
QUALITY PAPER

A benchmark analysis of the
quality of distributed additive

manufacturing centers
Elisa Verna and Domenico Augusto Maisano

DIGEP, Politecnico di Torino, Turin, Italy

Abstract

Purpose –Nowadays, companies are increasingly adopting additive manufacturing (AM) technologies due to
their flexibility and product customization, combined with non-dramatic increases in per unit cost. Moreover,
many companies deploy a plurality of distributed AM centers to enhance flexibility and customer proximity.
Although AM centers are characterized by similar equipment and working methods, their production mix and
volumesmay be variable. The purpose of this paper is to propose a novelmethodology to (1)monitor the quality
of the production of individual AM centers and (2) perform a benchmarking of different AM centers.
Design/methodology/approach –This paper analyzes the quality of the production output of AMcenters in
terms of compliance with specifications. Quality is assessed through a multivariate statistical analysis of
measurement data concerning several geometric quality characteristics. A novel operational methodology is
suggested to estimate the fraction nonconforming of each AM center at three different levels: (1) overall
production, (2) individual product typologies in the production mix and (3) individual quality characteristics.
Findings – The proposed methodology allows performing a benchmark analysis on the quality performance
of distributed AM centers during regular production, without requiring any ad hoc experimental test.
Originality/value – This research assesses the capability of distributed AM centers to meet crucial quality
requirements. The results can guide production managers toward improving the quality of the production of
AM centers, in order to meet customer expectations and enhance business performance.

Keywords Quality, Additive manufacturing, Distributed manufacturing, Capability analysis

Paper type Research paper

1. Introduction
In today’s highly competitive global market, a growing number of companies of all sizes
adopt distributedmanufacturing solutions, focusing on high product customization (Maisano
et al., 2020; Matt et al., 2015; Srai et al., 2016). Some important advantages of distributed
manufacturing are flexibility, proximity to customers, more accurate and timely information
and greater adaptability to demand fluctuations (Rauch et al., 2017, 2018; Roca et al., 2019).
Nevertheless, distributed manufacturing has some weaknesses compared to traditional
centralized manufacturing, such as higher capital investment to create more production
facilities, less exploitation of economies of scale, higher costs per unit and higher complexity
in coordinating andmanaging distributed manufacturing processes. However, as technology
continues to grow, the arguments in favor of distributed manufacturing tend to outweigh the
arguments against it (Srai et al., 2016).
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One of the outstanding emerging technologies of the last decades is additive manufacturing
(AM), which has enabled high customization and complexity levels. AM technologies have led to
the epochal shift from the so-called “mass production” to “job production,” also referred to as
“mass customization” (Galetto et al., 2020; Pine, 1993; Verna et al., 2020). In this paper, the research
focuswill be onAMprocesses, from the practical perspective of companies having tomanage and
coordinate a plurality of similar, albeit not identical, distributedAM centers. Such centersmay be
characterized by similar technology equipment, but may differ in terms of (1) technology
solutions, (2) work parameters and/or (3) materials (Gibson et al., 2010; Huang et al., 2017). In
addition, the production quantities and/or production mixes of different AM centers may vary
depending on their specific demand (Dur~ao et al., 2017; Rauch et al., 2018; Zijm et al., 2019).

In this scenario, the need arises for companies to monitor, evaluate and compare the
quality performance of their AM centers, so as to (1) take a general picture of the entire
production, (2) identify possible local criticalities and (3) guide possible improvement actions.
In particular, the quality of the production output of AM centers is intended as its compliance
with the relevant specifications, which are imposed by customers (Montgomery, 2019).

Monitoring and evaluating the quality of production isworth threefold in practice, as it enables:

(1) to evaluate the performance of single AM centers,

(2) a benchmark analysis between different AM centers, highlighting their strengths and
weaknesses and

(3) to drive improvement in each AM center by identifying the most profitable solutions
implemented in “competing” centers.

The inherent diversity amongAM centers – not only in terms of production equipment but also in
terms of quantitative (i.e. total production quantity, geometric/functional characteristics of
individual product units) and qualitative (i.e. production mix) characteristics of the related
productions–makes performing structured and rigorous quality assessments not straightforward.

The purpose of this paper is to propose a methodology for a structured comparison of a
plurality of AM centers from the perspective of their quality performance. Quality is assessed
through a multivariate statistical analysis of the compliance of different typologies of
products, based on multiple quality characteristics, leading to an estimate of the overall
defectiveness (or fraction nonconforming) of individual AM centers. A key distinguishing
feature of the proposed analysis is not to require any ad hoc experimental testing, being based
entirely on the information collected during regular production.

The remainder of this paper is organized into five sections. Section 2 presents the novel
methodology to assess the quality performance of eachAMcenter; thismethodology is based on a
multivariate statistical approach for estimating the conformity of the products in each AM center.
Section 3presents a real-world case studyof a companydedicated to designingandmanufacturing
automotive tool components, which are produced in several distributed AM centers. The case
studywill exemplify themethodology proposed in Section 2. Section 4 summarizes the findings of
the present study, specifying practical implications, limitations and insights for future research.

2. Research method
Consistently with the general definition of quality, that is, the “degree to which a set of inherent
characteristics of an object fulfils requirements” (ISO 9001:2015, 2015), the quality of a generic
manufacturing process can be defined as the “ability to produce products that meet the relevant
specifications.” In this paper, multiple AM centers are assumed to produce the same typologies of
products, though in different quantities and mixes. A combination of three factors characterizes
eachAMcenter: (1) production equipment/machines and correspondingwork/process parameters,
(2) materials with specific characteristics and (3) operators and related work practices.
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Such factors contribute to variability in production output, referred to as the “inability to
produce identical units of output” (Montgomery, 2019). Variability is classified as natural if it
refers to a production process that runs smoothly, without accidents/anomalies that can be
systematically attributed to at least one of the three aforementioned factors (e.g. machine
failure, imperfect materials or human error) (Swamidass, 2000; Woodall and Thomas, 1995).
Anomalies/incidents are occurrences that may occasionally be present in a process, which
result in an increased variability compared to the natural one, leading to an unacceptable
level of process performance. When assignable causes of variations occur, these result in a
shift to an out-of-control state where a larger proportion of the process output does not
conform to requirements (Montgomery, 2019). With accidents/anomalies, variability tends to
increase and, alongside it, the propensity to produce products that do not meet specifications
(Montgomery, 2019). However, even in the absence of anomalies/accidents, a process can
generate nonconforming products, since this may depend on how stringent the product
specifications associated with quality characteristics are, compared to the corresponding
natural variability.

The remainder of this section proposes a novel methodology to qualitatively assess the
degree of suitability of different distributed AM processes, with respect to the production
they are supposed to achieve. The existing scientific literature thoroughly addresses this
issue within the so-called process capability analysis (de-Felipe and Benedito, 2017; Gonz�alez
and S�anchez, 2009; ISO 22514-6:2013, 2013). Although the proposed methodology is inspired
by some widespread approaches in this field, it is purposefully tailored with reference to the
considered problem. In detail, the following four features define the problem of interest, which
is characterized by the following four features:

(1) In each AM center, the production is divided into the so-called jobs, in which product
units of various typologies are produced at the same time (e.g. part typologies α, β, γ).
A job can be defined as “an elementary production run that generates a “macro-
product,” given by the composition of product units of various typologies, according to
the customer demand” (Choudhari et al., 2012).

(2) Several characteristics and related specifications distinguish each typology of
product, for example, geometric quality characteristics.

(3) Depending on current demand, jobs may vary in terms of (1) total quantity of product
units and (2) corresponding assortment (i.e. subdivision of products into various
typologies).

(4) For shortening production time and costs, production capacity of each AM center
should be saturated as much as possible, job by job. Clearly, the number of products
to be manufactured in a given job depends on the geometric characteristics of the
production equipment (e.g. the geometric characteristics of the plate of the AM
machines) and the part units.

In summary, the proposed methodology includes two main phases: (1) the production data
gathering and (2) the multivariate statistical approach to analyze these data.

2.1 Production data gathering
Data collection can be performed during regular production, without requiring expensive and
time-consuming ad hoc experimental testing. In order not to distort the analysis, it is essential
that production takes place in the absence of incidents/anomalies of any kind. To this end, it is
recommended that technicians, operators and engineers follow the production process closely
during data collection. A job-to-job production sampling is then performed in eachAM center,
until an adequate quantity of production units is collected (indicatively, at least 15–20 units
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for each product typology) (Montgomery, 2019). This amount of data is reasonably
acceptable for the statistical analysis described in Section 2.2. Clearly, increasing the number
of units collected will increase the accuracy of the statistical analysis, but it will also increase
the associated costs (Montgomery, 2019).

Next, parts of the same typology are aggregated for each AM center, independently of the
jobs in which they were produced. This aggregation is reasonable under the assumption –
that will be verified – that the “job factor” has no systematic effect.

The last step entails the measurement of the quality characteristics related to each
typology of part. To this aim, it is convenient to use a relatively accurate measuring
instrument that allows neglecting the measurement uncertainty, with respect to the
variability of the measured quality characteristics (Montgomery, 2019). Alternatively, the
measurement uncertainty has to be included in the analysis, thereby complicating it.

2.2 Multivariate statistical approach for quality performance benchmarking
The proposed analysis is based on a common assumption in multivariate process capability
analysis, namely that quality characteristics related to the same typology of product can be
modeled as correlated random variables, which are distributed according to a multivariate
normal distribution (Alevizakos and Koukouvinos, 2020; Chen et al., 2003; Ross, 2009; Tano
and V€annman, 2012; Wang, 2005). A normality test, such as the Anderson–Darling (AD) test,
may be performed to verify the normality of the distribution of each individual quality
characteristic, for each part typology and AM center (Montgomery, 2019).

Then, the relevant normalmultivariate distribution parameters should be estimated using
the sample of measurement data collected in the previous phase (see Section 2.1). In detail, for
each product typology andAM center, the (1) vector of mean values and (2) covariance matrix
of the corresponding quality characteristics can be estimated. Whereas the sample mean and
covariance are unbiased estimators of the process mean and covariance, the sample variance
is a biased estimator as it systematically underestimates the process variance (Ross, 2009).
Such a bias may be corrected through the parameter c4 (see Cochran’s theorem) (Bapat, 2000),
which depends on the sample size (n) of the data used to determine the sample variance and
can be found in the scientific literature (Duncan, 1974; Montgomery, 2019). Accordingly, the
unbiased estimates of the multivariate normal distribution parameters are:

bμx ¼ Pn

i¼1xi

n
; bσx ¼ sx

c4
¼ 1

c4
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � μxÞ2
n� 1

s
; ccovðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � μxÞ$
�
yi � μy

�
n� 1

s
;

(1)

where:

(1) “n” is the size of the sample selected for estimating the process parameters,

(2) “^” is the hat operator, denoting estimated values,

(3) “bμx” is the estimation of themean value of the generic quality characteristic x, through
the sample mean,

(4) “sx” is the sample standard deviation that, after being corrected using the parameter
c4, provides an unbiased estimate (bσx) of the standard deviation of x and

(5) “ccovðx; yÞ” is the unbiased estimation of the covariance between two generic quality
characteristics x and y through the sample covariance.

The above parameters allow reconstructing the multivariate normal distributions related
to the quality characteristics of each part typology, with reference to a certain AM center.
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The next step is to estimate the fraction of nonconforming products produced by the AM
centers by comparing the multivariate normal distributions with the associated
specifications. A preliminary estimate of the fraction nonconforming, from the perspective
of a single quality characteristic, can be made by integrating the univariate normal
distribution of the quality characteristic into the two “tails” beyond the relevant specification
limits: lower specification limit (LSL) and upper specification limit (USL). For quality
characteristics with unilateral specifications, only one tail (right or left, depending on the
specific case) has to be considered.

The next step of the proposed methodology concerns the estimation of the overall fraction
of nonconforming products – pi, that is, the fraction of parts of i-th typology, which do not
meet at least one of the related quality characteristics – by integrating the normal
multivariate distribution externally with respect to the hyper-rectangular region, delimited
by the specification limits of the respective quality characteristics (de-Felipe and Benedito,
2017). As exemplified in Section 3 referring to the case study, a Monte Carlo numerical
integration can be performed for each part typology and each machine, generating a number
of multivariate random realizations of some variables, which are compatible with the
respective mean-value vectors and covariance matrix.

For a specific AM center, a synthetic indicator of the overall fraction nonconforming (p) of
the total production output (i.e. considering the totality of part typologies) can be defined as:

p ¼
P

i∈fα;β;...gpi$ðwi$miÞP
i∈fα;β;...gðwi$miÞ ; (2)

where:

(1) mi is the mass of material, including material for support bases and purging, related
to the production of the i-th part typology,

(2) wi is an indicator of the portion of parts of i-th typology, for a given production mix
and

(3) α, β, . . . are the product typologies.

Eq. (2) is a weighted sum of the pi values with respect to the correspondingmass (mi), for each
i-th part typology. This form of weighing seems reasonable, considering that the different
parts are produced according to different product mixes. Additionally, p can be seen as the
ratio between the mass related to the fraction nonconforming of products and the total mass
of products from a certain AM center. Such a synthetic indicator can represent a performance
measure of the quality of each AM center. Indeed, the higher the value of p, the lower the
ability of the AM center to meet the quality requirements imposed by the customers. The
analysis of this indicator for a certain AM center and its comparison with the indicators
related to other “competing” centers can supportmanagers in selecting quality improvements
actions.

Section 3 exemplifies the application of the proposed methodology to a real case study in
the automotive sector, highlighting its practical utility.

3. Case study
3.1 AM centers and production data
In the proposed case study, three AM centers of a company specialized in designing and
implementing tooling solutions for the automotive industry are considered. The company’s
name is not revealed for confidentiality reasons. The product units manufactured include
inspection fixtures, production and assembly jigs that can be used as support tools, both in
the design/prototyping and in the production/assembly phases. Figure 1 shows some sample
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fixtures of different geometry that allow the precise positioning of some pressed sheet-metal
components of a car door during assembly or dimensional quality inspections.

Three specific typologies of fixtures (referred to as α, β and γ) with comparable overall
dimensions are considered. These fixtures can be used to support the proper placement of
specific automotive components during various in-line tests and are only a few centimeters in
size. The precise geometry of the three fixtures is not disclosed for reasons of confidentiality.
For each geometry, three quality characteristics that are crucial for the functionality of the
fixture itself are identified (i.e. α.1, α.2, α.3, β.1, β.2, etc.); each of these quality characteristics is
associated with corresponding specifications. Table 1 reports the nominal value (NV) and the
LSL and USL for each quality characteristic. As shown, specifications are generally not very
stringent since they are of the order of magnitude of a few tenths of a millimeter.

Further technical requirements characterizing the production of the fixtures of interest are
summarized below:

(1) the parts are generally not produced in large quantities, albeit with a variable
production mix, depending on current demand,

(2) the parts do not have particular structural properties, as they are mainly used as a
support for the positioning of specific automotive components during assembly
operations and

(3) being in contact with metal automotive components, parts are made of a softer
material that can be worn without scratching metal components.

Fixtures are produced in three distributed AM centers, referred to as “Center I,” “Center II”
and “Center III.” All AM centers use polymeric materials, although the three different
machines in use are not disclosed for industrial secrecy reasons. Although these AM centers
adopt the same technology, that is fused deposition modeling (FDM), the architecture and

Label Type Description NV LSL USL

Part α α.1 Dimensional Two-plane distance [mm] 34.50 34.35 34.65
α.2 Dimensional Internal diameter [mm] 18.40 18.30 18.50
α.3 Form Cylindricity [mm] – – 0.20

Part β β.1 Dimensional Hole spacing [mm] 48.60 48.45 48.75
β.2 Dimensional Two-plane distance [mm] 24.30 24.15 24.45
β.3 Form Flatness [mm] – – 0.20

Part γ γ.1 Dimensional Two-plane distance [mm] 15.00 14.80 15.20
γ.2 Dimensional Two-plane distance [mm] 28.60 28.45 28.75
γ.3 Orientation Parallelism [mm] – – 0.15

Figure 1.
Sample fixtures used
as supports for parts
manufactured in bent-

sheet metal during
assembly and/or

dimensional inspection
in the automotive

industry

Table 1.
Geometric quality

characteristics of the
parts α, β and γ
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equipment of the AM machines are different, leading to possible differences in terms of
resulting quality of the parts (Galetto et al., 2021). The AMmachines used in each AM center
have different production capacity: themachine of Center I has the largest surface of the plate,
followed by that of Center II and Center III, respectively. To ensure a certain standardization
of the manufactured products, all the machines are equipped with filaments of proprietary
materials (both in reference to the parts and to the corresponding support bases), whose
mechanical/functional properties and parameters of the deposition process are available in
the technical sheets provided by the material supplier.

The effective production of each AM center was monitored and sampled for a variable
period in order to collect an adequate amount of product units, that is, about 15–20 for each
part typology (α, β and γ). To assure that the sampled data reflect the behavior of the
production processes – in the absence of accidents/anomalies or any systematic source that
could bias the natural variability (Montgomery, 2019) – the AMprocesses were supervised by
skilled and experienced technicians. The production of each AM center is organized into jobs,
characterized by a certain mix of the parts α, β and γ. Secondly, the number of units produced
in each job may vary from machine to machine, being related to the plate surface. For
example, the machine of Center I can produce a dozen units per job, that is, about twice as
many as the machine of Center III; the machine of Center II has an intermediate capacity.
Table 2 describes the job-to-job configurations related to the production carried out on the
three AM centers.

A DEAGlobal Image coordinate measuring machine (CMM) with amaximum permissible
error (MPE) of about 3 mmwas used to measure the quality characteristics. The resolution of
this instrument is about two orders of magnitude lower than the intrinsic variability of the
measurands, which is of the order of magnitude of one-tenth of a millimeter; see Table A1
(Hexagon Manufacturing Intelligence, 2021). For each part type, a measurement cycle was
constructed and automatically performed. In order to obtain a more accurate estimate and
avoid possible measurement errors, three replicated measurements were carried out for each
quality characteristic and then aggregated through the arithmetic mean. Measurement
results related to the parts manufactured in each of the three AM centers are reported in
Tables A1–A3, respectively.

The box-plot in Figure 2 shows that the “job factor” does not seem to determine systematic
differences in the quality characteristic α.1, with reference to the parts produced inAMCenter
I; the four boxes relating to the four jobs are, in fact, all overlapping (Ross, 2009). To provide
statistical evidence of the nonsignificance of the “job factor,” a one-way ANOVA (Ross, 2009)
is also performed, confirming that there is no systematic difference between the means of the
jobs with respect to the quality characteristic α.1, with a p-value of 0.178. The same result can

Job
(a) AM Center I (b) AM Center II (c) AM Center III

α β γ Job total α β γ Job total α β γ Job total

1 8 3 1 12 2 4 3 9 – – 6 6
2 3 9 – 12 8 – – 8 – – 6 6
3 – 2 10 12 3 3 3 9 2 3 1 6
4 7 – 5 12 – 4 5 9 1 3 2 6
5 3 5 3 11 4 5 – 9 3 2 1 6
6 – – – – 3 5 1 9 2 3 1 6
7 – – – – 1 – 8 9 4 2 – 6
8 – – – – – – – 5 1 – 6
9 – – – – – – – 1 4 1 6
10 – – – – – – – 1 2 3 6
Column total 21 19 19 59 21 21 20 62 19 20 21 60

Table 2.
Job-to-job sampled
production of each AM
center. For each job, the
mix of parts produced,
the relevant typology
and number are given

IJQRM
39,6

1494



be extended to all quality characteristics of all typologies of parts produced in anyAM center,
allowing, therefore, to aggregate data related to the same part typology, which are produced
in different jobs in the same AM center.

Next, the AD test was used to test the normality of the distribution of each individual
quality characteristic for each product typology and AM center (Marsaglia and Marsaglia,
2004). The relatively high p-values of the AD test show that the assumption of normality is
not contradicted for any quality characteristics (see Table A4).

Eq. (1) is then applied to estimate the mean values and covariance matrices related to the
quality characteristics of each product typology and AM center. Such values are contained in
Table 3. It is interesting to note that the quality characteristics related to the same product
type are often correlated. For instance, referring toAMCenter I, the quality characteristics α.2
and α.3 are positively correlated, that is, cov(α.2, α.3) 5 0.0014, corresponding to a Pearson
correlation coefficient ρα.2, α.3 5 77.4%, while the quality characteristics γ.1 and γ.3 are
negatively correlated, that is, cov(γ.1, γ.3)5�0.0008, corresponding to a Pearson correlation
coefficient ργ.1, γ.3 5 �52.8% (Ross, 2009).

Next, a Monte Carlo numerical integration was carried out for each part typology and AM
center, after generating 10,000 multivariate random realizations of some variables,
compatible with the respective mean-value vectors and covariance matrix. For this
purpose, the “Calc > Random Data > Multivariate Normal Distribution” function of Minitab
was adopted (Minitab, 2021).

3.2 Results and discussion
Results of the integration are shown in Table 4 and Figure 3. The fraction nonconforming
related to a single quality characteristic of certain part typology is derived by integrating
the univariate normal distribution of the quality characteristic into the two “tails” beyond the
relevant specification limits, for example, for the quality characteristic α.1, related to the
typology-α parts manufactured in AM Center I, the fraction nonconforming can be
determined as pα.1 5 P(xα.1 < LSLα.1) þ P(xα.1 > USLα.1) 5 0.17%.

In addition, Table 4 shows that, for a given AM center and part typology, the overall
fraction nonconforming is lower than the sum of the fractions nonconforming related to
corresponding quality characteristics (e.g. pα < pα.1 þ pα.2 þ pα.3). This finding is not
surprising as the individual quality characteristics are not statistically independent (see
covariance matrices on Table 3).

Focusing on the fraction nonconforming related to the single parts (i.e. pα, pβ, pγ, as shown
in Table 4), AM Center I has the lowest fraction nonconforming, while AM Center III has the

Figure 2.
Box-plot of the quality

characteristic α.1,
relating to the α part
typologies, produced

by AM Center I
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highest one. This result is even more evident when considering the synthetic indicator
associatedwith the entire production of a certainAMcenter (see Eq. (2). A uniformproduction
mix for each AM center was here considered: that is, wi 5

1/3 ∀i∈{α, β, γ}; the mi values are
estimated in the last column of Table 5. The resulting p values are shown in Figure 3,
supporting the assumption that AM Center I has the lowest p-value, while AM Center III has
the highest one.

The proposed fraction nonconforming indicators – at the level of (1) individual quality
characteristics (e.g. pα.1, pα.2, etc.), (2) single parts (i.e. pα, pβ, pγ) and (3) overall production
output of each AM center – (p) provide a snapshot of the current quality of each AM center,
facilitating comparison with other AM centers.

(a) AM Center I (b) AM Center II (c) AM Center III

pα.1 0.17% 1.80% 5.35%
pα.2 0.20% 0.10% 1.18%
pα.3 1.90% 0.12% 1.27%
pα 2.23% 2.01% 7.15%
pβ.1 0.01% 0.05% 1.24%
pβ.2 1.49% 0.11% 0.98%
pβ.3 1.31% 3.14% 2.79%
pβ 2.78% 3.30% 4.54%
pγ.1 1.17% 1.98% 4.41%
pγ.2 0.01% 0.49% 0.95%
pγ.3 5.62% 11.90% 12.27%
pγ 6.31% 14.15% 17.04%
p 3.62% 6.02% 9.22%

Part typology
Approximate unitary volume and mass

Product unit Support base Total

α 67.7 cm3 48.6 g 2.6 cm3 1.8 g 70.3 cm3 mA 5 50.4 g
β 59.3 cm3 42.5 g 2.2 cm3 1.6 g 61.5 cm3 mB 5 44.1 g
γ 52.4 cm3 37.5 g 2.9 cm3 2.1 g 55.3 cm3 mC 5 39.6 g

Table 4.
Estimation of the

fraction
nonconforming related
to (1) individual quality

characteristics (e.g.
pα.1, pα.2, etc.), (2) single
parts (i.e. pα, pβ, pγ) and
(3) overall production

output of each AM
center (p)

Figure 3.
Estimation of the

fraction
nonconforming of the

production output
obtained through the

three AM centers.
Estimates are

performed at the level
of (1) individual quality

characteristics (e.g.
pα.1, pα.2, etc.), (2) single
parts (i.e. pα, pβ, pγ) and
(3) overall production

output of each AM
center (p)

Table 5.
Approximate volume

and mass of each
typology of product
unit (α, β and γ) and

relevant support base
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The results in Table 4 and Figure 3 show that Center III is the worst in terms of part
quality for all three part typologies (α, β and γ). In particular, the gap between Center III and
the first two centers is particularly evident for part α, the defectiveness being about 5
percentage points higher (i.e. 7.15% vs. 2.23% and 2.01%, respectively). Centers I and II
perform similarly for parts α and β, while showing some difference for the part γ, as the
fraction nonconforming of Center II is more than 1.5 times higher than that of Center I.

The AM center with lowest fraction nonconforming of overall production is Center I
(3.62%), followed by Center II (6.02%) and then Center III (9.22%). Center I’s supremacy is
probably due to the use of a new-generation FDM system, with increased production capacity
and quality of production output. In the light of these results, it would be appropriate for
production managers to ensure that Centers II and III reach the quality levels of Center I,
taking the latter as a benchmark.

4. Conclusions
This paper proposed an operational methodology to compare distributed AM centers,
characterized by job-by-job productions with similarities in terms of parts produced,
quantities produced and production mix. The comparison is conducted by analyzing the AM
centers from the point of view of the quality of production, intended as capability to meet the
product specifications imposed by costumers. In detail, the proposed methodology makes it
possible to estimate the fraction nonconforming of each AM center, at the level of (1)
individual quality characteristics, (2) individual product typologies and (3) overall
production. Providing a synthetic picture of the quality performance of the AM centers
being compared, it can also be useful to guide potential improvement actions (Maisano et al.,
2020). The operational methodology was then exemplified in a real-world case study of an
industrial company producing automotive tool components in three distributed AM centers.

A distinctive feature of the proposed analysis is that it does not require any ad hoc
experimental testing. Only a preliminary sampling of (part of) the actual production of each
AM center is required. Afterward, relevant quality characteristics of the sampled parts have
to be measured. In the case study, dimensional quality characteristics were measured using a
CMM; however, the proposed methodology can be adapted to other types of quality
characteristics (e.g. microhardness, surface roughness, residual stresses).

The proposed methodology is quite general as it can be applied to benchmark a plurality
of AM centers, with different production volumes and mixes. The application to the specific
case study exemplified a possible quality assessment and ranking of three “competing” AM
centers. Since these results refer to the specific typologies of products analyzed, with their
respective specifications and production mix, they do not necessarily have general validity.
By changing the typology of parts and therefore their structural, geometric and
constructional characteristics, the quality performance of AM centers can change.

This research has several practical implications. By applying the proposed methodology,
companies with several distributed AM centers can make more structured evaluations and
comparisons in terms of quality performance. The proposed methodology may also guide
management in assigning rewards to leading centers and stimulate performance
improvement in others. In addition, it can help implement ambitious plans such as zero
waste, zero-defect manufacturing or the achievement of sustainable development goals
(Psarommatis et al., 2020; Verna et al., 2021).

Some limitations to the proposed methodology are summarized below:

(1) The production mix of each AM center is assumed to include products with similar
geometry (i.e. volume, height, etc.) and constructional characteristics (i.e. typology of
material, infill strategy/density and deposition path).
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(2) The quality characteristics of each part typology are assumed to follow amultivariate
normal distribution. Although this assumption is relatively common in the scientific
literature concerning process capability analysis, it has to be verified case-by-case.

(3) The measurement uncertainty of the instruments used to measure the quality
characteristics was neglected.

(4) For the comparison between AM centers not to be far-fetched, it seems reasonable to
assume that the centers themselves adopt the same production and quality control
practices. This scenario is quite realistic, as companies often centralize quality
assurance and planning activities, defining operational practices to be adopted
uniformly in distributed manufacturing centers (Ill�es et al., 2017).

(5) The comparison of distributedAMcenters does not consider costs (e.g. cost of energy,
material and labor).

Future research should take into account and overcome (at least some of) the limitations
mentioned above. Additionally, the proposed quality analysis will also be extended to
distributed AM productions of metal parts and will be complemented with a sustainability
analysis.
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Appendix
This section contains further tables related to the quality benchmarking, concerning the real-world case
study in Section 3

Measurements for part α [mm] Measurements for part β [mm] Measurements for part γ [mm]

Job Part No. α.1 α.2 α.3 Job Part No. β.1 β.2 β.3 Job Part No. γ.1 γ.2 γ.3

1 1 34.477 18.328 0.110 1 1 48.600 24.227 0.054 1 1 14.938 28.684 0.125

1 2 34.485 18.438 0.116 1 2 48.626 24.321 0.140 3 2 15.002 28.584 0.077

1 3 34.519 18.405 0.101 1 3 48.597 24.215 0.038 3 3 14.984 28.657 0.068

1 4 34.495 18.370 0.082 2 4 48.604 24.294 0.076 3 4 14.999 28.669 0.131

1 5 34.461 18.441 0.141 2 5 48.609 24.324 0.117 3 5 14.948 28.568 0.051

1 6 34.505 18.438 0.103 2 6 48.589 24.307 0.070 3 6 14.997 28.627 0.136

1 7 34.431 18.478 0.144 2 7 48.650 24.269 0.107 3 7 14.985 28.650 0.104

1 8 34.461 18.392 0.117 2 8 48.629 24.341 0.134 3 8 14.957 28.647 0.092

2 9 34.529 18.307 0.029 2 9 48.645 24.204 0.014 3 9 14.953 28.636 0.147

2 10 34.490 18.388 0.068 2 10 48.658 24.256 0.081 3 10 14.954 28.662 0.166

2 11 34.552 18.440 0.119 2 11 48.577 24.244 0.032 3 11 14.950 28.617 0.095

4 12 34.494 18.475 0.157 2 12 48.538 24.313 0.044 4 12 14.989 28.590 0.052

4 13 34.447 18.379 0.080 3 13 48.647 24.206 0.046 4 13 15.014 28.607 0.070

4 14 34.523 18.409 0.118 3 14 48.698 24.304 0.049 4 14 15.017 28.640 0.086

4 15 34.529 18.351 0.120 5 15 48.578 24.286 0.076 4 15 14.957 28.614 0.085

4 16 34.508 18.363 0.058 5 16 48.626 24.221 0.041 4 16 15.028 28.614 0.092

4 17 34.455 18.314 0.039 5 17 48.622 24.286 0.075 5 17 14.914 28.609 0.144

4 18 34.506 18.393 0.081 5 18 48.605 24.320 0.070 5 18 15.051 28.592 0.002

5 19 34.486 18.377 0.058 5 19 48.582 24.142 0.036 5 19 14.986 28.652 0.083

5 20 34.498 18.378 0.085

5 21 34.461 18.335 0.037

Table A1.
Dimensional
measurements related
to the quality
characteristics of the
parts produced in AM
Center I. The values
highlighted in gray do
not meet the
corresponding
specification limits
(cf. Table 1)
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Measurements for part α 
[mm]

Measurements for part β 
[mm]

Measurements for part γ 
[mm]

Job Part No. α.1 α.2 α.3 Job Part No. β.1 β.2 β.3 Job Part No. γ.1 γ.2 γ.3

1 1 34.442 18.388 0.024 1 1 48.500 24.306 0.041 1 1 15.037 28.579 0.065

1 2 34.462 18.400 0.058 1 2 48.567 24.169 0.007 1 2 15.039 28.492 0.074

2 3 34.456 18.377 0.083 1 3 48.628 24.368 0.129 1 3 14.980 28.579 0.021

2 4 34.469 18.382 0.043 1 4 48.650 24.234 0.074 3 4 14.991 28.616 0.163

2 5 34.526 18.435 0.103 3 5 48.578 24.358 0.090 3 5 15.073 28.600 0.100

2 6 34.471 18.325 0.054 3 6 48.618 24.263 0.088 3 6 14.968 28.501 0.100

2 7 34.454 18.364 0.054 3 7 48.617 24.263 0.085 4 7 15.027 28.549 0.088

2 8 34.501 18.428 0.076 4 8 48.648 24.279 0.057 4 8 14.946 28.611 0.116

2 9 34.465 18.433 0.107 4 9 48.651 24.217 0.055 4 9 14.957 28.598 0.182

2 10 34.443 18.375 0.072 4 10 48.600 24.275 0.104 4 10 14.968 28.552 0.074

3 11 34.514 18.381 0.116 4 11 48.598 24.235 0.082 4 11 14.996 28.569 0.126

3 12 34.493 18.311 0.008 5 12 48.627 24.225 0.069 6 12 15.032 28.626 0.132

3 13 34.522 18.433 0.105 5 13 48.636 24.284 0.070 7 13 15.083 28.485 0.042

5 14 34.470 18.278 0.000 5 14 48.650 24.156 0.007 7 14 14.979 28.600 0.148

5 15 34.533 18.346 0.035 5 15 48.660 24.234 0.036 7 15 14.986 28.554 0.058

5 16 34.457 18.376 0.043 5 16 48.636 24.179 0.047 7 16 15.053 28.575 0.097

5 17 34.417 18.366 0.086 6 17 48.612 24.299 0.098 7 17 15.033 28.558 0.106

6 18 34.415 18.372 0.061 6 18 48.659 24.230 0.102 7 18 15.063 28.497 0.111

6 19 34.447 18.337 0.051 6 19 48.624 24.322 0.100 7 19 14.973 28.580 0.062

6 20 34.474 18.378 0.075 6 20 48.559 24.206 0.016 7 20 15.018 28.631 0.207

7 21 34.474 18.407 0.080 6 21 48.542 24.291 0.132

Table A2.
Dimensional

measurements related
to the quality

characteristics of the
parts produced in AM
Center II. The values

highlighted in gray do
not meet the

corresponding
specification limits

(cf. Table 1)
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Measurements for part α 
[mm]

Measurements for part β 
[mm]

Measurements for part γ 
[mm]

Job Part No. α.1 α.2 α.3 Job Part No. β.1 β.2 β.3 Job Part No. γ.1 γ.2 γ.3

3 1 34.504 18.406 0.034 3 1 48.551 24.305 0.028 1 1 14.979 28.591 0.107

3 2 34.483 18.389 0.040 3 2 48.555 24.256 0.004 1 2 15.002 28.625 0.121

4 3 34.509 18.39 0.074 3 3 48.487 24.307 0.056 1 3 14.935 28.539 0.098

5 4 34.455 18.424 0.079 4 4 48.585 24.372 0.131 1 4 15.051 28.456 0.092

5 5 34.463 18.481 0.068 4 5 48.608 24.234 0.032 1 5 14.986 28.486 0.046

5 6 34.413 18.376 0.010 4 6 48.547 24.380 0.114 1 6 14.934 28.653 0.158

6 7 34.482 18.462 0.113 5 7 48.441 24.275 0.029 2 7 15.011 28.601 0.087

6 8 34.566 18.467 0.129 5 8 48.545 24.332 0.047 2 8 15.010 28.593 0.094

7 9 34.453 18.421 0.077 6 9 48.594 24.411 0.178 2 9 14.938 28.612 0.175

7 10 34.464 18.409 0.070 6 10 48.613 24.425 0.111 2 10 15.048 28.591 0.075

7 11 34.530 18.549 0.206 6 11 48.583 24.376 0.072 2 11 15.022 28.570 0.111

7 12 34.508 18.415 0.036 7 12 48.502 24.308 0.074 2 12 15.070 28.582 0.106

8 13 34.457 18.433 0.091 7 13 48.578 24.298 0.054 3 13 15.086 28.508 0.024

8 14 34.507 18.357 0.002 8 14 48.521 24.288 0.000 4 14 15.038 28.526 0.010

8 15 34.471 18.493 0.154 9 15 48.591 24.293 0.037 4 15 14.959 28.533 0.106

8 16 34.486 18.431 0.099 9 16 48.568 24.372 0.079 5 16 15.009 28.569 0.132

8 17 34.502 18.429 0.060 9 17 48.574 24.255 0.035 6 17 14.978 28.611 0.120

9 18 34.428 18.408 0.086 9 18 48.598 24.426 0.130 9 18 14.948 28.532 0.077

10 19 34.493 18.491 0.136 10 19 48.628 24.383 0.104 10 19 14.982 28.592 0.174

10 20 48.592 24.357 0.135 10 20 14.960 28.550 0.084

10 21 15.017 28.648 0.110

Table A3.
Dimensional
measurements related
to the quality
characteristics of the
parts produced in AM
Center III. The values
highlighted in gray do
not meet the
corresponding
specification limits
(cf. Table 1)
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Anderson–Darling
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quality characteristics
of the parts produced

by each AM center

Distributed
additive

manufacturing
centers
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