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Abstract

Purpose – The objective of the presented pilot study was to test the applicability of a metric to specifically
measure performance improvement via a hands-on workshop about collaborative robotics.
Design/methodology/approach –Candidates interested in acquiring basic practical skills inworkingwith a
collaborative robot completed a distance learning exercise in preparation for a hands-on training workshop.
The candidates executed a test before and after the workshop for recording the parameters compiled in the
tested performance index (PI).
Findings – The results reflected the potential of the tested PI for applications in detecting improvement in
practical skill acquisition and revealed potential opportunities for integrating additional performance factors.
Research limitations/implications – The low number of candidates available limited in-depth analyses of
the learning outcomes.
Practical implications – The study outcomes provide the basis for follow-up projects with larger cohorts of
candidates and control groups in order to expedite the development of technology-assisted performance
measurements.
Social implications – The study contributes to research on performance improvement and prediction of
learning outcomes, which is imperative to this emerging field in learning analytics.
Originality/value – The development of the presented PI addresses a scientific gap in learning analytics,
i.e. the objective measurement of performance improvement and prediction along skill-intensive training
courses. This paper presents an improved version of the PI, which was published at the 12th Conference on
Learning Factories, Singapore, April 2022.

Keywords Distance learning, E-Learning, Hybrid learning, Learning analytics, Learning efficacy, Learning

outcome, Performance development, Performance index, Performancemeasurement, Complex skills acquisiton
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1. Introduction
Delivering skill-intensive knowledge is often done by intermittently providing academic
preparation and practical application of the theoretical input. It is a commonly held belief that
alternating “studying” and “application” sequences leads to a steeper learning curve and
better knowledge-retention rates. However, there are few canonical methodologies or metrics
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to objectively demonstrate that one practical learning course is superior over another.
The most objective means for measuring learning effectiveness are still in the forms of
quizzes, score-based evaluations or similar approaches (Bonde et al., 2014; Makransky et al.,
2016a, b), which can be automatically evaluated by applying algorithms. Nevertheless, these
forms of evaluation are more applicable for measuring explicit, factual knowledge since they
directly scan an individual’s memory (Curran, 1997).

In case of field-tests, performance improvements are usually evaluated by tutors or
teachers (Bach et al., 2014) in a summative manner. In the context of the New World
Kirkpatrick Model, those means of evaluation represent “required drivers” of the Level 3 (see
Figure 1), which are “processes and systems that reinforce, monitor, encourage, and reward
performance of critical behaviors on the job” (Kirkpatrick et al., 2016). However, evaluation by
tutors or teachers is still a highly subjective approach and when it comes to evaluation of an
individual’s learning progress of a complex task – the “know-how-to-do” – there is little
methodology. In other words, there is a lack of a comprehensive metric in learning analytics
that enables an objective measurement of performance improvement rates along complex
paths of practical training in various disciplines (e.g. collaborative robotics).

In 1959, the researcher Donald Kirkpatrick published a four-level model for evaluating
training programs (Figure 1) (Kirkpatrick, 1959a, b, 1960a, b).

In 2016, Jim Kirkpatrick andWendy Kirkpatrick, the oldest son and daughter-in-law of Don
Kirkpatrick, published anupdated version of his original four-levelmodel for evaluating training
programs (Kirkpatrick, 1959a, b, 1960a, b, Kirkpatrick and Kirkpatrick, 2006; Kirkpatrick et al.,
2016). According to the New World Kirkpatrick Model, Levels 1 and 2 of the original four-level
model became over-emphasized over the decades since its publication in the late 1950s, because
the Levels 3 and 4 were “too expensive and difficult to evaluate” (Kirkpatrick et al., 2016).
Digitalization of business and learning processes in particular turned the application of all four
levels into a challenge. The New World Kirkpatrick Model adds new elements to the unfairly
neglected Level 3, stating “The degree to which participants apply what they learned during
training when they are back on the job”, and Level 4: “The degree to which targeted outcomes
occur as a result of the training and the support and accountability package”. The new Level 4
was complemented with “Leading Indicators” that help interpreting critical behaviors. This
should bring the desired results as those “critical behaviors” are part of the new Level 3, which
were supplemented with “required drivers” and “on-the-job learning” (Kirkpatrick et al., 2016).

In order to address the problem of objectively measuring the performance improvement
rate for practical knowledge development, a prototypic performance index (PI) has been
derived. It is aligned with a similar index previously published (Guneysu Ozgur et al., 2020),
albeit specifically optimized for working with collaborative robots (cobots) and with the
outlook to further develop by integrating additional factors and weighed parameters. The
prototypic PI presented in this paper compounds the time required to perform a task (working

Figure 1.
The four levels of
Kirkpatrick’s original
evaluation model
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time), the extent of needed assistance and error rates while performing the task. In addition,
this paper showcases results of a pilot study on the PI applied to a combined distance/hands-
on practical hybrid learning environment to build knowledge and skills in collaborative
robotics. After having demonstrated the PI’s potential for applications as a prediction tool for
learning outcomes (Mayrhofer et al., 2022), the objective of this study was test an improved
version of the PI in order to generate first indicative results, which point toward including
additional factors to be considered for an improved performance metric.

The distance-learning component was implemented with a training module on the
Skills.move platform by EIT-Manufacturing, covering the overall topic of working and
implementing cobots. Skills.move is a newly-established learning platform that offers flexible
learning experiences. It is the implementation of the Guided Learning Platform that was
presented at the 11th Conference on Learning Factories (Mayrhofer et al., 2021). In a nutshell,
Skills.move offers training courses in the area of manufacturing (i.e. additive manufacturing,
robotics, cobotics, automation, etc.) organized as learning paths comprising short,
consecutive training sessions (using slide decks, video clips, documentations, or quizzes),
and were dubbed “learning nuggets”. The long-term vision is to provide learners with the
option to adjust the learning intensity based on their individual needs, talents, experience and
learning style. To date, this “adaptive learning” approach has only been realized in
fragments. However, the ability to complete the learning nuggets on-demand, when learners
feel ready, and the possibility to change the sequence of the nuggets or repeat certain content
improves the engagement of learners (Skills.move users). While this teaching strategy seems
efficient in terms of user satisfaction, a prerequisite for the users’ learning motivation
(Heckman, 2008; Kyllonen et al., 2014; Levin, 2012), the study indicated that a combination of
improved interactive and hands-on content would be desirable (Mayrhofer et al., 2021).
Therefore, Skills.move might be ideally applied as a preparation tool for follow-up practical
training sessions, where users have the opportunity to complement their explicit knowledge
acquired on Skills.move (hard skills) with tacit or implicit knowledge (development of soft
skills), which is fundamental to performance improvement (Curran, 1997).

2. Methods
Potential candidates with various backgrounds and professions, but no education in robotics
were invited to participate in the pilot study. Candidates that accepted the invitation received
a participation sheet with details about the assignment to the distance-learning courses and
the workshop approximately one week before the workshop commenced. In order to
participate, interested candidates had to give their informed consent and subsequently were
enrolled to the training module ME1 - Module Executives 1 offered on the EIT’s Guided
Learning platform Skills.move (https://www.skillsmove.eu/). The learning paths comprised
learning nuggets of five to 10 min designed to build basic knowledge about cobotics.

Five candidates participated in the pilot study. In the week leading up to the workshop
days, the participants were asked to complete the learning nuggets in preparation for an
ensuing hands-on training in working with the educational cobot e.Do. by COMAU S.p.A. In
the context of a workshop organized at the pilot factory of TU Wien, participants received
tutoring in interacting with e.Do and learned how to program the cobot in order to automatize
a “pick-and-place” procedure with a rubber ball.

After a comprehensive introduction to mandatory safety rules in working with cobots,
participants were asked to take a practical test specifically chosen to evaluate the candidates’
individual performance in working with e.Do. The assigned taskwas to program a “pick-and-
place” use-case procedure that enabled e.Do to automatically pick up a rubber ball from a
cylinder and place it into another. The programming of the entire “pick-and-place” process
can be described as a sequence of ten working steps: (1) create a project, (2) lower the robot
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arm to bring the gripper in close proximity to the ball, (3) bring the gripper into an exact
position to grasp the ball, (4) grasp the ball, (5) lift the ball, (6) re-position the robot arm with
the ball to the second cylinder, (7) lower the ball onto the second cylinder, (8) release the ball,
(9) lift the robot arm and (10) bring the robot arm back to its starting position.

In order to interact with e.Do, candidates were providedwith a tablet running the e.Do app.
Candidates were free to find an optimal solution for the task themselves, although they were
also offered guidance comparable to a users’manual. The screenshots in Figure 2a show the
manual’s user interface accessible with the touchscreen of a laptop. On the start screen, a
short task description and a video displayed the desired outcome of the test. After pushing an
interactive arrow button, the first working step was described in a short text and an
illustrative video clip. Candidates requiring further assistance had the option to tap an
interactive “HELP” button in the lower left corner of the screen that opened a detailed
operating manual in addition to a video clip that demonstrated how to work through the
current step. Arrow buttons at the bottom of the screen allowed navigation between
consecutive working steps, while a list of all working steps leading to an optimal solutionwas
also accessible from each screen.

In order to measure the parameters required to assess the candidates’ performance, a
camera capturing the work area recorded the entire test activities.

Working times (measured inminutes) for individual working steps were recorded, starting
from the moment the candidates tapped the interactive arrow button opening the description

Figure 2.
Pre- and post-test
(a) User interface
(b) Snapshot of a
candidate consulting
assistance (left) and
switching to a next
working step during
the pre-test (right)
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window of the current working step and ending when they switched to the next one.
If the candidate worked without instruction (which was often the case in the post-test phase),
start and end time points of an individual working step were the initial and last tap to move
and program the robot for that specific working step respectively.

The times for those working with detailed assistance were registered starting from the
moment the candidates tapped the red “HELP” button (Figure 2b, left) until the moment,
when they switched to the next working step (Figure 2b, right).

After completing the working steps, the “pick-and-place” sequences programmed by each
candidate were executed. Incomplete or undesired movements of the robot arm (e.g. wrong or
omitted movement directions) were considered to be mistakes made when programming the
respective working step.

The test before the actual workshop started (pre-test) was the same as the final test after
the workshop had ended (post-test).

In order to estimate the learning efficacy of the practical workshop, we proposed a
comprehensive PI that combines different performance criteria. The candidates’ individual
PIs at the pre- and post-tests were calculated according to a formula derived from a similar
index previously published (Guneysu Ozgur et al., 2020). However, the PI of the current study
was adapted by incorporating performance parameters relevant to the “pick-and-place” task,
including the working time to complete the entire task (Tcandidate), working time when
assistance was needed (Tassistance) and mistakes in the programmed sequence, which all
negatively correlate with performance. In order to account for mistakes (erroneously
programmed working steps resulting in unintended movements of the robot arm) to be
detected by the PI, a time penalty per mistake (Tmistakes) was introduced as a placeholder.

PI ¼ 1

Tcandidate þ Tassistance þ Tmistake

(1)

The analyses of the individual video footage recorded during the pre- and post-test allowed
for the measurement of the single performance parameters.

The results of the pre- and post-test were analyzed with theR software environment using
the packages “tidyverse” (https://cran.r-project.org/package5tidyverse) and “fmsb” (https://
cran.r-project.org/package5fmsb).

3. Results
3.1 The candidates worked faster at the post-test
The radar charts in Figure 3 show that all candidates spent themost time programming e.Do to
lower thegripper arm toward the rubber ball, suggesting thiswas themost demandingworking
step in terms of skill and thus had a stronger impact on the PI than the other working steps.

Candidate #1 needed more than nine minutes, whereas candidate #4 managed this
working step in approximately three minutes during the pre-test; in comparison, the control
person, a professional engineer, finished this part in around one minute. Candidate #5
struggled the most with positioning the gripper to grasp the ball and eventually gave up,
which is the reason for the 0 minutes-records of the residual working steps.

After participating in theworkshop, all candidates improved their performancewith respect to
overall working time, except candidate #4 who required an additional minute, compared to the
pre-test. The candidates’ improvements resultmostly fromshorterworking times needed to lower
the gripper arm, supporting the view that thisworking stepwas themost demanding. Candidates
#1, #2, #3 and#5 programmed thisworking step by up to fourminutes quicker compared to the
pre-test; candidate #4 worked more than one minute longer on this step, which explains the
prolonged total working time to solve the entire programming task. Even though candidate #5
also improved, the candidate again gave up during the exact positioning of the gripper.
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Figure 3.
Required working time
by each candidate to
accomplish the
individual
working steps
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Interestingly, candidates #1 and #3 spent more than two minutes when placing the ball
onto the second cylinder during the post-test. Presumably, both candidates underestimated
this procedure or overestimated their perceived skills after having participated in the
workshop, as neither of them sought out assistance for completing this maneuver during the
post-test (Figure 4).

3.2 Most of the candidates worked without assistance at the post-test
The analysis of the working time records concerning when candidates worked with detailed
assistance further support the view that the working step to lower and position the gripper for
grasping the rubber ball was the most difficult part of the task. The radar charts in Figure 4
show that four candidates needed help during the pre-test; except candidate #4, who worked
without assistance. After the workshop, all candidates were able to work without assistance at
nearly all working steps; only candidate #1 needed help to perform working step 2.

3.3 Almost all candidates managed to establish functional “pick-and-place” sequences at the
post-test
Running the programmed “pick-and-place” sequences of the individual candidates further
indicated, unsurprisingly, that they improved in working with e.Do during the workshop.
Before the workshop, only candidate #4 managed to establish an automatized sequence,
which moved the rubber ball from one cylinder to the second one without dropping it.
However, after the workshop, the majority of the sequences automatized during the post-test
worked as intended, except the sequence by candidate #5, who stopped both tests after the
working step of lowering the gripper arm. Nevertheless, candidate #5 still managed to
establish at least one sequence during the post-test that enabled the cobot to grasp the ball
(Figure 5).

The observation that only candidate #4 managed to deliver a working sequence at the pre-
test (Figure 5) while finishing as the quickest (Figure 3) and without assistance (Figure 4)
suggests that candidate #4 had already acquired experience in working with cobots before the
study. When queried, candidate #4 confirmed acquiring previous experience with e.Do.

3.4 Derivation of the performance index (PI)
Overall, the analyses of the performance parameters already showed that the candidates
improved their skills in applying the e.Do cobot for automatization purposes. However, the
results also indicated that several additional factors needed to be considered when
establishing a performance metric. The results clearly suggested that performance metrics
should be capable of detecting incomplete work. For example, candidate #5 stopped both the
pre- and post-tests after the working steps of lowering and grasping the ball, resulting in
0-min working times for the residual working steps (Figure 3). Since this should result in a
lower PI development when compared with the other candidates, all of whom finished the
task, an additional time-penalty factor “Tsurrender” was added to account for working steps
that could not be recorded.

PI ¼ 1

Tcandidate þ Tassistance þ Tmistake þ Tsurrender

(2)

The extent of time penalties per single mistake or per surrendered working step was set as 10
times the minutes needed by the control person to finish the nth working step (Tn [control]).

The outcome of the post-tests further suggested that the individual working steps have
different influences on the success of the task. For example, some candidates skipped the step
of bringing the gripper into an exact position to grasp the ball (resulting in zero working time
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Figure 4.
Working time with
detailed assistance to
accomplish the
individual
working steps
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of the working step “exact position” in Figure 3), but still managed to establish a functional
“pick-and-place” sequence during the post-test (Figure 5). Completion of a task despite
skipped or unfinished working steps clearly has a positive impact on performance. This
suggests that the sum of weighted performance parameters corresponding to each working
step needs to be applied in the PI.

PI ¼ 1Pn

i¼1

��
Tn ½candidate� þ Tn ½assistance� þ Tn ½mistake� þ Tn ½surrender�

�
* wn

� (3)

Tn ½candidate� . . . Time needed by the candidate to accomplish the nth working step

Tn ½assistance� . . . Time working with assistance at the nth working step

Tn ½mistake� . . . Time penalty of 10 3 Tn ½control� for a mistake in the nth working step

Tn ½surrender� . . . Time penalty of 10 3 Tn ½control� for the missing nth working step after
surrendering the task

wn . . . Relevance (weight) of the nth working step for the completion of the task

In the PI presented in this paper, theworking time needed by the control person to accomplish
the nth working step normalized to the time needed by the same control person to complete
the entire task served as a weighing factor.

Figure 5.
Mistakes in individual

working steps of
candidates’ “pick-and-

place” sequences
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PI ¼ 1
Pn

i¼1

��
Tn ½candidate� þ Tn ½assistance� þ Tn ½mistake� þ Tn ½surrender�

�
*

Tn ½control�
Ttotal ½control�

� (4)

Tn ½control� . . . Time needed by the control person to accomplish the nth working step

Ttotal ½control� . . . Total time needed by the control person to complete the entire task

In order to achieve a dimensionless PI, each performance parameter was normalized to the
performance parameter of a professional tutor highly experienced in working with e.Do
(control). Formula (5) was then applied to calculate the candidates’ individual PI.

PI ¼ 1
Pn

i¼1

��
Tn ½candidate�
Tn ½control�

þ Tn ½assistance�
Tn ½control�

þ Tn ½mistake�
Tn ½control�

þ Tn ½surrender�
Tn ½control�

�
*

Tn ½control�
Ttotal ½control�

� (5)

3.5 Almost all candidates improved working with e.Do at the workshop
Comparing the candidates’ relative PIs suggests that the prototypic PI has high potential
as ameaningful metric to measure performance improvement. The PI of candidates #1, #2,
#3 and #5 improved from the pre-to the post-test timepoint. The performances of
candidates #1 and #2 were comparable at the pre-test, but candidate #1, the only
individual working with assistance at the post-test, revealed a flatter learning curve
(Figure 6). The slope of the learning curve is representative of the learning efficacy. In this
sense, candidate #2, who achieved the steepest learning curve, was the most responsive to
the learning input provided by the workshop. As expected, candidate #5, who gave up at
both the pre- and at the post-test, reached the flattest learning curve. Unsurprisingly,
candidate #4, who demonstrated the best performance parameters, had the highest PI at
the pre- and post-test.

4. Discussion
Candidate #4was the only onewith a drop in performance, which is in linewith the additional
minute required to bring the gripper arm into position to grasp the ball (Figure 3).
Presumably, a factor not included in the tested PI was the candidate’s concentration after an
all-day workshop, an indication that further development of the presented prototypic PI
might also integrate mental parameters. This could potentially be achieved with technologies

Figure 6.
Performance
improvement of
each candidate
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enabling automated emotion recognition (Dzedzickis et al., 2020), whichwould have the added
advantage of preserving objectivity during the performance measurement.

Candidates #1, #2, #3 and #4 started with different PI levels varying in the range from
0.0305 to 0.1405. In addition, their individual performance improvements varied, as indicated by
the different slopes of their learning curves. These results suggest that further developments of
PIs should involve a person’s talent or potential to improve specific skills. Since such factors are
determined by one’s attitude and willingness to learn (Heckman, 2008), (subjective) skill
measurements pertaining to Levels 1 and 2 of theNewWorld Kirkpatrick Modelmay also have
the potential to detect baseline performances and could thus potentially be applied in advanced
forms of PI metrics for the prediction of performance development (Kirkpatrick et al., 2016).

Additionally, the analysis revealed that performance metrics derived from a sequence of
individual working steps should take into account their relative difficulty levels, which was
also concluded by Bach et al. (2014). For example, the working step of lowering the gripper
arm seemed to be the most demanding one in terms of skill as candidates spent the most time
on this step when compared to the others (Figures 3 and 4).

The performance measures derived from candidate #4 underpinned the power of the
presented method for measuring performance. Candidate #4 showed the best performance
by far as the candidate eventually confirmed.

Together, these observations demonstrate the PI’s potential to detect or predict different
learning outcomes of groups of candidates in studies on novel learning paths, learning
modalities or technologies designed to support practical learning of skill-intensive, hands-on
activities, e.g. the application of virtual reality to prepare students for wet-lab activities in a
safe and cost-efficient manner (Schneikart, 2020). In addition, using an application as a
prognostic tool in learning analytics to, for example, forecast learning outcomes or to support
decision-making is highly conceivable (Leitner et al., 2017; Siemens, 2013).

In this regard, it should be pointed out that applications of PI metrics to compare non-
related tasks, learning methods, processes or technologies might not be feasible. As
mentioned above, the results suggest that performance is a product of multiple factors, which
are only indirectly measured by the presented approach. Additional factors that could
influence performance are, for example, a person’s mental state, interest to learn as well as
pre-existing or complementary competencies.

Competency in particular plays a particular role in performance. Acquiring a new
practically-oriented skills often starts with gathering data and information about the process
and the environment where the specific skill is to be applied. According to the DIKW (Data-
Information-Knowledge-Wisdom) pyramid, applying information results in knowledge and
ultimately wisdom (Ackoff, 1989; Davenport and Prusak, 1998; Schon, 1983; Schon and
DeSanctis, 1986). However, the DIKW-pyramid usually refers to the cognitive domain. With
regard to physically-oriented abilities, an extension of the pyramid with a competence-
component described as “practical wisdom” or “knowledge in action” seems necessary (Lalor
et al., 2015). In this respect, the term competence combines knowledge, skills and attitudes
according to Roe’s definition “a learned ability to adequately perform a task, duty or role”
(Roe, 2002). Therefore, competency is a role-specific determinant defined by talent and skills
(knowledge and experience) (Kuruba, 2019), which confines performance to a specific task or
job. The PI presented in this paper is intended to provide a metric for the process of complex
skills acquisition that lies at the core of competency development.

5. Conclusions
This paper presents an emerging approach to bridge a scientific gap in learning analytics,
which is the objective measurement of performance development and prediction.
This problem was addressed by developing a comprehensive PI that combines working
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time to complete a task, time working with assistance and mistakes (deviations from the
intended results). The objective of the conducted pilot study was to assess the capability of
the developed PI to detect performance improvements of candidates volunteering to learn
basic practical skills in working with cobots. Even though the analysis showed room for
improvement, the pilot study demonstrated the PI’s potential as a meaningful metric for
performance improvement during skill-intensive training programs.

The outcome of this study thus provides the basis for future studies with larger cohorts of
candidates and control groups, which will allow empirical–statistical analysis of learning
outcomes, and the exploration of additional factors influencing an individual’s performance.
In particular, the consideration of competency will be of high interest as it plays an important
role in performance. A method to measure competency has already been published (Kuruba,
2019), which will be considered for integration with the presented approach of PI
measurement.

Since themanual data acquisition proved to be very tedious, further projects to explore the
possibility of automatic performance measurements should be envisaged. In the ongoing era
of digitalization, automatic detection of performance parameters will confront the
development of performance metrics toward big data problems, which acquires increasing
importance in learning analytics (Hadavand et al., 2019). At the same time, this will create new
applications formachine learning technologies, which could enablemore precise performance
measures. In fact, in the rapidly developing field of learning analytics (Wong et al., 2018), first
reports on automatic performance measures (Guitart et al., 2015; Loh, 2013) and applications
of machine learning are already available (Khosravi et al., 2021).
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