To read this content please select one of the options below:

Simulation and experimental study on cavitation and noise of hydraulic cone valve

Xiaojing Wang (School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China)
Hao Liu (School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China)
Guojia Man (School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 6 December 2018

Issue publication date: 5 March 2019

244

Abstract

Purpose

Aiming at the cavitations and noise problem of hydraulic cone valve and based on the radial force analysis of the valve core, the radial deviation of the spool is considered to obtain the changing rules of cavitations and noise.

Design/methodology/approach

The solid model of the internal flow field of cone valve is established. The mesh models are divided using ICEM-CFD software. The numerical simulation of the liquid-gas two-phase flow is performed on the cavitation and noise of the flow field inside the cone valve based on FLUENT software. The visible experimental platform for cavitation and noise of hydraulic cone valve is built. According to the contrast of the experimental results, the correctness of the simulation results is verified.

Findings

The results show that the radial deviation causes the position of the cavitation accumulates in the valve cavity on the side of the upper cone. In addition, the strength of the cavitation changes slowly with the half cone angle of 45°, and the noise level is the smallest. Furthermore, appropriately increasing the opening degree within a reasonable range can effectively suppress cavitation and reduce the noise level.

Originality/value

The cavitation can be suppressed and the noise level can be reduced by means of changing the three factors, which lays the foundation for the design and theoretical research of the cone valve.

Keywords

Acknowledgements

Funding: This project was supported by National Natural Science Foundation of China (Grant No. 51305108) and Post Doctoral Researchers Settled in Heilongjiang Research Start Funding Projects (No.LBH-Q15069).

Citation

Wang, X., Liu, H. and Man, G. (2019), "Simulation and experimental study on cavitation and noise of hydraulic cone valve", Industrial Lubrication and Tribology, Vol. 71 No. 2, pp. 318-323. https://doi.org/10.1108/ILT-02-2018-0066

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles