| <Cellg]..
(5) Similarly, one gets
e”l-l/(c1 ~C)el) : €(q?) © @, dr| <Cellg]..

Combining these estimates, we get ||G§ || < Ce. Next we consider the boundary integral terms.
(6) By smuggling in e 'U® and U® we get
‘symfrm (e‘lU(SU — 2RO (ex) — €2 o @, — 4 2R® (ex) — 47 2u® o <I>E) @ dS‘ <
‘eymji_ (8_1U£1) — e 1UW — 2y o @, — U@ — -2 o CDF) @ dS‘
+)8ymfrw (e1UW — e2RW (ex)) - ¢ dS‘

+ ’8},771 frm‘}_ (U<2) - 8d_2R(2) (&‘x)) ‘@ dS‘ .



EC The first term on the right-hand side can be estimated by Holder’s inequality, the scaled trace
39.1 inequality and Theorem 3.16, whereas the remaining terms can be estimated by Holder’s inequality, the
’ scaled trace inequality and Lemma 3.5 item (1). Thus we conclude

eym/ (8‘1U£,1) — 2R (ex) — %V o @, — £12R) (ex) — 4@ o CI)S> @ dS| <Ce| ¢||,-
JTne
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(7) A similar computation to Lemma 3.5 and the scaled trace inequality yield

el [ G [e(QY) — e e(TV) (ex)]n @ dS

Ine

<Cem(e) ¢,

(8) A similar argument shows

CZTG(Q@))%'QD dS

Ine

<Celn(e) | ¢|..

9) Furthermore, the remaining terms can be estimated by Holder’s inequality, the scaled trace
inequality and Lemma 3.5 item (3) with m = d — 1 and m = d respectively, to deduce

2 / (VU — &'V (RV) (ex)]n- dS| < Cé gL,
T

Ne

d
<Célllgl..

yg/ [VU® — &'V (R?) (ex)|n- ¢ dS

ITne

Hence, we conclude ||G§H <Celn(e™).
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