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Abstract

Purpose – The variance between the winning bid and the owner’s estimated cost (OEC) is one of the
construction management risks in the pre-tendering phase. The study aims to enhance the quality of the
owner’s estimation for predicting precisely the contract cost at the pre-tendering phase and avoiding future
issues that arise through the construction phase.
Design/methodology/approach – This paper integrated artificial neural networks (ANN), deep neural
networks (DNN) and time series (TS) techniques to estimate the ratio of a low bid to the OEC (R) for different
size contracts and three types of contracts (building, electric and mechanic) accurately based on 94 contracts
from King Saud University. The ANN and DNNmodels were evaluated using mean absolute percentage error
(MAPE), mean sum square error (MSSE) and root mean sums square error (RMSSE).
Findings – The main finding is that the ANN provides high accuracy with MAPE, MSSE and RMSSE a
2.94%, 0.0015 and 0.039, respectively. The DNN’s precision was high, with an RMSSE of 0.15 on average.
Practical implications – The owner and consultant are expected to use the study’s findings to create more
accuracy of the owner’s estimate and decrease the difference between the owner’s estimate and the lowest
submitted offer for better decision-making.
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Originality/value – This study fills the knowledge gap by developing an ANNmodel to handle missing TS
data and forecasting the difference between a low bid and an OEC at the pre-tendering phase.
Keywords Contract, Bid, Cost, Deep, ANN, Time series
Paper type Research paper

1. Introduction
Compared to other industries, the construction sector has one of the highest annual business
failure rates associated with adverse effects (Chapman, 2001; Mahamid, 2018). Construction
management needs to address many uncertainties and risks. The difference between the
winning bid and the owner’s estimated cost (OEC) is one of these risks through a pre-tendering
phase. Thewinning bid is often the onewith the lowest bid submitted to a tender. In the United
States, the low bid method is widely utilized to award construction contracts at the price of the
lowest responding bid (Gransberg and Gransberg, 2020). A significant variation between the
lowest bid (winning bid) and the OEC is problematic for both parties. Such variances may
negatively affect contract delays or cancellations, scope reductions and public distrust (Baek
et al., 2019). For example, a high bid much higher than the OEC is likely to result in problems
with budget allocation,whichmight delay or terminate the project, while a low bid significantly
lower than theOEC could result in cost overruns (Li et al., 2022;WSDOT, 2011). Cost estimation
is also crucial for initiating the project and dramatically impacts performance. Therefore,
it is essential to provide full justification for cost variation to prevent themisuse of public funds
and ensure the greatest possible economic outcome for all stakeholders (Carr, 2005).

TheFederalHighwayAgency (FHWA2004) recommended that thedifference ratio between
the low bid and OEC be within ±10% (Li et al., 2022). Moreover, the California Department
of Transportation (Caltrans) devised a performance metric comparing the OEC to low bids (i.e.
low bids within 10% of the OEC) to assess the precision of cost estimation (Caltrans, Planning
Cost Estimate, 2006). However, several agencies have needed support achieving and
maintaining an acceptable range of low bids to OEC for their highway projects (Li et al., 2021).

Only some studies (Li et al., 2022) attempted to improve the quality of the OEC and enhance
estimation processing by performing model forecasting of the ratio of a low bid to OEC (R)
using time series (TS) techniques. However, thismodelwas only used for highway construction,
and it needed to consider the amount of the contract cost and different contract types.

For this paper, the R data for 94 contracts was collected from 2010 to 2021 for the building,
electric and mechanic contracts. However, there is a significant shortage of information on
the TS of the R for the different OECs of the three types of contracts. This shortage causes the
deep neural networks (DNN) to be unable to predict future TS using long-short-termmemory
(LSTM),which hasmerit in dealingwith the non-stationary and nonlinear characteristics of a
TS (Bala and Singh, 2019). The integrated artificial neural networks (ANN) model is
developed to address this lack of information issues. The techniques of maximizing data
(Zayed, 2001) and improving accuracy (Pasini, 2015) were integrated into the developedANN
model. The input layer of the developedANNmodel has a specific pattern or configuration to
allow the generation of the TS for different amounts of OEC for the three contract types from
2010 to 2021. The improvement of input layer methodology has not been studied before and
contributes to this paper. The DNN model was used to forecast the future TS using this
generated data. The configuration that followed in the input layerwith the techniques used in
the developed ANNmodel will assist researchers and engineers in establishing a reasonable
TS for different applications. Moreover, the paper’s results will improve the accuracy of the
OEC for assessing the contract cost at the pre-tendering phase and preventing future
problems that develop during the construction phase (such as owner financial difficulties or
cost overruns for contractors). The significance of the study is enhanced cost estimation,
improved decision-making, early identification of cost deviations and optimization of
bidding strategies.
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2. Literature review
Several studies dealt with the difference between the low bid and OEC through the pre-
tendering phase was investigated by examining and investigating the causes that increase
these differences (Alsugair, 2022; Flyvbjerg et al., 2003; Saqer et al., 2020). On the other hand,
several studies were considered in the forecastedmodel of cost deviation; regression analysis
was used by Li et al. (2021) to measure the effects of influential factors on the cost deviation
and identify factors impacting it. The explanatory model was developed using previously
collected costs between the years 2011 and 2015 for Louisiana highway construction
contracts. They stated that the level of bidding competition significantly influences cost
deviation, the scope of the contract, the number of activities, the crude oil price and the value
of the paving projects. Li et al. (2022) analyzed and investigated the identifying risk variables
affecting the accuracy of the client’s estimate for highway projects to predict the ratio of a low
bid to the OEC using the TS model.

TS forecasting can be performed in various ways, commonly grouped into traditional
statistical and nonlinear models. The first categories represent a linear analysis of the
previous observations and include average, exponential smoothing and autoregressive
integrated moving averages (ARIMA). Table 1 shows the studies of the TS for traditional
statistics. The nonlinear method aims to overcome the linear limitation of TS. Khashei and
Bijari (2011) summarized the methods as the bilinear model, the threshold autoregressive
(TAR) model, the autoregressive conditional heteroscedastic (ARCH) model, general
autoregressive conditional heteroscedastic (GARCH), chaotic dynamics and ANN. Table 2

References Method Application

Hwang (2011) ARMA Construction cost
Corrêa et al. (2016) Auto-Regressive Integrated Moving Average with eXogenous

variables and Generalized Auto-Regressive Conditional
Heteroscedasticity (WARIMAX-GARCH)

Information
technology

Zhao et al. (2020) Casual method þ Seasonal ARIMA (SARIMA) Building cost index
Zhao et al. (2019) Exponential smoothing models (ESM) þ SARIMA Building cost index
Rubio et al. (2016) Fuzzy Time Series (FTS) Economic

applications
Naim et al. (2018) BATS (Exponential smoothing state space with Box-Cox

transformation, ARMA errors, Trend and Seasonal
components) þ TBATS (Trigonometric Exponential smoothing
state space with Box-Cox transformation, ARMA errors, Trend
and Seasonal components)

Natural gas
consumption

Source(s): Authors’ own work

References Method Application

Almonacid et al. (2013) ANN Energy science
Camelo et al. (2018) ANN Wing generation
Iwana and Uchida (2021) (DNN) Data augmentation of TS
Kardakos et al. (2013) ANN Power generation
Khashei and Bijari (2011) ARIMA þ ANN Information technology
Withington et al. (2021) ANN Expert system application
Pai and Lin (2005) ARIMA þ Support vector machines model (SVM) Stock price
Chen and Wang (2007) SARIMA þ SVM Industry application
Khashei et al. (2009) ANN þ ARIMA þ Fuzzy logic Information technology
Source(s): Authors’ own work

Table 1.
Studies dealt with the

traditional method
in TS

Table 2.
Research that applied
the nonlinear method

to TS
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summarizes the research of the nonlinear methods on TS. In addition, traditional TS
approaches like ARIMA, SARIMA (Seasonal ARIMA) and ETS (error, trend, seasonality
model) are made to manage a TS with a single seasonality; however, when several seasons
occur, these techniques do not perform as well (Naim et al., 2018).

Rashid and Louis (2019) illustrated the merits of using DNN. They stated that recent
developments in DNN, specifically recurrent neural networks (RNN), present new
opportunities to classify sequential TS data with recurrent lateral connections. In
addition, Bala and Singh (2019) stated that a TS’s non-stationary and nonlinear
characteristics could be learned by a LSTM network, reducing predicting error. The
LSTM is utilized as one layer in DNN. Therefore, the DNN was utilized to forecast TS.

TS often suffer from missing data and are thus difficult to use in forecasting. There are
conventional and modern techniques to deal with the missing data. Table 3 shows these
methods. However, the methods may not handle a relative amount of missing data, affecting
the analysis’s accuracy. In addition, some of the methods, such as DNN, require big data for
missing data treatment.

In this paper, the ANN was developed to deal with missing data and ensure the handling
of missing data without affecting the data quality. On the other hand, the limited and
insufficient availability of the required data represents a challenge in its usage of ANN.
Maweu et al. (2021) stated that data scarcity and class imbalance are common occurrences in
healthcare datasets and undermine the classification performance of machine learning
models. The maximize data technique (Pasini, 2015) and the improved data quality method
(Zayed, 2001)were used to overcome theminor data issues. However, the two techniquesmay
not be adequate for TS data. The new contribution in this paper, the time variable, whichwas
changed from 2010 to 2021, was decomposed into 12 variables (one for each year). These
variables were changed to zero or one depending on the used data. Therefore, the ANN was
utilized to compute TS from 2010 to 2021 based on the 94 collected data after implementing
the maximize data innovation (Pasini, 2015) and evaluated using mean absolute percentage
error (MAPE),mean sum square error (MSSE) and rootmean sum square error (RMSSE). The
reason ANNs are used to generate TS is that one key benefit of ANNmodels over other types
of nonlinear models is that they are universal approximators that can estimate a broad class
of functions with high accuracy. Their strength derives from the information in the data
being processed in parallel (Khashei and Bijari, 2011).

Reference Method

Conventional techniques
Andridge and Little (2010) Hot and Cold Deck Imputation
Strike et al. (2001), Dhevi (2014) Mean Imputation
Little and Rubin (2019) Multiple Imputation

Modern techniques
Lobato et al. (2015), Aydilek et al. (2013),
Azadeh et al. (2013)

Genetic Algorithm Optimization Based

Wu et al. (2015) Support Vector Machine
Shao et al. (2014) Interpolation
Banbura et al. (2014) Maximum Likelihood
Amiri et al. (2016) Fuzzy-Rough Set
Sitaram et al. (2015) Similarity Measure
Zhang et al. (2022) Bayesian Dynamic Regression
Torres et al. (2021) DNN
Source(s): Authors’ own work

Table 3.
Handling techniques of
time series
missing data
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3. Methodology
The methodology utilized ANN and DNN to predict a contract cost more accurately.
Therefore, it mainly consists of five steps: (1) collect data to create the database; (2)
implement size and normality test to ensure the collected sample represents the actual
sample; (3) develop an ANN to compute additional current TS; (4) generate TS; (5) establish a
DNN to forecast the future TS. The flow chart of the methodology is shown in Figure 1.

3.1 Collect data
The OEC and contract value difference is affected by many factors and causes that differ
from one country to another and from one work environment to another. Therefore, limiting
the study to a specific environment was necessary to facilitate the study by taking
information and neutralizing some known factors (including administrative procedures) and
unknown factors. Thus, KSU’s (King Saud University) projects in Riyadh, KSA (Kingdom of
Saudi Arabia) determined the field of study.

The cost data of cost estimation accuracy covers 94 projects completed at KSU between
2010 and 2021. The projects are classified as building, highway, electric and mechanic. The
data contained the initial estimated cost, year of the award, contract amount and project type.
Table 4 presents 94 project data. The initial estimated cost is difficult to acquire. The
absolute cost deviation can be estimated as Eq. (1), which is shown in the sixth column.

R ¼ Low bid
Owner0estimate cost

(1)

Collect data

Develop ANN 

• Establish ANN model’ structure
• Maximize data
• First analysis

Run ANN model
Assess the ANN model
Improve the training data

• Second analysis
Run ANN model
Assess the ANN model

Implement size and normality test

Generate TS from2010 to 2021 using ANN model

Forecast future TS using DNN

End 

Source(s): Authors own work

Figure 1.
Methodology’s

flow chart
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3.2 Implement size and normality test
As the sample space (construction projects) is ample and unknown, the sample size can be
computed using Eq. (2) (Badawy et al., 2022).

No. Project Time
CC

(M SAR)
OEC

(M SAR) R No. Project Time
CC

(MSAR)
OEC

(M SAR) R

1 Building 2013 0.207 0.250 0.830 48 Building 2019 0.498 0.499 0.999
2 2013 0.285 0.285 1.000 49 2018 0.285 0.290 0.983
3 2014 0.241 0.250 0.965 50 2018 0.297 0.297 1.000
4 2014 140.727 200.000 0.704 51 2017 0.297 0.297 1.000
5 2014 0.404 0.990 0.408 52 2017 0.285 0.300 0.950
6 2014 0.321 0.380 0.845 53 2018 0.248 0.239 1.037
7 2017 0.155 0.240 0.644 54 2018 0.230 0.230 1.000
8 2017 0.075 0.075 0.996 55 2017 0.247 0.450 0.550
9 2017 32.142 35.000 0.918 56 2017 0.469 0.490 0.957
10 2017 0.288 0.288 1.000 57 2018 0.499 0.499 1.000
11 2018 0.018 0.018 1.011 58 2018 0.478 0.478 1.000
12 2018 0.168 0.180 0.932 59 2018 0.451 0.451 1.000
13 2018 0.265 0.300 0.885 60 Electric 2018 2.849 3.500 0.814
14 2018 0.087 0.610 0.143 61 2018 0.227 0.260 0.872
15 2018 0.480 0.500 0.960 62 2018 0.105 0.135 0.778
16 2018 0.257 0.260 0.988 63 2015 0.479 0.490 0.978
17 2018 0.690 0.700 0.986 64 2018 0.290 0.300 0.967
18 2018 0.206 0.207 0.997 65 2018 0.295 0.300 0.983
19 2018 0.180 0.180 1.000 66 2019 5.782 6.000 0.964
20 2019 0.489 0.490 0.998 67 2020 0.464 0.500 0.928
21 2019 0.491 0.495 0.993 68 2020 0.482 0.500 0.965
22 2019 0.482 0.485 0.994 69 2017 0.300 0.300 1.000
23 2019 0.490 0.495 0.989 70 2017 0.300 0.300 1.000
24 2019 11.835 10.000 1.184 71 2017 0.096 0.120 0.802
25 2019 0.232 0.299 0.776 72 Mechanical 2010 8.850 10.00 0.885
26 2014 0.497 0.498 0.998 73 2011 21.49 24.00 0.895
27 2014 0.210 0.230 0.912 74 2011 13.96 10.00 1.396
28 2014 0.464 0.500 0.927 75 2018 0.353 0.353 1.000
29 2015 0.479 0.490 0.978 76 2017 0.260 0.270 0.961
30 2015 0.320 0.350 0.915 77 2017 0.291 0.299 0.973
31 2015 0.769 0.800 0.961 78 2017 0.260 0.270 0.961
32 2015 0.493 0.498 0.989 79 2017 0.593 0.593 1.000
33 2015 0.498 0.499 0.998 80 2017 0.259 0.285 0.910
34 2015 0.700 0.800 0.875 81 2017 0.296 0.298 0.992
35 2016 0.492 0.498 0.987 82 2018 0.072 0.075 0.955
36 2017 0.260 0.275 0.945 83 2018 0.036 0.040 0.888
37 2018 0.221 0.240 0.922 84 2018 0.593 0.600 0.989
38 2018 0.186 0.200 0.929 85 2018 0.296 0.300 0.987
39 2018 0.223 0.235 0.947 86 2018 0.042 0.061 0.683
40 2018 0.097 0.099 0.979 87 2018 0.036 0.038 0.934
41 2018 0.040 0.042 0.950 88 2018 0.090 0.090 1.000
42 2019 0.475 0.480 0.989 89 2018 0.072 0.120 0.597
43 2019 0.375 0.390 0.962 90 2019 0.229 0.320 0.717
44 2019 0.067 0.070 0.963 91 2019 0.375 0.375 1.000
45 2021 34.669 35.000 0.991 92 2019 0.229 0.320 0.717
46 2021 59.139 65.000 0.910 93 2018 0.460 0.490 0.938
47 2019 0.469 0.469 1.000 94 2019 0.116 0.135 0.853
Source(s): Authors’ own work

Table 4.
Collected data
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Sample size ¼ Z 2pð1� pÞ
C2 (2)

where Z is a value corresponding to a 95% confidence level and is equal to 1.96 and p
represents the probability choice of 0.5. C is the confidence interval, which should be less than
0.2 (Badawy et al., 2022). Therefore, the minimum sample size for a confidence level of 95%
was 44, which was less than the number of data (97 data). The low bid to OEC data ratio
should be a normal distribution regarding project classifications. Hence, the data were tested
using Kolmogorovand Shapiro tests in SPSS. The results revealed that the significant value
of the two tests for the building, electric and mechanic projects was less than 0.05, as shown
in Table 5. Therefore, the cost deviation for the three project types followed a normal
distribution. However, the two tests cannot apply to highway projects due to the limited
number of highway projects.

3.3 Develop ANN model
The primary purpose of the developed ANN model is to compute the TS of the ratio of the
lower bid to OEC in several OEC and project types. The ANN model generally consists of
three layers: input, hidden and output layer. The hidden layer also comprises one or two
layers with different nodes (neurons). ANN is a method that computes the output by
learning an algorithm from any function (Loy, 2019). The benefits of applying the ANN are
simplicity and enables dealingwith the nominal data such as the project type and time in this
paper. The SPSS IBM software can sketch an ANN model with bias values and weight
connections between neurons. Also, the SPSS IBM software, which offers relative errors at
the two data with anticipated result values, simplifies choosing the training and testing data
percentage.

3.3.1 Establish the ANNmodel’ structure.Data are split into training and testing datasets.
Data from January 2010 to December 2017 are used for fitting bid distributions and training
the neural network. The constructed network forecasts low bids in 2018 (out-of-sample
predictability). No unique relation or rule controls the number of neurons at hidden layers.
Zayed (2001) suggested a formula to determine the neurons of hidden layers as 2mþ 1, where
m is the number of neurons at the input layer. The data utilized in the input layer was OEC,
time (year of award) and project time,while the Rwas considered the output. The time ranged
from 2010 to 2021 andwas considered nominal data in theANNmodel as factorswhose value
changed to zero or one. Therefore, the time can be represented in the ANN as 12 neurons
(neurons for each year). In addition, the project types were considered as the nominal data
and considered in the input layer of the ANNmodel as three neurons: B (building), E (electric)
andM (Mechanic). Hence, the number of neurons (m) was 16 (1 for OEC, 12 for time and 3 for
project types).

Tests of normality

Project type
Kolmogorov–Smirnova Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Building 0.296 59 0.000 0.560 59 0.000
Electric 0.282 12 0.009 0.829 12 0.020
Mechanic 0.227 24 0.002 0.782 24 0.000
Note(s): a. Lilliefors significance correction
Source(s): Authors’ own work

Table 5.
Normality test
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Regarding the hidden layer, two layers with thirty-three neurons of each layer (2mþ 1) were
considered in the ANN model. The ANN model’s structures are shown in Figure 2. For
example, when using data from the project, No. 1, as shown in Table 4, was used in the ANN
model, the neurons of the OEC, B, and 2013 were set as 0.207, 1, and 1, respectively, while the
other neurons of the input layers were set as zero. On the other hand, the R0 neuronwas set as
0.830 in the output layer.

3.3.2Maximize data. Because the data were respectively small, consisting of 94 data sets,
the data was augmented using the method introduced by (Pasini, 2015). The data was
divided, in this paper, into 10 subgroups, and one of them was considered as test data while
the other was train data and inserted as fully train data. Based on the location of the test data
subgroup, the 10 train data groups were generated, as shown in Figure 3. The first and
second analyses were implemented, as illustrated in the following section.

3.3.3 First analysis. The first analysis consists of three steps: running the ANN model,
assessing the ANN model and enhancing training data.

3.3.3.1 Run ANNmodel. The ANNmodel was run several times for each train data group,
and the ANN model for each group was then taken as the average computed of the R (Rcom).
Notably, the structure of the ANN model for the 10 train groups is the same. However, the
weight values of the connection among the layers were different. Therefore, the ANNmodels
for the 10 groups differed; there were 10 ANN models (ANN model per train data group).

3.3.3.2 Assess the ANN models. The ANN model was evaluated using three statistic
indicators: MAPE, MSSE and RMSSE. The formula of the three indicators was shown in
Eq. (3)–(5), respectively, as:

OC
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2021
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epyttcejorP

Bias-i
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H2:1

H2:2
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H2:33

Bias-o

R

Input layer Hidden layer Output layer

OEC

Source(s): Authors own work

Figure 2.
ANN model’ structures
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MAPE ¼ 1
n

Xn

i¼1

jRobs � Rcomj
Robs

3 100 (3)

MSSE ¼
Pn
i¼1

ðRobs � RcomÞ2

n
(4)

RMSSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðRobs � RcomÞ2

n

vuuut
(5)

whereRobs andRcom are the observed and computed of the R, respectively, and n is the data set
number in the train data group.

3.3.3.3 Improve the training data. For each training data group, the training data was
improved by deleting the abnormal data, which provided a significant error. The purpose of
deleting the data with a critical residual error. Hence, the absolute percentage error (APE)
was utilized to identify the abnormal data, and the APE can be computed using Eq. (6) as:

APEi ¼ jRobs−i � Rcom−ij
Robs � i

(6)

where Robs−i is the observed R of ith contact, and Rcom−i is the computed R of the ith case
(contract) by the ANN model. Badawy (2020) considers 0.2 as a threshold value for the
allowable and not allowable relative error. In this paper, the data with anAPEi value of more
than 0.2 is considered abnormal and deleted from the train data group. After the deletion of
the abnormal data, the modified train data group was established and utilized in the second
analysis.
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3.3.4 Second analysis. The ANN model was trained through the ten modified train data
groups and performed the 10 ANN models. The output of the models was evaluated using
MAPE, MSSE and RMSSE. One of the 10 ANN models was used to generate the TS.

3.4 Generate TS from 2010 to 2021 using the ANN model
The appropriateANNmodelwas utilized to generate theTS of the R from 2010 to 2021 for the
three types of projects (building, electric and mechanic) and several OECs (10,000 SAR,
100,000 SAR, 1,000,000 SAR, 10,000,000 and 100,000,000SAR).

3.5 Forecast TS using DNN
DNN was utilized for each TS using the ANN model to predict the future TS. The DNN
structure consists of the five-layer input, LSTM, drop, full connection function and
regression, as shown in Figure 4 (MATLAB, 2021). The input layer represents the TS
generated by the ANN model. The data type is a sequence due to the nature of the TS.
Regarding the LSTM layer, the RNN has the issue of vanishing gradient learning; gradient
learning represents the primary component of principle learning. Hochreiter and
Schmidhuber (1997) designed the LSTM to overcome the vanishing gradient issue. An
LSTM layer learns the long-term relationships between the sequence data and the time step
in the series. The layer’s addition function can improve gradient flow over extended training
sequences. In addition, the DNN has a large number of layers. However, overfitting is a
serious concern in such networks since merging the prediction of many outcomes is difficult.
Thus, Drop is considered the problem-solving technique in such cases. The fundamental idea
is to remove weight values randomly and of the connections from the neural networkwhile it
is being trained. As a result, units are prevented from over-co-adapting (Srivastava
et al., 2014).

The TS was divided into training and testing TS at 65 and 35%, respectively. The
training and testing data were standardized based on the mean of the ratio (Rmean) and
standardized deviation (std), as shown in Eq. (7):

Rstandradized−i ¼ Ri � Rmean

std
(7)

The DNN model was evaluated by computing the RMSSE between Robs and Rfor throughout
the testing process using Eq. (3). It should be noted that the output data of the DNN should be
unstandardized before they implement the evaluation processes. Unstandardized output
data can be performed using Eq. (8) as

Rfor ¼
�
Rfor
standardized−i

�
ðstdÞ þ Rmean (8)

Sequence input 
layer

Long-short term 
memory layer

Drop out layer

Fully connected 
layer

Regression layer

Source(s): Authors own work

Figure 4.
DNN processes used in
the TS within
MATLAB
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4. Results and discussions
There is a question about usingTS to predictmissing data instead of the ANN.The impact of
missing data onTS analysis increases as the proportion ofmissing values grows. TheTS can
handle low missing data (5%) accurately. At the same time, accuracy degenerates when the
proportion of missing values exceeds 10% (Junger and Leonm, 2015). In this paper,
the missing data for TS after taking the average R per year is shown in Table 6. Therefore,
the TS data used in this paper has a significant amount of missing data, reaching at least
30%. Therefore, TS cannot handle the extensive missing data (more than 10%).

Figure 5 shows the results assessments of the ten ANN models for the first and second
analyses in terms of MAPE; its values in the first analysis range from 4% to 14.485. On the
other hand, the MAPE values of the second analysis do not exceed 5.2%, which is close to
5%. It is included that the ANN models’ accuracy is very accurate based on the accuracy
classification. In addition, Figure 8 also shows the significant reduction of the MAPE of the
models between the first and second analyses. In other words, deleting the abnormal data in
the second analysis increases the accuracy of the ANN models. The ANN3 model provides
the minimum value of MAPE for the two analyses. On the other hand, the ANN8 and ANN2
provided the maximum MAPE value for the first and second analyses, respectively.

For evaluating the ANN models in terms of MSSE and RMSSE, Figure 6 displays the
MSSE of the ten ANN models. The two analyses’ values were generally close to zero,
indicating that the observed and computed R values were identical. For the first analysis, the
MSSE was maximum at ANN8 (0.0154) and minimum value at the ANN1 model.
Furthermore, for the second analysis, the MSSE of the ANN models was less than 0.002,
except for the ANN2 model, whose value was 0.005. Figure 7 shows the RMSSE of the ten
models for the two analyses. The minimum and maximum of the RMSSE for the first

Project type Building Electric Mechanic

Proportion of missing data 33% 41.67% 58.33%
Source(s): Authors’ own work
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analysis were 0.007 (ANN1) and 0.12 (ANN8), respectively. Moreover, the ANN1 and ANN2
provide the minimum (0.024) and maximum values (0.071) for the second analysis.

The average MAPE for the first and second analyses was 11.11 and 2.94%, respectively,
as shown in Figure 8. Deleting the abnormal data reduces theMAPEby 8.17%on average. In
terms ofMSSE, the average value of theMSSE andRMSSEwas 0.109 and 0.104, respectively,
for the first analysis. In addition, the value for the second analysis was 0.0016 and 0.039.
Deleting the abnormal data in the second analysis decreases the MSSE and RMSSE by 0.108
and 0.065 on average, respectively. Based on the high accuracy of theANNmodels, especially
in the second analysis, the ANNmodels can be utilized to compute the TS of the R from 2010
to 2021 for different OECs.

The ANN2 model was considered to generate TS of the R due to several reasons: (1) the
data training contains all years (2010–2021), the other ANN models have lost in one or more
years, (2) the MAPE, MSSE and RMSSE of the ANN2 models provide a maximum value
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compared the other model. Hence, the computed R values are a conservative and upper
estimate. Using the SPSS and setting the OEC, the R TSwas generated for Building, Electric,
andMechanic contracts, as shown in Figures 9–11, respectively. In general, the R0 TS leads to
a slight increase.

For building contracts, the R TS for OEC of 10,000, 1,000,000 and 100,000,000 SAR has a
trend to stable, and the R-value was less than one (contract cost is lower than the owner
estimate cost). On the other hand, the TS for the OEC of 100,000 and 10,000,000 SAR has
notable variance with time, and the R-value exceeds the unit in several years, as shown in
Figure 9.

Regarding the electric contracts, all R TS has a value less than the unit except the OEC of
1,000,000 SAR. In addition, the OEC 10,000, 100,000 and 100,000,000 SAR TS slightly trend
toward increasing with a value less than a unit. However, the TS with the OEC of 1,000,000
and 10,000,000 SAR exhibit evident variance, as shown in Figure 10.
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The TS of the mechanic project shown in Figure 11 has a remarkable change in value
throughout time except for the TS of the OEC 1,000,000 SAR.

Figure 12 shows a typical observed and forecast TS of the ratio lower bid to the OEC
through test data for mechanic contracts with an OEC of 100,000 SAR. The differences
between the two TS were too slight, with an RMSSE of 0.065. Therefore, the DNN model
provides reasonable accuracy for predicting a TS of a Mechanic contract with an OEC of
100,000 SAR. For evaluating the accuracy of the DNNmodel for different contract types and
sizes through the testing process, Figure 13 shows the RMSSE for building, electric and
mechanic, and the OEC ranges from 10,000 SAR to 100,000,000 SAR. In general, the DNN
model provides reasonable accuracy for predicting the R-value, where themaximumvalue of
the RMSSE does not exceed 0.3, representing a small value. The RMSSE increases with
increasing the OEC’s value for the mechanic contract. In other words, the accuracy of the
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DNN model decreases with increasing the OEC. The RMSSE’s performance follows as bell
form for building and electric contracts, with their maximum values at the OEC’s value of
10,000,000 SAR.

For building contracts, the forecasting TS of the R can be categorized into three
classifications: (1) periodic, (2) semi-periodic (slightly increasing of the R with time) and (3)
attenuation series (decreasing of the R with time), as shown in Figure 14. The TS, for OEC
equal to 100,000 SAR, has periodic performance with significant changes in the R-value. The
TS of the OEC is equal to 10,000 SAR, and 10,000,000 SAR has a semi-periodic performance.
The curve periodic time is 13 years and eight years, respectively, varying the R-value range
from 0.88 to 1.04 for the OEC of 10,000 SAR and ranges from 0.44 to 1.3 for the OEC of
10,000,000 SAR. On the other hand, the performance TS of the OEC equal to 1,000,000 SAR
and 100,000,000 SAR decayed to 0.82 and 0.75, respectively. Therefore, the R-value tends to
equal 1 unit for the owner’s estimate of 10,000 SAR and 10,000,000 SAR. The study’s results
are consistent with the Li et al. (2022) study on road projects, as the percentage increases with
time, with the ratio of the lower bid to the OEC ranging from 0.8 to 1.1.
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Regarding the electric contract, the forecasting TS of the R has only a periodic curve with
different periods (T). It is defined as the time that it takes for two successive crests. The T
value for the five-TS (from the OEC5 10,000 SAR to 100,000,000 SAR) was 2, 13.5, 7, 7 and
15 years, respectively, as shown in Figure 15. The R-value ranges from 0.6 to 1.1. The TS of
themechanic contract is similar to theElectric contracts except for theOEC of 100,000 SAR; it
is decayed to the R-value of 0.89. In addition, the TS repeats itself in 15, 2, 16 and 8 years for
the OEC of 10,000 SAR, 1,000,000 SAR, 10,000,000 and 100,000,000 SAR, respectively, as
shown in Figure 16. The TS of the OEC of 10,000,000 SAR and 100,000,000 SAR suffer a
significant change in the R-value, which varies from 0.5 to 1.1 and from 0.6 to 1.0,
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respectively. While the range of the R-value for the OEC of 10,000 SAR and 1,000,000 SAR is
narrow, starting from 0.83 to 1.03 and from 0.93 to 1.09.

According to the above information, the TS of the electric and mechanic contract are
stationarywith time, which repeats itself for several periods. However, the TS of the building
contracts sometimes suffers from non-periodic performance, and the R increases with time,
especially in a building contract with an OEC of 10,000,000 SAR. The study’s results are
consistent with the study of (Li et al., 2022) on highway projects, as the percentage increases
with time, with the ratio of the lower bid to the OEC ranging from 0.8 to 1.1. No studies
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performed TS on the relation between OEC and contract cost to implement more discussion
with the study results. For three contracts and the OEC of 100,000,000 SAR, the contract
(project) has an R-value of less than 1.0, where the low bid is less than the owner’s estimate.
As a result, the contract is expensive for both the owner and the contractor. It may result in
disagreements, change orders, financial constraints on the contractor and project cost
overruns (Jahren and Ashe, 1990; Li et al., 2021).

On the other hand, in the three contracts with the OEC of 10,000 SAR, the R-value is close
to 1.0. The contract is close to stable through the construction stage and does not suffer a
heavy burden on the owner or fund difficulties for the contractor. Regarding the remaining
contracts, the R-value remarkably fluctuates around the 1.0 value. The contracts suffer either
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because the contract places a significant responsibility load on the owner to complete the
planned projects on time in cases where R is greater than 1.0 or because the contract is
cumbersome since it may lead to change orders, disagreements, financial pressure on the
contractor and project cost overruns when the R-value is less than 1.0.

5. Conclusion
The paper aims to estimate the ratio of a low bid to an OEC using TS, ANN and DNN to
enhance cost estimation processing in the future. Data from ninety-four contracts were
collected from KSU in Riyadh, KSA, for three contract types (building, electric and
mechanic). After performing the size and normality test, the data were classified into
underestimated, optimum and overestimated data depending on the R-value (ratio of the low
bid to OEC). The underestimated data were considered to develop theANNmodel after using
themaximize techniques to overcome theminor data issues. Then, the evaluation of theANN
models was implemented using MAPE, MSSE and RMSSE indicators to check the accuracy
of the models. After that, the appropriate ANN model was selected and utilized to generate
TS of the R from 2010 to 2021 for the three contract types and different amounts of the OEC.
The generated TS was inserted into the DNN, which divided the TS data into training data
(65%) and testing data (35%). Finally, the forecasting TS was estimated using the DNN for
the three contracts and the different OECs. The finding revealed that the percentage of
underestimated, optimum and over-estimated data was 4.2%, 81.1 and 14.7, respectively.
The ANN models’ MAPE, MSSE and RMSSE were 2.94%, 0.0015, and 0.039, respectively.
The DNN’s results revealed that the three types of contracts with anOEC of 100,000,000 SAR
needmore accurate. However, they are close to the optimum for the OEC of 10,000 SAR. This
study provides the body of knowledge by developing anANN andDNNmodel that enhances
the accuracy of the OEC and narrows the discrepancy between the OEC and the lowest
submitted offer. The owner and consultant should be able to use the study’s findings to create
more precise cost estimates and budget plans for better decision-making.
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