To read this content please select one of the options below:

Modal parameter extraction from measured signal by frequency domain decomposition (FDD) technique

Sk Abdul Kaium (Department of Civil Engineering, Brainware Group of Institutions, Kolkata, India)
Sayed Abul Hossain (Department of Civil Engineering, Camellia Institute of Engineering and Technology, Bardhaman, India)
Jafar Sadak Ali (Department of Civil Engineering, Aliah University, Kolkata, India)

International Journal of Structural Integrity

ISSN: 1757-9864

Article publication date: 7 November 2019

Issue publication date: 18 March 2020

144

Abstract

Purpose

The purpose of this paper is to highlight that the need for improved system identification methods within the domain of modal analysis increases under the impulse of the broadening field of applications, e.g., damage detection and vibro-acoustics, and the increased complexity of today’s structures. Although significant research efforts during the last two decades have resulted in an extensive number of parametric identification algorithms, most of them are certainly not directly applicable for modal parameter extraction. So, based on this, the aim of the present work is to develop a technique for modal parameter extraction from the measured signal.

Design/methodology/approach

A survey and classification of the different modal analysis methods are made; however, the focus of this thesis is placed on modal parameter extraction from measured time signal. Some of the methods are examined in detail, including both single-degree-of-freedom and multi-degree-of-freedom approaches using single and global frequency-response analysis concepts. The theory behind each of these various analysis methods is presented in depth, together with the development of computer programs, theoretical and experimental examples and discussion, in order to evaluate the capabilities of those methods. The problem of identifying properties of structures that possess close modes is treated in particular detail, as this is a difficult situation to handle and yet a very common one in many structures. It is essential to obtain a good model for the behavior of the structure in order to pursue various applications of experimental modal analysis (EMA), namely: updating of finite element models, structural modification, subsystem-coupling and calculation of real modes from complex modes, to name a few. This last topic is particularly important for the validation of finite element models, and for this reason, a number of different methods to calculate real modes from complex modes are presented and discussed in this paper.

Findings

In this paper, Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been developed based on frequency domain decomposition (FDD) technique to check the accuracy of the results as obtained from ARTeMiS. It is observed that the frequency domain-based algorithm shows good agreement with the extracted results. Hence the following conclusion may be drawn: among several frequency domain-based algorithms for modal parameter extraction, the FDD technique is more reliable and it shows a very good agreement with the experimental results.

Research limitations/implications

In the case of extraction techniques using measured data in the frequency domain, it is reported that the model using derivatives of modal parameters performed better in many situations. Lack of accurate and repeatable dynamic response measurements on complex structures in a real-life situation is a challenging problem to analyze exact modal parameters.

Practical implications

During the last two decades, there has been a growing interest in the domain of modal analysis. Evolved from a simple technique for troubleshooting, modal analysis has become an established technique to analyze the dynamical behavior of complex mechanical structures. Important examples are found in the automotive (cars, trucks, motorcycles), railway, maritime, aerospace (aircrafts, satellites, space shuttle), civil (bridges, buildings, offshore platforms) and heavy equipment industry.

Social implications

Presently structural health monitoring has become a significantly important issue in the area of structural engineering particularly in the context of safety and future usefulness of a structure. A lot of research is being carried out in this area incorporating the modern sophisticated instrumentations and efficient numerical techniques. The dynamic approach is mostly employed to detect structural damage, due to its inherent advantage of having global and location-independent responses. EMA has been attempted by many researchers in a controlled laboratory environment. However, measuring input excitation force(s) seems to be very expensive and difficult for the health assessment of an existing real-life structure. So Ambient Vibration Analysis is a good alternative to overcome those difficulties associated with the measurement of input excitation force.

Originality/value

Three single bay two storey frame structure has been chosen for the experiment. The frame has been divided into six small elements. An algorithm has been developed to determine the natural frequency of those frame structures of which one is undamaged and the rest two damages in single element and double element, respectively. The experimental results from ARTeMIS and from developed algorithm have been compared to verify the effectiveness of the developed algorithm. Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been programmed in MATLAB based on the FDD technique to check the accuracy of the results as obtained from ARTeMiS. Using singular value decomposition, the power Spectral density function matrix is decomposed using the MATLAB program. It is observed that the frequency domain-based algorithm shows good consistency with the extracted results.

Keywords

Citation

Kaium, S.A., Hossain, S.A. and Ali, J.S. (2020), "Modal parameter extraction from measured signal by frequency domain decomposition (FDD) technique", International Journal of Structural Integrity, Vol. 11 No. 2, pp. 324-337. https://doi.org/10.1108/IJSI-06-2019-0062

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles