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Abstract
Purpose – The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a
one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves
in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear
advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types
of initial conditions.

Design/methodology/approach – An implicit, first-order accurate in time, finite difference method
valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three
different initial conditions, a first-order time derivative initially equal to zero and several constant wave
speeds.

Findings – The numerical experiments show a very rapid transient from the initial conditions to the
formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and
width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the
triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger
than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the
initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of
nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of
the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been
observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths,
quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity
amplitude.

Originality/value – The blowup of a one-dimensional, bidirectional equation that is a model for the
propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve
conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has
been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear
drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions
for nonzero relaxation times.
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1. Introduction
Most models developed to date for the study of wave propagation in shallow water, such as,
for example, the Korteweg–de Vries (Korteweg and de Vries, 1895) and Benjamin–Bona–
Mahony (BBM) or regularized long-wave (RLW) equations and modifications and
generalizations thereof (Peregrine, 1966, 1967; Benjamin et al., 1972; Ramos, 2016; Ramos
and García L�opez, 2017; Johnson, 1997; Lannes, 2013; Debnath, 1994; Dingemans, 1997),
have been obtained by means of asymptotic methods, Taylor’s series expansions, depth-
averaging techniques (Whitham, 1974; Ramos, 2016; Ramos and García L�opez, 2017), etc.,
and are one-dimensional and unidirectional, i.e. waves propagate only in one direction.

One-dimensional, bidirectional models of wave propagation in shallow water include
Wu’s long-wave model (Wu, 1994) and the two-equation Boussinesq model for the wave
height and flow speed (Boussinesq, 1871, 1872), the good (McKean, 1981) and bad (Yang and
Wang, 2003) Boussinesq equations and modifications thereof (Bona et al., 2002, 2004;
Dutykh and Dias, 2007; Dutykh, 2009; Carter, 2018). It must be noted that one-dimensional
Boussinesq models include fourth-order spatial derivatives, e.g. the (linearly stable) good
Boussinesq equation:

utt ¼ uxx � uxxxx þ u2ð Þxx;

which does not include viscous damping. Other Boussinesq models for surface water waves
include viscosity (LeMeur, 2015).

Bona et al. (2002) derived a four-parameter family of Boussinesq equations for small
amplitude long waves as approximations to the two-dimensional Euler’s equations for
inviscid fluids, studied their linear stability, well-posedness and energy conservation and
argued that linear well-posedness is a natural requirement for the possible physical
relevance of model equations. In a subsequent publication, Bona et al. (2004) showed that
first-order correct models that are linearly well-posed are locally nonlinearly well-posed
and that, in some cases, global well-posedness is established for physical relevant initial
data.

An open problem in fluid dynamics is whether or not the three-dimensional Euler
equations develop singularities in finite time; in addition, there is as yet no proof that
solutions to the Navier–Stokes equations exist and whether or not they are unique. These
problems are part of the Millennium Prize Problems proposed by The Clay Mathematics
Institute of Cambridge, Massachusetts, in 2000.

For the three-dimensional Euler equations, finite-time blowup for nonsmooth initial
conditions has been proven mathematically by Elgindi (2021), but the question of blowup in
finite time for smooth initial conditions is still unresolved. Finite-time blowup for the time-
dependent, axisymmetric Euler equations in cylindrical coordinates has also been reported
in some numerical experiments (Luo and Hou, 2014, 2019) that show a dramatic growth in
the maximum magnitude of the vorticity and suggest the formation of a singularity. Finite-
time blowup has also been observed in other wave propagation problems (Yordanov and
Zhang, 2005; Caffarelli and Friedman, 1986) and nonlinear reaction–diffusion equations, e.g.
Pierre and Schmitt (2000).
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In this paper, blowup of the following one-dimensional nonlinear model equation for
bidirectional wave propagation in shallowwater:

tutt þ ut þ aux þ e upð Þx ¼ muxx þ duxxt; (1)

is numerically studied for t= 0, m= 0, and three different initial conditions, where u(t, x) is
the wave amplitude, t and x denote the time and spatial coordinate, respectively, t can be
interpreted as a relaxation or characteristic memory time, m is the viscosity coefficient, d is
the viscous attenuation (hereon, also referred to as dispersion) coefficient, a is the linear
drift/advection coefficient, and e and p = 1 stand for the coefficient and power of the
nonlinear drift, respectively. Note that, for d ¼ 0, t= 0 and m= 0, equation (1) is a second-
order, semi-linear, hyperbolic equation with two characteristic lines of slope equal to6

ffiffiffim
t

p
.

For d ¼ 0, t ¼ 0 and m= 0, equation (1) is a parabolic equation characterized by an infinite
speed of propagation. On the other hand, for d = 0, t = 0 and m = 0, equation (1) may be
written as tvt þ vut þ aux þ e(up)x ¼ muxx þ dvxx, which indicates that the dynamics of
v(t, x) depends on a linear friction term, i.e. v, and a viscous one, i.e. vxx, where v: ut.

Equation (1) includes a large variety of equations of interest in engineering and science,
e.g. the one-dimensional heat and mass diffusion equations, the linear, first-order wave
equation, the second-order hyperbolic equation, the standard, modified and generalized,
inviscid and viscous Burgers, the standard, modified and generalized, inviscid and viscous
equal-width equations (Onder et al., 2023; Ramos, 2006, 2007), etc. Moreover, as shown in
Part I (Ramos and García L�opez, 2020), equation (1) reduces to that of the standard (p ¼ 2),
modified (p ¼ 3) and generalized (p > 3) inviscid RLW equations when both the relaxation
time and the viscosity coefficient are nil. The standard (Saka et al., 2011; Mittal and Rohila,
2018), modified (Karakoç et al., 2013, 2014, 2015) and generalized (Ramos, 2016; García L�opez
and Ramos, 2015; Ramos and García L�opez, 2017; Karakoç and Zeybek, 2016; Zeybek and
Karakoç, 2019; Karakoç et al., 2022) inviscid RLW equations, as well as the standard,
modified and generalized inviscid equal-width (Onder et al., 2023) equations have been the
subject of a large number of numerical studies aimed at understanding solitary wave
propagation and interactions between solitary waves and assessing the accuracy of
numerical methods by comparing the numerical results with the available analytical
solutions for these equations and their finite number of invariants. By way of contrast, few
analytical and numerical studies on the viscous equal-width (Ramos, 2006, 2007) and
viscous RLW equations (García L�opez and Ramos, 2015) which may be obtained from
equation (1) by setting t ¼ 0, have been reported. This is not surprising because while the
inviscid RLW equation has solitary wave solutions characterized by a constant wave speed
that depends on the wave amplitude, the solutions to the viscous RLW equations exhibit
damping, do not have constant wave speeds and exhibit curved trajectories (García L�opez
and Ramos, 2015).

The dynamics of equation (1) have been previously studied for t= 0, m= 0, ut(0, x)¼ 0
and initial conditions corresponding to the solution of the inviscid generalized RLW
equation as well as initial conditions of the Gaussian type (Ramos and García L�opez, 2020);
the initial conditions considered in Part I are infinitely differentiable and were found to
result in steep propagating fronts and, in some cases, weak blowup. Note that the dispersion
term in equation (1) is analogous to that of the inviscid generalized RLW equation and
contains second-order spatial derivatives but not fourth-order ones (compare with the good
Boussinesq equation above).

Equation (1) can also be written as tutt þ ut � duxxt ¼ (F (u, ux))x, where F (u, ux) ¼
�au� eup þ mux, which is similar to that which appears in models of passive and active,
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i.e. “smart,” vibration devices constructed from polymer composites, i.e. elastomers filled
with carbon black and/or silica or with active elements (Banks et al., 1997), the
longitudinal displacement in homogeneous viscoelastic bars of uniform cross section
(Zhijian and Changming, 1997), and the deformation of viscoelastic materials of the rate
type (Yang and Wang, 2003). As indicated in Part I, equation (1) also includes some of the
model equations used in nonlinear acoustics in viscous and heat-conducting media with
relaxation and absorption, impulsive motions of viscoelastic fluids, dynamics of second-
order fluids, low-frequency seismic effects on fluid-saturated reservoirs, etc. (Ramos and
García L�opez, 2020.)

A one-dimensional equation analogous to equation (1) but without the linear and
nonlinear first-order spatial derivative terms has also been used to model nerve conduction
(Rinzel and Keller, 1973; Keener and Sneyd, 2009) and heat transfer processes in very small
devices and/or at very high rates (Joseph and Preziosi, 1989, 1990). A generalization of
equation (1) in two dimensions which does not include the linear and nonlinear advection
terms has also been studied numerically by means of the differential quadrature method by
Mittal and Dahiya (2018).

Depending on the initial conditions and parameters that appear in equation (1), its
Cauchy initial-value problem may exhibit blowup in finite time, even if it is linearly well-
posed. Furthermore, the first term in the left-hand side of equation (1) may be interpreted
as a memory or relaxation term, and its introduction results in a second-order hyperbolic
operator, which together with the nonlinearity appearing in that equation, may result in a
blowup phenomenon analogous to that observed in the hyperbolic Burgers equation
(Escudero, 2007), which may be obtained from equation (1) for a ¼ 1, d ¼ 0, p ¼ 2 and
e ¼ 1

2.
It must be pointed out that the hyperbolic Burgers equation used by Escudero (2007)

cannot be obtained from the well-known viscous Burgers equation (Burgers, 1948) with a
delayed stress because a first-order Taylor’s series expansion approximation of the stress
results in a Maxwell–Cattaneo model (Jou et al., 1985; Joseph and Preziosi, 1989, 1990) that
includes further nonlinearities associated with the time-derivative of the first-order
hyperbolic operator that appears in Burgers equation. However, the hyperbolic Burgers
equation analyzed by Escudero (2007) may be interpreted as a model of phenomena
exhibiting relaxation and/or memory (Khonkin, 1980; Khonkin and Orlov, 1993; Rosenau,
1993).

The paper has been arranged as follows. In Section 2, ordinary differential equations for
the mass and potential energy of the solution to equation (1) are derived as functions of the
stretching and kinetic energies and the parameters that appear in that equation and the
initial conditions; these equations differ from and are much simpler than those presented in
Part I (Ramos and García L�opez, 2020) where the reader may also find the analytical solution
to equation (1). In Section 2, the three types of initial conditions considered here with
ut(0, x)¼ 0, i.e. for constant mass, are reported, and the potential and stretching energies are
determined. Two of the initial conditions are continuous; the one corresponding to a
Gaussian distribution is continuously differentiable, whereas that of triangular conditions is
piecewise smooth. The third type of initial conditions is also piecewise smooth but has not
classical first-order spatial derivatives at the locations of the vertical sides of the rectangle.
These three conditions contain the same mass and are used to determine the effects of their
amplitude, smoothness and width on the wave dynamics and blowup in finite time. The
numerical method used in this study is the same as that used in Part I to determine the wave
dynamics of equation (1) in the absence of blowup and is summarized in Section 2. In Section 3,
the results of some numerical experiments on blowup with homogeneous Dirichlet boundary
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conditions are reported for the three initial conditions considered in this paper, and several
values of the relaxation time, viscosity coefficient, linear drift velocity and the coefficient and
power of the nonlinear advection term. A final section summarizes the main findings of the
paper.

2. Formulation
For d ¼ 0, and t = 0 and m = 0, equation (1) is a second-order, quasilinear, hyperbolic
equation characterized by two characteristic lines along which the velocity is c ¼ 6

ffiffiffim
t

p
. In

addition, equation (1) contains a linear advection coefficient, a, and d has dimensions of
length squared that defines a dispersion time equal to

ffiffi
d

p
a . By analogy with aerodynamics,

the conditions jaj>jcj and jaj<jcj correspond to supersonic and subsonic propagation,
respectively.

Equation (1) is also characterized by the relaxation time t and a diffusion–dispersion
time equal to d

m which results from the balance between the diffusion and dispersion terms in
that equation. Therefore, the dynamics of equation (1) depends on three time scales, i.e. t, dm
and

ffiffi
d

p
a , a length scale equal to

ffiffiffi
d

p
, and any other length scale introduced by the initial

conditions.
Although equation (1) may be interpreted as a dimensionless model equation for one-

dimensional, bidirectional, nonlinear wave propagation in nonlinear (for e = 0 and p > 1)
dissipative and dispersive media with memory/relaxation, it is possible, upon introducing L,
T and U as characteristic time, length and velocity scales, respectively, to write that
equation as:

tutt þ ut þ ux þ upð Þx ¼ muxx þ uxxt; (2)

upon scaling u ! u
U, x ! x

L and t ! t
T, where, for the sake of convenience, the same symbols

have been used for both the dimensional and the dimensionless variables, U ¼ a
e

� � 1
p�1,

L ¼ ffiffiffi
d

p
and T ¼

ffiffi
d

p
a . This scaling is only valid for a = 0; if this condition is not met, one

may useU ¼ ffiffiffim
t

p
, L ¼ ffiffiffi

d
p

andT ¼
ffiffiffi
d
m

q
. Other scalings are also possible.

Even though equation (2) depends on fewer parameters than equation (1), in this paper,
we shall be concerned with equation (1), so that we can illustrate the dynamics of that
equation as a function of t, a, p and m for e ¼ d¼ 1, and the three different types of smooth
and nonsmooth initial conditions discussed in Section 2.3.

As indicated in Part I, equation (1) has a solitary wave solution of the inverse hyperbolic
cosine type [cf. equation (3) of Part I] analogous to those of the RLW and modified and
generalized RLW equations, if c ¼ aþ 2 e

pþ1A
p�1 ¼ 6

ffiffiffim
t

p
, where A and c denote the

solitary wave’s amplitude and speed, respectively, for p = 1. This implies that this inverse
hyperbolic cosine solution is only physically valid for

ffiffiffim
t

p
> a, i.e. supersonic conditions,

and that the wave speed only depends on the ratio of the viscosity coefficient to the
relaxation time, whereas, for the inviscid RLW and modified and generalized, inviscid RLW
equations, i.e. equation (1) with m ¼ t ¼ 0, the wave speed depends on a, p, d, e and the
wave’s amplitude.

2.1 Mass conservation
As shown in Part I, the spatial integration of equation (1) subject to u(t,61)¼ ux(t,61)¼
0 yields:
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t
d2M
dt2

tð Þ þ dM
dt

tð Þ ¼ 0; (3)

whose solution is as follows:

M tð Þ �
ð1
�1

u t; xð Þdx ¼
ð1
�1

u 0; xð Þ þ t 1� exp � t
t

� �� �
ut 0; xð Þ

� �
dx (4)

whereM(t) will be hereon referred to as the mass.
Equation (4) indicates that the mass evolves from an initial value M 0ð Þ ¼ Ð1

�1u 0; xð Þdx to
M 1ð Þ ¼ Ð1

�1 u 0; xð Þ þ tut 0; xð Þð Þdx, and, therefore, mass is not conserved unless t ¼ 0,
ut(0, x) ¼ 0 or

Ð1
�1ut 0; xð Þdx. Equation (4) also indicates that M(t) increases with time ifÐ1

�1ut 0; xð Þdx > 0 and t= 0.

2.2 Energy conservation
In Part I, a rather long formulation was presented to determine the evolution of the potential
energy associated with equation (1). Such a formulation was found very useful to analyze
the wave dynamics in the absence of blowup as shown in Figures 3, 6, 10 and 13 of Part I. In
this paper, a much simpler formulation which may also be obtained from equations (6) to
(10) of Part I after lengthy algebra is reported.

Multiplication of equation (1) by u(t, x) and integration of the resulting equation subject
to the same boundary conditions as above, i.e. u(t, 61) ¼ ux(t, 61) ¼ 0, yields the
following:

E tð Þ ¼ E 0ð Þ þ t
dE
dt

0ð Þ þ d

t
D 0ð Þ

� �
1� exp � t

t

� �� �

� d

t

ðt
0
D sð Þdsþ t

ðt
0
R sð Þ � bD sð Þð Þ 1� exp � t � s

t

� �� �
ds

(5)

where

E tð Þ ¼
ð1
�1

u2 t; xð Þdx; D tð Þ ¼
ð1
�1

uxð Þ2 t; xð Þdx; R tð Þ ¼ 2
ð1
�1

utð Þ2 t; xð Þdx; (6)

will be hereon referred to as twice the potential energy, twice the stretching energy and four
times the kinetic energy, respectively, b ¼ 1

t � 2m
d , and t = 0. The finiteness of E, D and R

demands that u, ux and ut be L2-integrable in space for all times.
For t¼ 0, equation (5) becomes:

E tð Þ ¼ E 0ð Þ þ d D 0ð Þ � D tð Þ
� �

� 2m
ðt
0
D sð Þds; (7)

which indicates that the potential energy depends on the viscosity coefficient m and the
dispersion parameter d. Equation (7) indicates that the potential energy decreases with time
owing to both dispersion and dissipation and that, for m¼ 0, E(t)þ dD(t)¼ E(0)þ dD(0), i.e.
the sum of the potential and stretching energies is conserved. On the other hand, equation (5)
shows that the potential energy depends on the relaxation time, t, dt and

mt
d (or b).
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Notice that the last term on the right-hand side of equation (5) is positive and makes a
positive contribution to the potential energy for b < 0. The condition b # 0 implies that
2 mt

d � 1, i.e. c2 ¼ m
t � d

2t2, which cannot be satisfied for a specified value of c (or specified
values of mt) as t is decreased. Moreover, because, for t¼ 0, equation (1) becomes the viscous
generalized RLW or BBM equation, the condition 0 < t � 1 results in a singularly
perturbed initial-boundary value problem that exhibits an initial layer for d ¼ O(1)
(Kevorkian and Cole, 1981, 1996; Butuzov, 1997), as indicated in Part I, where further details
on initial, boundary and corner layers for 0< t� 1 and/or 0< m� 1 are provided.

Equation (5) indicates that the potential energy decreases on account of the viscous
dissipation represented by the third term in the right-hand side of that equation; it also
shows that the potential energy may increase with time if dEdt 0ð Þ þ d

tD 0ð Þ > 0 [cf. the second
term of the right-hand side of equation (5)], but such an increase is, at most,

t dE
dt 0ð Þ þ d

tD 0ð Þ
	 


. Equation (5) also shows that the potential energy increases, provided

that the fourth term in its right-hand side is positive; therefore, if this term is positive and its
magnitude is larger than the third one in the right-hand side of equation (5), then the
potential energy increases with time and blowup in finite timemay occur even when dE

dt 0ð Þ is
negative.

It is worth mentioning that the linear advection or drift coefficient a does not affect the
potential energy in equation (5) due to the homogeneous Dirichlet boundary conditions for u
considered in this paper; however, as it will be shown later, it will affect the blowup time.

Equation (5) may also be written as:

E tð Þ þ
ðt
0
D sð Þ d

t
þ tb 1� exp � t � s

t

� �� �� �
ds ¼ E 0ð Þþ

þt
dE
dt

0ð Þ þ d

t
D 0ð Þ

� �
1� exp � t

t

� �� �
þ t

ðt
0
R sð Þ 1� exp � t � s

t

� �� �
ds;

(8)

which indicates that, for d � 0 and b � 0, the left-hand side of this equation increases with
time from E(0). The last term on the right-hand side of equation (8) has lower and upper

bounds equal to 0 and t
ð1
0
R sð Þds � 0, respectively.

In Part I, a linear temporal stability analysis of the linearized version of equation (1) was
performed for real wavenumbers and complex frequencies, and it was found that the
linearized equation is (Fourier’s) linearly stable provided that c2 is greater than or equal to

a2

1þdk2ð Þ2, where k is the wavenumber, and linearly unstable, otherwise. Because the smallest

value of k is 0, the above linear stability condition implies that c2 � a2. However, such a
condition is based on a linear analysis which is strictly applicable to very small amplitudes
and infinite spatial domains, i.e. (linear) Cauchy’s initial-value problems, and does not
account for nonlinear effects; neither does it account for boundary effects.

When ju(t, x)j is large, the nonlinear advection term associated with e = 0 and p= 1 in
equation (1) results in wave steepening for ux< 0 and e> 0 that would lead to the formation
of a (discontinuous) shock wave for t¼ m¼ d¼ 0, and the formation of a Taylor’s (smooth)
shock wave for t¼ d¼ 0 and m> 0 (Whitham, 1974; Johnson, 1997; Lannes, 2013; Debnath,
1994; Dingemans, 1997)). In the absence of linear drift and for p¼ 2, e ¼ 1

2 and d ¼ 0, i.e. the
hyperbolic Burgers equation, it has been proved that equation (1) exhibits blowup in finite
time (Escudero, 2007).
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2.3 Initial conditions
The effects of three different initial conditions on both the wave dynamics and the blowup of
equation (1) have been studied for u(t,61)¼ ux(t,61)¼ 0 and ut(x, 0)¼ 0, i.e.M(t)¼M(0)
[cf. equation (4)]. Similar conditions were used in Part I which dealt with the dynamics of
equation (1) in the absence of blowup. In this section, the smoothness and main properties of
these initial conditions are determined analytically.

The first initial condition considered in this study corresponds to the following Gaussian
distribution:

u 0; xð Þ ¼ Aexp �s x� x0ð Þ2
	 


; (9)

where A, x0 and s are constants, A is here referred to as the amplitude of the initial
conditions, x0 denotes the location of the maximum value of u(0, x) and 1ffiffiffi

s
p provides an

indication of the width of the Gaussian initial conditions. For these initial conditions, neither
the generalized RLW equation nor equation (1) has an analytical solution.

From the Gaussian condition of equation (9), it can be easily deduced that:

M 0ð Þ ¼ A
ffiffiffiffi
p

s

r
; E 0ð Þ ¼ A2

ffiffiffiffiffiffi
p

2s

r
¼ 1ffiffiffi

2
p AM 0ð Þ;

D 0ð Þ ¼ A2

ffiffiffiffiffiffiffi
ps

2

r
¼ pffiffiffi

2
p A3

M 0ð Þ ; R 0ð Þ ¼ 0;
(10)

which indicates that the initial mass and the potential and stretching energies increase with
A; the initial mass and the potential energy decrease, whereas the stretching energy
increases as s is increased.

The second type of initial conditions considered in this study is of triangular type, i.e. u(x,
0) ¼ 0 for �1 < x # x0 � b and x0 þ b # x < 1, u 0; xð Þ ¼ A

b x� x0 � bð Þ½ � for x0 � b #
x # x0, and u 0; xð Þ ¼ A

b x0 þ b� x½ � for x0 # x # x0 þ b, where the area of the triangle is

equal to M(0) and its height is equal to A, i.e. b ¼ M 0ð Þ
A . These initial conditions are

characterized by the same amplitude and mass as those of the Gaussian conditions
considered above and are not differentiable at x0 and x0 6 b, although left- and right-side
derivatives exist and are finite at these three locations.

For these triangular conditions, it is an easy exercise to show that:

M 0ð Þ ¼ Ab; E 0ð Þ ¼ 2
3
A2b ¼ 2

3
AM 0ð Þ;

D 0ð Þ ¼ 2
A2

b
¼ 2

A3

M 0ð Þ ; R 0ð Þ ¼ 0;
(11)

The largest values of jux(0, x)j for the Gaussian and triangular conditions discussed above

are
ffiffiffiffi
2p
e

q
A2

M 0ð Þ � 1:52 A2

M 0ð Þ and
A2

M 0ð Þ, respectively.
The third type of initial conditions considered here are of the rectangular type, i.e. u(0, x)¼ 0

for �1 < x < x0 � B and x0 þ B < x < 1, u(0, x) ¼ A for x0 � B < x < x0 þ B, where the
area of the rectangle is equal to M(0) and its height is equal to A, i.e. B ¼ M 0ð Þ

2A . These initial
conditions are characterized by the same amplitude and mass as those of the Gaussian and
triangular conditions described above, and result in:
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M 0ð Þ ¼ 2AB; E 0ð Þ ¼ 2A2B ¼ AM 0ð Þ; R 0ð Þ ¼ 0; (12)

and ux(0,6B) is Dirac’s (generalized) delta function.

2.4 Numerical method
The same time-linearized implicit finite difference method presented in Part I was used to
obtain the numerical solution of equation (1) subject to the initial conditions described in the
previous section. The infinite spatial domain was truncated into the finite one [0, L], where L¼
150, and x0 was selected so that the locations of the left and right boundaries do not affect the
wave dynamics and blowup.

In the numerical experiments reported in this paper, x0 ¼ 20, unless stated otherwise.
Hereon, we shall refer to the left and right boundaries as upstream and downstream,
respectively. In the cases that the waves collide with either the upstream or the downstream
boundary, only results for times less than the collision time and not affected by the
boundaries are presented.

The finite difference method used in this study is first-order accurate in time and second-
order accurate in space and uses a second-order time linearization for the nonlinear terms, so
that a linear system of algebraic equations at each time level results. This system is
characterized by a tridiagonal matrix and was solved by means of the well-known Thomas
algorithm. Further details on the numerical method and its implementation can be found in
Part I, where the reader may also find a discussion on the assessment of its accuracy.

In the numerical experiments reported in this paper, homogeneous Dirichlet boundary
conditions for u(t, x) were specified at the edges of the computational domain, i.e. at x ¼ 0
and L ¼ 150; these boundary conditions are strictly applicable when the waves are
sufficiently far away from the boundaries.

3. Presentation of results
In this section, the results of some numerical experiments that illustrate blowup for the three
initial conditions discussed in the previous section are presented. For the sake of
convenience, the effects of each parameter that appears in equation (1) on blowup has been
assessed by using a time step and a grid spacing equal to 10�4 and 0.1, respectively, unless
stated otherwise; this time step is at least ten times smaller than the smallest relaxation time
used in the calculations reported in this section, and, therefore, there are about ten time
intervals in the initial layer thickness for the smallest relaxation time considered in this
study (Kevorkian and Cole, 1981, 1996; Butuzov, 1997). It should be noticed that many other
numerical experiments that do not result in blowup have also been performed, but they are
not reported here. Notice also that, as stated previously, e ¼ d ¼ 1, unless otherwise stated,
and that, for the time step and grid size used in the numerical experiments reported here, the
temporal discretization errors are about two orders of magnitude smaller than the spatial
ones.

It should also be emphasized that only results that are not affected by the presence of the
boundaries are reported here, although the calculations were performed for up to t¼ 50 even
if the waves collided with the boundaries but the solution did not blow up.

The blowup time, i.e. tbu, has been defined as that corresponding to u(tbu, x)� 5A for any
x [ [0, L]. A much more accurate calculation of the blowup time requires both adaptive
meshes in space and very short variable time steps to accurately resolve the steep gradients
associated with the growth and/or singularity of u(t, x). Notice that lim

t!tbu
maxju t; xð Þj ¼ 1.

By using the blowup time criterion mentioned above, no such temporal and spatial
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refinement are required, because the largest value of ju(tbu, x)j has been set to only five times
the largest value of ju(0, t)j.

3.1 Results for Gaussian initial conditions
For Gaussian initial conditions, A¼ 1, s ¼ 0.05, p ¼ 2, a ¼ 1, t ¼ 0.1 and c2 ¼ 0.1, Figure 1
shows a smooth leading wave front propagating toward the downstream boundary; the
amplitude of the leading wave increases with time and the wave exhibits a curved
trajectory, thus indicating that its velocity is not constant. Figure 1 also shows that behind
the leading wave front, i.e. between the leading wave and the upstream boundary, there are
also small waves whose amplitude decreases as the distance from the leading wave
increases or as the distance to the upstream boundary decreases; these oscillations are a
consequence of the fact that the initial conditions considered in this study do not correspond
to the exact solution of equation (1) (cf. Part I).

It should be noted that, for s ¼ 0.05 and 0.1, the number of grid points in the interval
x0 � 1ffiffiffi

s
p ; x0 þ 1ffiffiffi

s
p

h i
is about 89 and 59, respectively, and, therefore, the grid spacing used in

the calculations presented in this section is sufficiently small to determine accurately the
initial transition as well as the wave dynamics resulting from the initial Gaussian
conditions.

As shown in Part I and Section 2, the exact solution of equation (1) requires that
c ¼ aþ 2 e

pþ1A
p�1 be equal to c ¼ 6

ffiffiffim
t

p
and is of the hyperbolic cosine type; neither of

these two conditions are satisfied for the set of parameters of Figure 1.
The initial growth of the leading wave amplitude and the negative values of u observed

in Figure 1 are in accord with the fact thatM(t)¼M(0), i.e. mass is conserved.
Similar trends to those shown in Figure 1 have also been observed for the same

parameters as those of that figure and c2 ¼ 1; however, in this case, the blowup time
increases, i.e. it takes longer for the solution to blowup. This is a consequence of the fact that,
for the same value of t, an increase of c results in an increase of the viscosity coefficient.

Figure 1.
u(t, x) (left) and
isocontours of u(t, x)
(right) for Gaussian
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.1 and
p¼ 2
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For Gaussian initial conditions, A ¼ 1, s ¼ 0.05, p ¼ 2, a ¼ 1, t ¼ 0.01 and c2 ¼ 0.1,
Figure 2 indicates that the leading wave front propagates at a nearly constant speed and that
no blowup occurs for t# 50. The background of this figure clearly shows the initial transient
behavior from the Gaussian initial conditions used in this study to the formation of the
leading wave front, as well as the waves/oscillations behind the leading wave front. The
amplitude of these oscillations decreases as the distance to the upstream boundary decreases.

For the same values of the parameters as in Figure 2 except that p ¼ 3 and t ¼ 0.1,
Figure 3 illustrates that the leading wave amplitude increases quite rapidly with time and
that the amplitude of the oscillations behind the leading wave is of much larger amplitude
than those observed in Figure 2, thus indicating that the blowup time decreases as the
exponent of the nonlinear advection term in equation (1), p, is increased. Notice that
equations (6) and (8) show that the potential energy increases as the kinetic energy increases,
whereas it decreases as the stretching energy is increased.

For the same parameters as those of Figure 3 except that t ¼ 0.01, analogous trends to
those of Figure 3 have been observed except that no blowup occurs for t # 50, the leading
wave amplitude increases at a small rate, the location of the leading wave maximum
exhibits a convex trajectory with time and the number of oscillations behind the leading
wave front shows similar trends to, but is larger than that of Figure 2.

Figure 4 shows the numerical solutions obtained for Gaussian initial conditions, A ¼ 1.5,
s ¼ 0.05, p ¼ 3, a ¼ 1, t ¼ 0.01 and c2 ¼ 0.1, and illustrates that the wave amplitude
increases quite rapidly with time, the first wave behind the leading one propagates at an
almost constant speed toward the downstream boundary, blowup occurs at about t ¼ 19 and
the distance between the leading wave and the next one behind it increases as time is increased,
i.e. the leading wave trajectory is curved and its curvature decreases as time increases.

The results presented in Figure 4 exhibit blowup at t � 19. By way of contrast, for the
same parameters as those of Figure 4 except that t ¼ 0.1, blowup was observed at t � 3.07.
As stated previously, for the same value of c2 ¼ m

t , an increase of t, i.e. an increase of inertia
or relaxation time, corresponds to an increase of m, i.e. an increase of viscosity. Such as

Figure 2.
u(t, x) (left) and

isocontours of u(t, x)
(right) for Gaussian

initial conditions:A¼
1, s¼ 0.05, a¼ 1,

c2¼ 0.1, t¼ 0.01 and
p¼ 2
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increase in m may result in a negative value of b and, therefore, an increase of E(t) [cf.
equation (8)].

For the same conditions as those of Figure 4 except that s ¼ 0.1, the results presented in
Figure 5 show that the blowup time increases as s is increased; the curvature of the leading
wave trajectory also increases as s is increased, and the amplitude of the first wave behind

Figure 3.
u(t, x) (left) and
isocontours of u(t, x)
(right) for Gaussian
initial conditions:
A¼ 1, s¼ 0.05,
a¼ 1, c2¼ 0.1,
t¼ 0.1 and p¼ 3

Figure 4.
u(t, x) (left) and
isocontours of u(t, x)
(right) for Gaussian
initial conditions:A¼
1.5, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 3

HFF
34,3

1200



the leading one has a smaller amplitude than that of Figure 4. Notice that, as indicated
previously, an increase of s corresponds to a decrease of the width of the initial Gaussian
condition, and, therefore, an increase of ux(0, t), i.e. an increase of the initial stretching energy
which in accord with equations (6) and (8), results in an initial decrease of the potential
energy, E(t).

Figure 6 illustrates the results of numerical experiments performed for the same values
of the parameters as those of Figure 4, except that a ¼ 0.1, i.e. for a linear drift speed ten
times smaller than that of Figure 4. The results shown in Figure 6 exhibit similar trends to those
presented in Figure 4, except that the blowup time for a ¼ 0.1 is larger than that for a ¼ 1; in
addition, for a ¼ 0.1, u(t, x) exhibits oscillations with a smaller number of negative values and
larger positive amplitudes behind the leadingwave front than fora¼ 1.

Although not easily observed in Figures 4 and 6, the leading wave propagates at higher
speed and exhibits a larger curvature for a ¼ 1 than for a ¼ 0.1, in accord with the
characteristic lines of the first-order partial differential operator of equation (1), for m ¼ d ¼
t¼ 0 (Whitham, 1974; Johnson, 1997; Lannes, 2013; Debnath, 1994; Dingemans, 1997).

3.2 Results for triangular initial conditions
In this section, the results shown in Figures 7–12 correspond to triangular initial conditions
and the same parameters as those of Figures 1–6, respectively, for Gaussian conditions. As
indicated in equation (6) and discussed previously, it should be kept in mind that the
triangular conditions have the same mass as the Gaussian ones. Moreover, for s ¼ 0.05 and
0.1, the number of grid points in the interval [x0 � b, x0 þ b], i.e. the base of the triangle, is
about 111 and 157, respectively, and, therefore, the grid spacing used in the calculations
presented in this section is sufficiently small to determine accurately the initial transition
as well as the wave dynamics resulting from the triangular initial conditions considered in
this study.

Figure 5.
u(t, x) (left) and

isocontours of u(t, x)
(right) for Gaussian

initial conditions:A¼
1.5, s¼ 0.1, a¼ 1,

c2¼ 0.1, t¼ 0.01 and
p¼ 3
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Figure 7 corresponds to the same set of parameters as those of Figure 1 and shows a
larger number of oscillations behind the leading wave and a slightly larger blowup time
than Figure 1. The larger number of oscillations behind the leading wave is a consequence
of the fact that the triangular initial conditions are not differentiable at the vertices of
the triangle. Note that max jux(0, x)j is larger for Gaussian conditions than for triangular
ones; therefore, according to equation (6), the initial stretching energy of the Gaussian
conditions is larger than that of the triangular ones.

Analogous results to those shown in Figure 7 have also been obtained for c2 ¼ 1, except
that, in this case, the blowup time is larger and the amplitude of the oscillations behind the
leading wave is smaller than those illustrated in Figure 7.

The wave dynamics presented in Figure 8 exhibits similar trends between the leading
wave and the upstream boundary to those presented in Figure 2; however, the number of
oscillations behind the leading wave is larger and closer to the upstream boundary than that
of Figure 2.

Notice that, as indicated in Section 2.3 [cf. equations (10) and (11)], the initial potential and
stretching energies associated with the triangular initial conditions are about 94% and 90%,
respectively, of those of the Gaussian conditions, respectively, i.e. for the same initial mass,
the triangular conditions have less initial potential and stretching energies than Gaussian
ones.

Figure 9 corresponds to the same parameters as those of Figure 3 and shows that the
blowup time corresponding to triangular initial conditions is larger than that for Gaussian

Figure 6.
u(t, x) (left) and
isocontours of u(t, x)
(right) for Gaussian
initial conditions:A¼
1.5, s¼ 0.05, a¼ 0.1,
c2¼ 0.1, t¼ 0.01 and
p¼ 3
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ones. This figure also indicates that the maximum amplitude of the leading wave undergoes
a longer transition from its initially triangular shape than that for Gaussian conditions.
Moreover, whereas the latter results in a relatively smooth transition from the leading wave
to the nil value at the upstream boundary, the former is characterized by larger amplitude
waves that are generated at different times and whose speed decreases with their distance to
the upstream boundary.

Although not shown here, for the same parameters as those of Figure 9, except that
t ¼ 0.01, no blowup has been observed for t # 50, and the leading wave trajectory
exhibits smaller curvature than for Gaussian initial conditions; however, in accord with
the results shown in Figures 7 and 8, the number of waves behind the leading one is
higher for triangular conditions than for Gaussian ones. Because, as stated previously,
both the potential and the stretching energies for the triangular initial conditions are
smaller than those for the Gaussian ones, the larger number of oscillations observed
between the leading wave front and the upstream boundary for the triangular
conditions is caused by their smaller compact support and their nonsmoothness at the
vertices of the triangle.

Figure 7.
u(t, x) (left) and

isocontours of u(t, x)
(right) for triangular

initial conditions:A¼
1, s¼ 0.05, a¼ 1,

c2¼ 0.1, t¼ 0.1 and
p¼ 2
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For p ¼ 3, the results presented in Figure 10 indicate that the blowup time is higher than
that for Gaussian initial conditions, the first wave behind the leading one has an amplitude
larger than that observed in Figure 4 and the number of waves between the leading wave
and the upstream boundary is larger than for Gaussian ones. In both Figures 4 and 10,
the first wave behind the leading propagating front reaches small negatives values, and the
distance between the leading wave and the first one behind it increases as time increases.

Figure 8.
u(t, x) (left) and
isocontours of u(t, x)
(right) for triangular
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 2

Figure 9.
u(t, x) (left) and
isocontours of u(t, x)
(right) for triangular
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.1 and
p¼ 3
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For s ¼ 0.1, the results of the numerical experiments reported in Figure 11 for triangular
conditions show similar trends to those observed in Figure 5 for Gaussian conditions, but
the latter results in smaller blowup times than the former, because of the larger value of
jux(0, x)j and the number of waves between the leading propagating wave and the upstream
boundary is larger for triangular conditions than for Gaussian ones. Moreover, the first and

Figure 10.
u(t, x) (left) and

isocontours of u(t, x)
(right) for triangular

initial conditions:A¼
1.5, s¼ 0.05, a¼ 1,

c2¼ 0.1, t¼ 0.01 and
p¼ 3

Figure 11.
u(t, x) (left) and

isocontours of u(t, x)
(right) for triangular

initial conditions:A¼
1.5, s¼ 0.1, a¼ 1,

c2¼ 0.1, t¼ 0.01 and
p¼ 3
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second waves behind the leading one have the same shape for those types of boundary
conditions.

For s ¼ 0.05, the results presented in Figure 12 indicate that, although the blowup time
and the number of oscillations behind the leading wave are both larger for triangular
conditions than for Gaussian ones (cf. Figure 6), there are marked differences on the waves
that appear between the leading one and the upstream boundary; for Gaussian conditions,
the waves behind the leading propagating wave are characterized by positive values of
u(t, x), whereas those for triangular ones have a higher frequency and reach both positive
and negative values. As stated above, this is again a consequence of the fact that triangular
conditions have smaller compact support and are not differentiable at the vertices of the
triangle.

3.3 Results for rectangular initial conditions
The results reported in this section correspond to rectangular conditions and, unless
otherwise stated, the same parameters as those of Figures 1–6 and Figures 7–12 for
Gaussian and triangular initial conditions, respectively, so that a comparison between those
figures and the ones presented in this section allows to assess the effects of the smoothness
of the initial conditions on the wave dynamics and blowup time.

Because comparisons between the results obtained with Gaussian and triangular
conditions have already been reported in the previous section, most of the comparisons
reported in this section are concerned with the blowup times for Gaussian and rectangular
initial conditions.

As indicated in the previous section, for rectangular conditions, u(0, x) exhibits jump
discontinuities of absolute value equal toA at x06 B. If the rectangular initial conditions are
regularized and replaced by trapezoidal ones which are continuous and piecewise smooth,
and the change of ju(0, x)j from 0 to A is assumed to take place in an interval of length equal
to grid size, Dx, then the maximum value of the regularized jux(0, x)j is equal to 10A for the

Figure 12.
u(t, x) (left) and
isocontours of u(t, x)
(right) for triangular
initial conditions:A¼
1.5, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 3
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grid size used in the calculations reported here. For A ¼ 1 and 1.5, these maximum values
correspond to slopes equal to 84° and 86°, respectively.

Figure 13 clearly shows that the transition from the rectangular initial conditions to a
leading propagating wave front is quite rapid and results in the formation of a complex
wave pattern between the leading wave and the upstream boundary; the rectangular initial
conditions and their evolution into a complex pattern can be observed clearly in the
background of Figure 13. This complex pattern is a consequence of the fact that u(0, x) has
no classical derivatives at the vertical sides of the rectangular initial conditions used in this
study, as indicated in Section 2.3.

The blowup time for Figure 13 is smaller than that for Figure 1; the latter shows a
relatively smooth transition from the back of the leading propagating wave to the upstream
boundary, whereas the former exhibits a fast and complex transition characterized by large
amplitude waves that move slowly toward but do not reach the downstream boundary.

Figure 14, which corresponds to the same parameter values as those of Figure 13 except
that c2¼ 1, clearly shows the transition from the rectangular initial conditions to the leading
wave, as well as the formation of waves of smaller amplitude between the leading
propagating wave and the upstream boundary. Note that, for the same value of c, an
increase of t results in an increase of m, i.e. for the same value of c, an increase of t results in
increases of both inertia and viscosity. The increase of inertia results in longer blowup times
as clearly seen in Figures 13 and 14, while the increase of m can be observed in both the
larger curvature of the leading wave front and the smaller number, smaller frequency and
smaller amplitude of the waves that are formed between the leading propagating front and
the upstream boundary.

Figures 13 and 14 correspond to m ¼ 0.01 and 0.1, respectively, and show that, despite
the fact that m is ten times larger in Figure 14 than in Figure 13, the blowup time only
increases by about 26% as m is increased from 0.01 to 0.1, thus indicating that the viscosity
coefficient does not play as much as a role on the wave dynamics and blowup time for

Figure 13.
u(t, x) (left) and

isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼

1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.1 and

p¼ 2
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rectangular initial conditions. However, m is of paramount importance on determining the
wave dynamics between the leading wave and the upstream boundary as discussed in the
previous paragraph. In fact, as indicated previously, an increase of mmay result in negative
values of b that, in turn, may result in an increase of E(t) [cf. equation (8)].

For t ¼ 0.01, the results presented in Figure 15 indicate that there is an initial transition
region where the rectangular conditions evolve into a leading propagating wave; this

Figure 15.
u(t, x) (left) and
isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 2

Figure 14.
u(t, x) (left) and
isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 1, t¼ 0.1 and
p¼ 2
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transition period is larger than that observed in Figure 2 for Gaussian conditions. After this
transition, the leading wave propagates at an almost constant speed for both Gaussian and
rectangular conditions, as illustrated in Figures 2 and 15, respectively.

Figure 15 also shows that a complex wave pattern appears between the leading wave
and the upstream boundary; this pattern is characterized by two almost stationary waves
that emanate from the vertical sides of the initial rectangle and are almost parallel to the
upstream boundary. Between the rightmost of these two waves and the leading propagating
one, there are traveling waves whose amplitude increases as the distance from the upstream
boundary increases. This is in marked contrast with the constant-speed propagating waves
observed between the leading wave and the upstream boundary for the Gaussian conditions
illustrated in Figure 2.

For p ¼ 3, the blowup time corresponding to Figure 16 is about 58% that of Figure 3 in
accord with the fact that the rectangular initial conditions are not differentiable at the
locations of the vertical sides of the rectangle; as indicated in Section 2, ux is a Dirac’s delta
function at these locations for the rectangular conditions. Figure 16 also clearly illustrates
both the two almost stationary waves generated at the vertical sides of the initial rectangle
and the complex wave pattern between the upstream boundary and leading wave front.

For the same values of the parameters as those of Figure 16 except that t ¼ 0.01, Figure 17
shows that blowup occurs at a much larger time than in Figure 16, the leading wave front
exhibits a curvature that increases with time, and the waves formed between the rightmost
stationary wave and the leading one propagate with positive speed toward the downstream
boundary, but the two stationary waves that are formed at the locations of the vertical sides of
the rectangular initial conditions are not clearly seen. Figure 17 also illustrates the transition
from the rectangular initial conditions to the leading wave.

The results presented in Figure 18 indicate that blowup occurs earlier than in Figure 4
and that two almost stationary waves similar to the ones previously discussed are formed at
the vertical sides of the rectangular initial conditions. Figure 18 also illustrates the presence

Figure 16.
u(t, x) (left) and

isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼

1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.1 and

p¼ 3
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of two right-propagating waves between the stationary waves and the leading one. This
figure also shows that there are very large amplitude oscillations between the upstream
boundary and the leading wave, and the distance between the leading wave and the first one
behind it increases with time.

A comparison between Figures 18 and 4 clearly indicates that the main difference in
wave propagation between the results corresponding to rectangular and Gaussian

Figure 18.
u(t, x) (left) and
isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼
1.5, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01
and p¼ 3

Figure 17.
u(t, x) (left) and
isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼
1, s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01
and p¼ 3
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conditions, respectively, occurs between the leading wave and the upstream boundary and
is caused by the nonsmoothness of the rectangular initial conditions.

Figure 19 corresponds to the same values of the parameters as those of Figure 5 and
shows a blowup time that is 46% smaller and a larger number of high amplitude waves
between the leading wave and the upstream boundary than those for Gaussian conditions.
Figure 19 also shows that the back of the leading propagating wave may reach negative
values which are in magnitude much smaller than those of the waves located between the
upstream boundary and the rightmost almost stationary wave. The curvature of the leading
wave front presented in Figure 19 is larger than that of Figure 5.

Similar trends to those shown in Figure 19 are illustrated in Figure 20 that corresponds to
a ¼ 0.1. The blowup time for Figure 20 is 47.53% that shown in Figure 6; the secondary
waves formed between the upstream boundary and the leading propagating wave are
mostly characterized by u(t, x) � 0 for the Gaussian initial conditions, whereas those of
Figure 20 exhibit large positive and negative values which are in magnitude larger than
those shown in Figure 6. This is again caused by the nonsmoothness of the rectangular
initial conditions as one may observe on the background of Figure 20 (left) and in previous
figures shown in this section.

3.4 Wave dynamics and blowup
In the three previous sections, some results on the wave dynamics of equation (1) subject to
the three initial conditions considered in this paper were presented as functions of space and
time until either blowup or the collision of the leading wave with the downstream boundary
for rectangular initial conditions occurred. In those sections, the projection of u(t, x) on the (t,
x) plane was also shown to illustrate the wave propagation and the wave curvature.

As indicated previously, because the initial conditions considered in Sections 3.1–3.3 do
not correspond to those for which a solitary wave solution of equation (1) exists, the results
shown in those sections clearly illustrate the presence of a leading wave propagating toward

Figure 19.
u(t, x) (left) and

isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼

1.5, s¼ 0.1, a¼ 1,
c2¼ 0.1, t¼ 0.01 and

p¼ 3
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the downstream boundary and complex wave phenomena between this leading wave and
the upstream boundary.

In this section, some snapshots of the results presented in Sections 3.1–3.3 are presented
for the three initial conditions studied in this paper to both illustrate and emphasize the
effects of these conditions on the wave dynamics until either blowup or wave collision with
the downstream boundary occurs. Because, as shown in Sections 3.1–3.3, the smallest
blowup time corresponds to that of the rectangular initial conditions, only the results
corresponding to times smaller than or equal to that blowup time are presented in the
following figures for the three initial conditions studied in this paper.

Figure 21 has been obtained from Figures 1, 7 and 13 and indicates that no blowup
occurs for t # 50. For initial Gaussian conditions, Figure 21 (top left) indicates that the
wave’s height increases as time increases, and a train of small amplitude waves is formed
behind the leading propagating wave; the amplitude of this wave train increases as the
leading wave front approaches the downstream boundary.

Similar trends to the ones described for Gaussian conditions can be observed for the
triangular initial conditions illustrated in Figure 21 (top right), but in this case, the wave
train formed behind the leading wave front is closer to the upstream boundary.

The results for rectangular initial conditions presented in Figure 21 (bottom left) show
similar trends to those for Gaussian and triangular conditions; however, a complex high-
frequency wave pattern is formed near the locations where the initial conditions are
specified and u(t, x) is not differentiable. The results presented in Figure 21 (bottom left) also
show that waves propagate from x0 � B toward the upstream boundary, but the amplitude
of these waves decreases as the distance to this boundary decreases, and the frequency of
these waves is higher than that of the waves observed for x> x0þ B.

At t ¼ 50, the results presented in Figure 21 (bottom right) show that the leading wave
amplitude and speed are largest for the rectangular initial conditions and smallest for the
triangular ones; they also show that complex wave patterns are located around the locations

Figure 20.
u(t, x) (left) and
isocontours of u(t, x)
(right) for rectangular
initial conditions:A¼
1.5, s¼ 0.05, a¼ 0.1,
c2¼ 0.1, t¼ 0.01 and
p¼ 3
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where the rectangular and triangular initial conditions were specified, and the complexity of
the wave train is larger for rectangular than for triangular conditions, i.e. the complexity
of the wave pattern behind the leading propagating front increases as the nonsmoothness of
the initial conditions is increased.

Figure 22 shows results obtained from Figures 2, 8 and 15 and exhibits similar trends to
those observed in Figure 21. Note that, for the values of the parameters used to obtain
Figure 22, the rectangular conditions resulted in blowup at t� 16.4.

Figure 22 (bottom left) shows that the amplitude of the leading wave increases as time
increases, both the complexity and the amplitude of the wave pattern behind the leading
wave increase as the nonsmoothness of the initial conditions is increased, both the
amplitude and the speed of the leading wave at t ¼ 16.4 are largest for the rectangular
conditions and smallest for the triangular ones and the smoothness of the wave train that
appears behind the leading wave front increases as the smoothness of the initial conditions
is increased.

Some snapshots of the results presented in Figures 3, 9 and 17 are illustrated in
Figure 23. It must be noted that, for the values of the parameters used to obtain Figure 23,
wave collision with the downstream boundary was observed for the rectangular initial
conditions, and only times smaller than the collision time have been considered to not
account for the effect of the boundary conditions on the wave propagation and blowup time.

The results illustrated in Figure 23 exhibit similar trends to those of Figure 21, except
that the amplitude and speed of the leading front is smaller for the latter; the amplitude of
the complex wave pattern observed near where the initial conditions are specified is larger
in Figure 23 than in Figure 21, whereas the wave frequency exhibits the opposite trend. This
is due to the relaxation time which is equal to t¼ 0.01 in Figure 23 and 0.1 in Figure 21 and,
therefore,m¼ 0.01 and 0.1 in Figures 23 and 21, respectively, i.e. viscous effects are larger in
Figure 23 than in Figure 21; it is also due to the higher advection nonlinearity, i.e. p ¼ 3 and
2 in Figures 23 and 21, respectively.

Figure 21.
u(t, x) for Gaussian

(G), triangular (T) and
rectangular (R) initial
conditions:A¼ 1,s
¼ 0.05,a¼ 1, c2¼

0.1, t¼ 0.1 and p¼ 2
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The results illustrated in Figure 24 correspond to snapshots taken from Figures 4, 10 and 18
and exhibit blowup at early times. For Gaussian initial conditions, Figure 24 (top left)
shows the steepening of the leading front as time increases, as well as the presence of a
relative minimum at t � 1.8 when blowup is observed for the rectangular initial conditions.
A similar steepening and the formation of a relative minimum are also observed for

Figure 22.
u(t, x) for Gaussian
(G), triangular (T) and
rectangular (R) initial
conditions:A¼ 1,
s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 2
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Figure 23.
u(t, x) for Gaussian
(G), triangular (T) and
rectangular (R) initial
conditions:A¼ 1,
s¼ 0.05, a¼ 1,
c2¼ 0.1, t¼ 0.01 and
p¼ 3
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triangular initial conditions, which also result in negative values of u(t, x) at the location of
the left vertex of the triangle used in the initial condition as indicated in Figure 24 (top right).
By way of contrast, for rectangular initial conditions, steepening is observed in the lee side
of leading wave front as well as in the wave that is formed at the left vertical edge of the
rectangle used for the initial conditions.

A comparison among the results presented in Figures 21–24 clearly indicates that, if the
blowup time is small, the train of waves behind the leading front does not consist of many
waves for Gaussian and triangular initial conditions, whereas it consists of two almost
stationary waves located at the vertical edges of the rectangle for rectangular initial
conditions and the amplitude of these waves increases with time. This is not surprising if
the blowup time is smaller than the diffusion and dispersion times because, in this case,
there is not enough time for the formation, diffusion and dispersion of waves.

Similar results to those presented in Figure 24 have also been found for Figures 5, 11 and
19 and Figures 6 and 20 as well for the results that exhibit blowup in finite time summarized
in Tables 1–4, but are not reported here.

3.5 Blowup times
A summary of the blowup times obtained with the finite difference method described in the
previous section is presented in Tables 1–4; this summary is a very brief description of a
much larger set of numerical experiments that have been performed to analyze the effect of
the parameters of equation (1) and the amplitude and width of the three types of initial
conditions considered in this study, on blowup.

In Tables 1–4, the results of numerical experiments that do not result in blowup for t #
50 are also included so that the reader may observe the effects that the parameters of
equation (1) and the initial boundary conditions have on the development of time
singularities. For example, for the initial Gaussian conditions with c2¼ 0.1 and p¼ 2 shown
in Table 1, neither blowup nor wave collision with the boundaries occurs for t ¼ 0.001 and

Figure 24.
u(t, x) for Gaussian

(G), triangular (T) and
rectangular (R) initial
conditions:A¼ 1.5,

s¼ 0.05, a¼ 1,
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0.01, and t # 50, but blowup occurs for t ¼ 0.1. On the other hand, for the same initial
conditions with c2 ¼ 0.1 and p ¼ 3, blowup does not occur but wave collision with the
downstream boundary takes place at t# 50 for t ¼ 0.001, whereas blowup occurs at t < 50
for t ¼ 0.01 and 0.1. Moreover, the last column of Table 1, for example, shows the
dependence of the blowup time on m ¼ tc2, for a ¼ 1, p¼ 3, A¼ 1, s¼ 0.05 and t¼ 0.1 for
the Gaussian, triangular and rectangular initial conditions studied numerically in this paper,
and indicates that the blowup time increases as c2 orm is increased.

Tables 1–3 correspond to a ¼ 1. Table 1 shows that no blowup occurs for A ¼ 1, s ¼
0.05, c2 ¼ 0.1, 1 and 10, t ¼ 0.001 and 0.01 and p ¼ 2 and 3, for t # 50 and the three initial
conditions studied in this paper. Note that, for a fixed value of t, an increase of c2

corresponds to an increase of the viscosity coefficient,m, and the viscous dissipation.

Table 1.
Blowup times for
a¼ 1, a¼ 1 and s¼
0.05

p¼ 2 p¼ 3
Gaussian t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1

c2 ¼ 0.1 nbu-nwc nbu-nwc 21.7118 nbu-nwc nbu-nwc 9.0368
c2 ¼ 1 nbu-nwc nbu-nwc 27.7538 nbu-nwc nbu-nwc 10.8311
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc

Triangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-nwc 23.9071 nbu-nwc nbu-nwc 10.8283
c2 ¼ 1 nbu-nwc nbu-nwc 30.8546 nbu-nwc nbu-nwc 13.2703
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc

Rectangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-nwc 16.4509 nbu-nwc nbu-wc 5.2732
c2 ¼ 1 nbu-nwc nbu-nwc 20.8007 nbu-nwc nbu-wc 6.1748
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc

Notes: nbu and nwc denote that no blowup and no wave collision with the boundaries occur for t# 50,
respectively; wc indicates that wave collision with the boundaries occurs for t# 50
Source: Table by authors

Table 2.
Blowup times for
a¼ 1, a¼ 1.5 and
s¼ 0.05

p¼ 2 p¼ 3
Gaussian t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1

c2 ¼ 0.1 nbu-nwc nbu-nwc 11.8965 nbu-wc 19.9554 3.0721
c2 ¼ 1 nbu-nwc nbu-nwc 13.6590 nbu-wc 21.2452 3.2303
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-wc nbu-nwc nbu-nwc

Triangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-nwc 13.2314 nbu-nwc 24.2558 3.7349
c2 ¼ 1 nbu-nwc nbu-nwc 15.2873 nbu-wc 26.1121 3.9541
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-wc nbu-nwc nbu-nwc

Rectangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-wc 8.9945 nbu-wc 11.3606 1.8277
c2 ¼ 1 nbu-nwc nbu-wc 10.2957 nbu-wc 11.8246 1.9267
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-wc 23.8871 4.5861

Notes: nbu and nwc denote that no blowup and no wave collision with the boundaries occur for t# 50,
respectively; wc indicates that wave collision with the boundaries occurs for t# 50
Source: Table by authors
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Table 1 also shows that the blowup time increases as c2 is increased on account of the
increase in m, and decreases as p is increased, i.e. as the degree of the nonlinearity of
equation (1) is increased. Note that, for m ¼ d ¼ t ¼ 0, equation (1) becomes a first-order,
quasilinear, partial differential equation that has an analytical solution and results in the
formation of a shock wave in finite time, if ux(0, x) is negative (Whitham, 1974). Note also
that, as stated in Section 2, large values of m may result in negative values of b, positive
values of the fourth term in the right-hand side of equation (5) and increasing values of the
potential energy which may lead to blowup in finite time.

The results presented in Table 1 also indicate that the triangular initial conditions result
in slightly larger blowup times than the Gaussian ones and that the smallest blowup times

Table 3.
Blowup times for
a¼ 1, a¼ 1.5 and

s¼ 0.1

p¼ 2 p¼ 3
Gaussian t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1

c2 ¼ 0.1 nbu-nwc nbu-nwc 13.6483 nbu-wc 26.7420 3.4850
c2 ¼ 1 nbu-nwc nbu-nwc 16.3587 nbu-wc 29.1663 3.7723
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc

Triangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-nwc 14.8974 nbu-nwc 32.0642 4.1601
c2 ¼ 1 nbu-nwc nbu-nwc 17.9788 nbu-nwc 41.96002 4.5521
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc nbu-nwc

Rectangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
c2 ¼ 0.1 nbu-nwc nbu-nwc 10.2667 nbu-wc 14.4290 1.9415
c2 ¼ 1 nbu-nwc nbu-nwc 12.1459 nbu-wc 15.1845 2.0683
c2 ¼ 10 nbu-nwc nbu-nwc nbu-nwc nbu-wc nbu-wc nbu-nwc

Notes: nbu and nwc denote that no blowup and no wave collision with the boundaries occur for t# 50,
respectively; wc indicates that wave collision with the boundaries occurs for t# 50
Source: Table by authors

Table 4.
Blowup times for

a¼ 1.5, s¼ 0.05 and
c2 ¼ 0.1

p¼ 2 p¼ 3
Gaussian t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1

a¼ 0.1 nbu-nwc nbu-nwc 18.3020 nbu-nwc 28.1889 3.9269
a¼ 1 nbu-nwc nbu-nwc 11.8965 nbu-wc 19.9554 3.0721
a¼ 2 nbu-wc nbu-wc 8.5080 nbu-wc 15.4992 2.5315

Triangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
a¼ 0.1 nbu-nwc nbu-nwc 20.8075 nbu-nwc 35.7121 4.9117
a¼ 1 nbu-nwc nbu-nwc 13.2314 nbu-wc 24.2558 3.7349
a¼ 2 nbu-wc nbu-wc 9.3524 nbu-wc 18.4447 3.0334

Rectangular t¼ 0.001 t¼ 0.01 t¼ 0.1 t¼ 0.001 t¼ 0.01 t¼ 0.1
a¼ 0.1 nbu-nwc nbu-nwc 13.4716 nbu-wc 14.7502 2.2051
a¼ 1 nbu-nwc nbu-wc 8.9945 nbu-wc 11.3606 1.8277
a¼ 2 nbu-wc nbu-wc 6.4833 nbu-wc 9.1956 1.5563

Notes: nbu and nwc denote that no blowup and no wave collision with the boundaries occur for t# 50,
respectively; wc indicates that wave collision with the boundaries occurs for t# 50
Source: Table by authors
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correspond to rectangular initial conditions. Because, as stated in the previous section, the
initial mass is the same for the three initial conditions considered in this study, it may be
stated that the lack of smoothness of the rectangular initial conditions is a main contributor
to the shorter blowup times associated with these conditions. The decrease in blowup time
as the nonsmoothness of the initial conditions is increased described above is in accord with
Elgindi’s mathematical studies of the three-dimensional, inviscid Euler’s equations (Elgindi,
2021); this author showed that nonsmooth initial conditions result in blowup and that the
question of blowup for smooth initial conditions remains an open problem.

Table 1 also indicates that, for t ¼ 0.1 and p ¼ 3, the blowup times corresponding to the
triangular initial conditions are about twice those of the rectangular ones; however, for t ¼
0.1 and p ¼ 2, the blowup times for the rectangular conditions are about two-thirds of those
corresponding to the triangular ones. The blowup times for p ¼ 2, t ¼ 0.1 and Gaussian,
triangular and rectangular conditions shown in Table 1 are about twice, twice and thrice,
respectively, those for p ¼ 3 and t ¼ 0.1, for c2 ¼ 0.1 and 1. Note that no blowup has been
observed for t# 50, c2¼ 10 and p¼ 2 and 3.

In Table 2, some blowup times are presented for the same values of the parameters as those
of Table 1, except that A¼ 1.5. This table shows that no blowup occurs for A¼ 1.5, s ¼ 0.05,
c2¼ 0.1, 1 and 10, t¼ 0.001 and 0.01 and p¼ 2, and t¼ 0.001 and p¼ 3, for t# 50.

The results shown in Table 2 exhibit the same qualitative trends as those presented in
Table 1, except that the blowup times for p ¼ 2 and p ¼ 3 shown in Table 1 are about twice
and thrice greater than those of Table 2, respectively, for t¼ 0.1.

For t¼ 0.1 and p¼ 3, the blowup times shown in Table 2 do not change substantially as
c2 is increased from 0.1 to 1 for each of the initial conditions considered in this study, and the
shortest and largest blowup times correspond to rectangular and triangular, respectively,
initial conditions. Table 2 also indicates that no blowup is observed at t¼ 50 for p¼ 2 and 3
and c2¼ 10 for the triangular and Gaussian conditions; however, blowup has been observed
for the rectangular conditions with p ¼ 3, t ¼ 0.1 and c2 ¼ 10, thus indicating that the
increase in viscosity associated with an increase in t is not able to overcome both the
steepness associated with the initial conditions and the nonlinear advection term for p ¼ 3
and t¼ 0.1.

For p ¼ 3, the blowup times observed in Table 2 for t ¼ 0.01 are about six times larger
than those for t ¼ 0.1, for the Gaussian, triangular and rectangular conditions and c2 ¼ 0.1
and 1. On the other hand, the blowup time for p¼ 3, c2 ¼ 10 and t¼ 0.01 is about five times
larger than that for t ¼ 0.1 for the rectangular initial conditions. In addition, the blowup
times for c2 ¼ 0.1 and 1, t ¼ 0.1 and p ¼ 2 are about four, four and five times larger than
those for p¼ 3 for the Gaussian, triangular and rectangular, respectively, initial conditions.

Similar trends to those illustrated in Tables 1 and 2 are observed in Table 3, which
corresponds to s ¼ 0.1. Notice that, as indicated in Section 2.3, 2ffiffiffi

s
p is an indication of the

width of the Gaussian initial conditions, and, therefore, the width of the initial conditions
increases as s is decreased.

Table 3 shows that the blowup time increases as c2 is increased for t¼ 0.1 and p¼ 2, and
for t ¼ 0.01 and 0.1 and p¼ 3, while it decreases, for c2 ¼ 0.1 and 1, as t is increased for the
three types of initial conditions considered in this study.

For t ¼ 0.1 and c2 ¼ 0.1 and 1, the blowup times for p ¼ 2 shown in Table 3 are about
four, four and six times larger than those for p ¼ 3 for the Gaussian, triangular and
rectangular initial conditions, respectively. However, the blowup times shown in Tables 2
and 3 do not exhibit a clear dependence on s; in fact, for s ¼ 0.1, p ¼ 3 and t ¼ 0.001 and
0.01, the results shown in Table 3 do not show blowup at t# 50 for c2 ¼ 10, whereas those
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presented in Table 2 for the same values of the parameters except that s ¼ 0.05 do show
blowup in finite time, for c2¼ 10.

The increase in blowup time as s is increased illustrated in Tables 2 and 3 is a main
consequence of the broadening of the initial conditions as s is decreased, i.e. a decrease of
jux(0, t)j as s is decreased, and the associated decrease in the stretching energy, D(t) [cf.
equation (6)].

The blowup times for A ¼ 1.5, c2 ¼ 0.1, s ¼ 0.05 and several values of a, t and p are
illustrated in Table 4. This table indicates that, for t ¼ 0.001 and 0.01 and p ¼ 2, and t ¼
0.001 and p¼ 3, no blowup occurs for t# 50 anda¼ 0.1, 1 and 2.

For a fixed value of t, Table 4 shows that the blowup time decreases as a is increased; for
example, for p¼ 2 and t¼ 0.1, the blowup time corresponding to a¼ 0.1 is about twice that
for a ¼ 2, whereas, for p ¼ 3, the blowup time for a ¼ 0.1 is about one and a half times that
for a ¼ 2. It must be pointed out that the velocity of the leading wave increases as a is
increased and, therefore, the time required by the leading wave to collide with the
downstream boundary decreases as a is increased.

Table 4 also indicates that, for p ¼ 3, the blowup times corresponding to t ¼ 0.01 are
about seven times larger than those for t ¼ 0.1, a ¼ 0.1, 1 and 2 and the three initial
conditions analyzed in this manuscript. Table 4 also shows that the shortest and longest
blowup times correspond to rectangular and triangular initial conditions, respectively.
Because, for a fixed value of c2, an increase of t corresponds to an increase of m, i.e. an
increase of viscous dissipation, the blowup times presented in Table 4 clearly illustrate the
competition among inertia, i.e. tutt, nonlinear steepness associated with nonlinear advection
(e and p) and the dissipative effect associated with viscosity (m). This behavior can also be
observed in Table 4 by comparing the blowup times for p ¼ 2 with those for p ¼ 3 for t ¼
0.1, which indicate that the blowup times substantially decrease as p is increased.

It is worth mentioning that an increase of a corresponds to an increase of the (linear) drift
toward to the downstream boundary as indicated in equation (1). As a consequence, large
values of a may result in the collision of the leading wave front with the downstream
boundary at t < 50. As stated above, when the leading wave collides with the downstream
boundary for t< 50, the numerical results were filtered out and only processed for times less
than the collision time to ensure that the downstream and upstream boundary conditions do
not affect the wave propagation and blowup time.

3.6 Solution growth
In the previous section, the blowup times illustrated in Tables 1–4 have been discussed for
tbu < 50, i.e. when blowup occurs before t ¼ 50. However, these tables also contain
information on numerical experiments that do not exhibit blowup for x [ [0, L] and t # 50;
this information is discussed in the present section.

In Tables 1–4, nbu-nwc indicates that neither blowup nor wave collision with the
boundaries occurs for 0# t # 50, whereas nbu-wc is used to emphasize that, even though
no blowup occurs, waves have collided with either boundary for t # 50. Note that, for
nbu-nwc, blowup may occur for t > 50. On the other hand, for nbu-wc, collisions with the
right boundarymay not occur for L> 150 and blowupmay take place for t> 50.

Because, for both nbu-nwc and nbu-wc, no blowup has been observed using the blowup
time criterion and the time interval and spatial domain discussed above, but the solution
may blow up at later times, the temporal growth of the solutions may be determined or
estimated to assess the likelihood of (or lack thereof) blowup in these cases. To that end, one
may determine numerically the value of max jut(t2, x)j, where max[f]:max0#x#L[f] and t2
# 50 is the largest time for which the downstream boundary conditions do not affect the
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wave propagation; however, this value only provides information about the largest value of the
time derivative at t¼ t2. An alternative estimate of the solution temporal growth when there is
no blowup for t# 50may be obtained bymeans of s: [umax(t2, x)� umax(t1, x)]/(t2� t1), where
t2 � t1 � 20 and t2 # 50. Note that, if the leading wave does not collide with the downstream
boundary and there is no blowup for 0# t# 50, then t2 ¼ 50. Note also that, if tbu < 50, u(t, x)
shows a rapid increase in time as t ! t�bu and, therefore, the value of smay be used as a second
indicator of blowup. Recall that the blowup time criterion used in Sections 3.1–3.4 corresponds
to ju(tbu, x)� 5Aj.

Note that negative values of s indicate that umax(t, x) decreases as t increases in accord
with some of the results presented in Part I for equation (1) subject to smooth initial
conditions which are of either Gaussian type or correspond to the exact solution of the
inviscid, generalized RLW equation, when no blowup occurs (Ramos and García L�opez,
2020).

From the numerical experiments performed to determine the blowup times reported in
Table 1, p¼ 2 and c2 ¼ 1, the values of umax(t*, x) (t* [[t1, t2]) and s (s> 0) for t ¼ 0.001 and
0.1 have been found to increase almost linearly with time for the Gaussian, triangular and
rectangular initial conditions considered in this study, and the largest and smallest wave
temporal growth rates, i.e. the largest and the smallest values of s, correspond to the
rectangular and triangular initial conditions, respectively, in accord with the results
discussed in the previous section. The largest and the smallest values of s were found to be
approximately equal to four-thousandths and three-thousandths, respectively, thus
indicating that the solution temporal growth is slow.

Similar trends to the ones described in the previous paragraph have been found for p¼ 2
and c2 ¼ 0.1; however, for p¼ 2 and c2 ¼ 10, the values of umax(t*, x) for t ¼ 0.001, 0.01 and
0.1 decrease with time, and the fastest decrease in wave amplitude has been found for the
rectangular initial conditions, whereas the slowest one corresponds to the triangular ones.
This is a consequence of the fact that, as stated above, for a fixed value of t, the viscosity
coefficient increases as c2 is increased and, therefore, viscous effects and dissipation increase
as c2 is increased. On the other hand, the effect of viscosity decreases as c2 is decreased and,
therefore, the spatial gradient of the initial condition plays a key role on the initial dynamics
of wave propagation for c2# 1 [cf. equations (6) and (8)].

The value of umax(t*, x) for p ¼ 3 and t ¼ 0.001 has been found to exhibit similar trends
to the ones described above for p ¼ 2 and c2 ¼ 0.1, i.e. it increases almost linearly with time
for the three initial conditions considered here. On the other hand, for p ¼ 3, t ¼ 0.01 and
c2 ¼ 0.1, 1 and 10, the values of umax(t*, x) have been found to increase almost exponentially
with time, and the values of jsj are about three times larger for p ¼ 3 and t ¼ 0.001 than for
p ¼ 2 and c2 ¼ 0.1. However, for p ¼ 3, t ¼ 0.1 and c2 ¼ 10, s has been found to be negative
and have almost the same value for the three initial conditions considered in the paper.

From the numerical results used to obtain Table 2, it has been found that, for c2 ¼ 0.1, 1
and 10, jsj decreases as c2 is increased, is nearly independent of the initial conditions and is,
at most, equal to one-thousandth and two percent for p¼ 2 and t¼ 0.001, and p¼ 2 and t¼
0.01, respectively, thus indicating that jsj increases as t is increased, in agreement with the
results reported previously, which show that the blowup time decreases as the relaxation
time is increased.

For a ¼ 1, p ¼ 2, c2 ¼ 10 and t ¼ 0.1, it has been found that the values of jsj for A ¼ 1.5
are about 150% larger than those for A ¼ 1, thus indicating that the solution temporal
growth rate increases as the amplitude of the initial conditions and the effects of the
nonlinear drift term are increased.umax(t*, x) has been found to be an almost linear function
of time for t ¼ 0.001 and c2 ¼ 0.1, 1 and 10 and an exponentially increasing (decreasing)
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function of time for t ¼ 0.01 (t¼ 0.1) and c2 ¼ 0.1, 1 and 10. This behavior is a consequence
of the fact that the viscosity coefficient increases as either c2 or t is increased for fixed values
of t or c, respectively, and results in the curvature of the leading wave front location
illustrated previously in Figures 1–20.

For p¼ 3 and t¼ 0.01, and the calculations performed to obtain the results illustrated in
Table 2, it has been found that jsj decreases as c2 is increased and is larger for rectangular
conditions than for triangular and Gaussian ones, and its largest value is approximately
equal to four-thousandths. On the other hand, for p¼ 3, c2¼ 10 and t¼ 0.001, 0.01 and 0.1, it
has been found that s is negative for Gaussian and triangular conditions and its magnitude
increases as c2 is increased. Moreover, it has also been found that, for t ¼ 0.001 and 0.01,
umax(t*, x) is an almost linearly increasing function of time, whereas for t ¼ 0.1 is a
decreasing function of time, for rectangular initial conditions.

From the results used to obtain Table 2 discussed in previous paragraphs as well as
other ones not presented here, it may be stated that the value of jsj increases as p and t are
increased for the three types of initial conditions analyzed in this study.

From the calculations carried out to obtain the results summarized in Table 3, p¼ 2, c2¼
10 and t ¼ 0.001, 0.01 and 0.1, the largest and smallest values of jsj(s< 0) correspond to the
rectangular and triangular conditions, respectively, and are about nine-thousandths and
one-thousandth, respectively, thus indicating that the solution decay is very slow. These
small values of jsj are due to both the initial layer thickness whose duration in time is on the
order of t and the small value of m; jsj has been found to increase in magnitude as t is
increased, but its rate of increase decreases as the relaxation time is increased.

For t ¼ 0.001 and 0.01, umax(t*, x) has been found to be an almost linear function of time,
whereas it exhibits an exponential behavior for t¼ 0.1 on account of the increase ofm as t is
increased. The large values of jsj observed for c2 ¼ 10 and rectangular conditions are a
consequence of the fact that the slopes at the vertical sides of the rectangular conditions are
Dirac delta functions, as stated in Section 2.3.

For p¼ 2, s¼ 0.1, t¼ 0.001 and c2¼ 0.1, 1 and 10, rectangular initial conditions result in
a larger value of jsj than Gaussian ones, and the value of jsj for the latter is larger than for
triangular conditions, but the largest value of jsj is approximately equal to one-thousandth.
Similar trends have been observed, for p¼ 3, s¼ 0.1, t¼ 0.001 and c2¼ 0.1, 1 and 10, but, in
this case, the largest values of jsj are about four times higher than those for p ¼ 2 for
Gaussian and rectangular initial conditions, whereas they are about twice those for p¼ 2 for
triangular conditions, thus showing that the initial conditions for p ¼ 3 play a much more
important role in determining the temporal growth of the solution than for p ¼ 2 in accord
with the facts that the importance of the nonlinear advection term in equation (1) increases
as p is increased and rectangular conditions are less smooth than triangular and Gaussian
ones.

For c2 ¼ 10, p ¼ 3 and t ¼ 0.001, 0.01 and 0.1, it has been found that rectangular initial
conditions result in larger values of jsj than triangular ones, and the latter are characterized
by larger values of jsj than Gaussian ones. For the above parameters, s was found to be
negative and exhibit a very strong exponential dependence on t for c2 ¼ 10 and an almost
linear one for c2# 1. Similar trends to the ones just described have also been found for p¼ 2,
s¼ 0.1, t¼ 0.01 and c2 ¼ 0.1, 1 and 10. For these conditions, the values of s for c2 ¼ 0.1 and
1, and triangular conditions have been found to be at most 30% larger than those for
Gaussian conditions, and the latter are about one-half those corresponding to rectangular
conditions; the magnitude of jsj for rectangular conditions is about 30% larger than those
for Gaussian and triangular ones, for c2¼ 10.
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For p ¼ 2, t ¼ 0.01, a ¼ 0.1, 1 and 2, and rectangular conditions, the numerical
experiments performed to generate Table 4 result in larger values of jsj than triangular ones,
and the latter are, in turn, characterized by larger values of jsj than Gaussian ones. For these
values of the parameters, jsj increases as a, i.e. the linear drift velocity, is increased, in
accord with the steepening associated with the linear and nonlinear advection terms in
equation (1) and the fact that the rectangular conditions are less smooth than the triangular
ones, and the latter, in turn, are less smooth than the Gaussian conditions considered in this
study. In addition, as shown in Figures 4 and 6 and Figures 18 and 20 for Gaussian and
rectangular conditions, respectively, the speed of the leading wave front increases as a is
increased.

By way of contrast, the results for p¼ 2 and t¼ 0.001 shown in Table 4 indicate that, for
a ¼ 0.1, 1 and 2, the three initial conditions considered in the study reported here provide
nearly the same value of s. But, although s increases as a is increased, its growth is much
smaller than that observed for t¼ 0.01; this is a consequence of the fact that the thickness of
the initial layer is proportional to t and, therefore, decreases as t is decreased. Note that the
relaxation term in equation (1) is not present for t¼ 0.

For p ¼ 3 and t ¼ 0.001, similar results to the ones described above for p ¼ 2 and t ¼
0.001 have been found, but jsj is much larger for p ¼ 3 than for p ¼ 2, thus indicating once
again the great importance of the nonlinear advection term onwave propagation.

4. Conclusions
An extensive numerical study of blowup of a one-dimensional, bidirectional nonlinear wave
equation which becomes the well-known (inviscid) RLW or BBM equation and modified or
generalized (inviscid) RLW equations when both the relaxation time and the viscosity
coefficient are nil has been reported as a function of the parameters that appear in the
equation and the amplitude and width of smooth and nonsmooth initial conditions.
The smooth conditions are of the Gaussian type and are infinitely differentiable, whereas the
nonsmooth ones are both piecewise-continuous and piecewise-differentiable.

The results of the numerical experiments indicate that, for an amplitude equal to unity,
no blowup occurs for relaxation times less than or equal to one-hundredth, viscosity
coefficients less than one-tenth, quadratic and cubic nonlinear advection terms, and
Gaussian, triangular and rectangular initial conditions. No blowup has either been observed
for the same relaxation times and viscosity coefficients as above, for quadratic nonlinearities
and an amplitude equal to 1.5; however, for a cubic nonlinearity, relaxation times larger than
one-hundredth and viscosity coefficients larger than one-tenth, blowup occurs for the three
types of initial conditions considered in this study.

The blowup times for the triangular conditions have been found to be larger than those
for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus
indicating that the blowup time decreases as the initial condition smoothness decreases and/
or their slope increases. This finding is in accord with mathematical studies of the initial-
value problem for the inviscid, three-dimensional Euler’s equations.

The blowup time has also been found to decrease as the relaxation time, power of the
nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and
as the width of the initial condition is decreased, but it increases as the viscosity coefficient
is increased.

For a quadratic nonlinearity and a relaxation time and viscosity coefficient equal to one-
tenth, the blowup time has been found to decrease by a factor of two when the linear drift
coefficient was increased by a factor of twenty. On the other hand, for a cubic nonlinearity
and the same relaxation time and viscosity coefficient, the blowup time decreases by less
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than 34% as the linear drift velocity is increased. Moreover, for the same values of the linear
drift coefficient and relaxation times, the blowup times for quadratic nonlinearities are about
four times larger than those for cubic ones.

In some of the numerical experiments, it has been found that, depending on the linear
drift coefficient, relaxation time, viscosity coefficient, degree of nonlinearity, and the shape,
amplitude and width of the initial conditions, blowup does not occur for times less than the
largest simulation time considered in this study. In such cases, a chord parameter based on
the numerical solutions at two different times has been used to estimate the temporal
growth/decay of the solution, and it has been found that the magnitude of the chord
parameter increases as the nonsmoothness of the initial conditions is increased and is larger
for the rectangular initial conditions than for the triangular ones. The chord parameter has
also been found to increase as the power of the nonlinear drift, the linear advection
coefficient, the relaxation time and the amplitude of the initial conditions are increased, but
it decreases as the viscosity coefficient is increased.

It has also been found that the three initial conditions considered in this paper result
in the formation of a leading wave front whose curvature depends on the parameters that
characterize the one-dimensional, bidirectional equation as well as the initial conditions
and that complex wave patterns appear between this leading wave and the upstream
boundary. The number, amplitude and frequency of these waves have been found to
increase as the nonsmoothness of the initial conditions is increased, in qualitative
agreement with mathematical results for the three-dimensional, inviscid Euler’s
equation.
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