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Abstract

Purpose — One popular method to assess discriminant validity in structural equation modeling is the
heterotrait-monotrait ratio of correlations (HTMT). However, the HTMT assumes tau-equivalent measurement
models, which are unlikely to hold for most empirical studies. To relax this assumption, the authors modify the
original HTMT and introduce a new consistent measure for congeneric measurement models: the HTMT2.
Design/methodology/approach — The HTMT?2 is designed in analogy to the HTMT but relies on the
geometric mean instead of the arithmetic mean. A Monte Carlo simulation compares the performance of the
HTMT and the HTMT2. In the simulation, several design factors are varied such as loading patterns, sample
sizes and inter-construct correlations in order to compare the estimation bias of the two criteria.

Findings — The HTMT2 provides less biased estimations of the correlations among the latent variables
compared to the HTMT, in particular if indicators loading patterns are heterogeneous. Consequently, the HTMT2
should be preferred over the HTMT to assess discriminant validity in case of congeneric measurement models.
Research limitations/implications — However, the HTMT2 can only be determined if all correlations
between involved observable variables are positive.

Originality/value — This paper introduces the HTMT2 as an improved version of the traditional HTMT.
Compared to other approaches assessing discriminant validity, the HTMT2 provides two advantages: (1) the
ease of its computation, since HTMT2 is only based on the indicator correlations, and (2) the relaxed
assumption of tau-equivalence. The authors highly recommend the HTMT2 criterion over the traditional
HTMT for assessing discriminant validity in empirical studies.
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Introduction

The assessment of discriminant validity is of particular importance for the empirical study of
relationships between theoretical concepts (Bagozzi and Phillips, 1982; Henseler et al, 2015; Hair
et al, 2017; Voorhees et al, 2016; Franke and Sarstedt, 2019; Ronkko and Cho, 2020; Henseler,
2021). For the operationalization of these theoretical concepts it is vital that the employed
measurement models actually measure what they are supposed to measure (Campbell and
Fiske, 1959), thus establishing construct validity (Peter and Churchill, 1986). Construct validity
comprises different forms, including discriminant validity (Netemeyer et al, 2003). Discriminant
validity in turn is defined as “the degree to which two measures designed to measure similar,
but conceptually different, constructs are related. A low to moderate correlation is often
considered evidence of discriminant validity” (Netemeyer ef al, 2003, p. 13).

The methodological literature provides different approaches to assess discriminant validity.
Among others, the constrained phi approach (Joreskog, 1971), the Fornell-Larcker criterion
(Fornell and Larcker, 1981) and the comparison of cross-loadings (Chin, 1998) have been
suggested to assess discriminant validity. Recently, Henseler et al (2015) suggested the
heterotrait-monotrait ratio of correlations (HTMT) to assess discriminant validity. Due to its
good performance and straightforward application, the HTMT has found widespread application
and dissemination, making Henseler ef al (2015) one of the most frequently cited papers in
business research. Although the HTMT was originally proposed for models estimated by partial
least squares path modeling (Wold, 1982), it also finds its application in structural equation
modeling (Voorhees et al.,, 2016). To assess discriminant validity using the HTMT, two strategies
have been proposed: (1) comparison of the HTMT to predetermined thresholds and (2)
constructing confidence intervals for the HTMT. Considering the former, heuristic rules are
applied for the HTMT. For instance, the HTMT is compared to 0.85 to judge whether discriminant
validity is violated (Henseler et al, 2015). Following the latter, statistical inference is made by
means of bootstrap confidence intervals, i.e. it is investigated whether the correlation between two
latent variables is significantly different from 1. This approach has been very effective in
detecting discriminant validity issues (Henseler et al, 2015; Franke and Sarstedt, 2019).

In comparison to other approaches, the HTMT’s main advantage is that it is relatively
easy to calculate. For its computation, only the indicator correlation matrix is required
(Henseler et al., 2015). Consequently, the HTMT is not affected by the employed estimator and
can be computed without estimating a model in advance. Despite this important advantage, a
conceptual issue emerges since the HTMT assumes tau-equivalence (Henseler et al., 2015;
Ronkko and Cho, 2020) and thus is likely to be biased in empirical cases, in which this
assumption rarely holds (e.g. McNeish, 2018).

In order to relax the assumption of tau-equivalence and to offer a superior method to
assess discriminant validity in the case of congeneric measurement models (ie. with
heterogeneous loading patterns), we develop a modification of the HTMT criterion, which we
call HTMT?2. Specifically, we compose a new formula for the HTMT?2 criterion by replacing
the arithmetic means applied in the HTMT’s computation by geometric means. In doing so,
we show that the HTMT2 is a consistent estimator for the inter-construct correlation in the
case of congeneric measurement models. Therefore, the HTMT2 is highly recommendable to
be used in empirical studies, if the involved correlations among observable variables are
positive. To evaluate the HTMT2’s finite sample behavior, we conduct a computational
experiment in form of a Monte Carlo simulation that identifies the conditions, under which the
HTMT?2 outperforms the traditional HTMT.

The structure of this paper largely follows the suggestion by Gregor and Hevner
(2013). In the next section, we outline the composition of the traditional HTMT criterion
supported by a theoretical and a numerical example to pave the way for the introduction
of the new criterion HTMT2. We show that the HTMT?2 is a consistent estimator for the
inter-construct correlation in the case of congeneric measurement models. Thereafter,



we conduct a simulation study to compare the performance of the HTMT to the HTMT?2.
Our simulation study shows that the HTMT2 outperforms the traditional HTMT
approach in several situations. We discuss the results and conclude with avenues for
future research.

The traditional HTMT

The HTMT was introduced by Henseler et al (2015) as an estimator for the correlation
between two latent variables. It is based on the multitrait-multimethod (MTMM) matrix, in
which correlations are compared to assess discriminant validity (Campbell and Fiske, 1959).
For a deeper understanding of discriminant validity assessment using the HTMT, we provide
a theoretical and a numerical example.

For the theoretical example, we consider a simple model with two correlated constructs &;
and & (see Figure 1). The inter-construct correlation is denoted by ¢. Each construct is
measured by three indicators; £ is measured by x17 to 73, and & is measured by x91 t0 %93,
where 117 to 413 as well as Ao to Ao3 represent the respective loadings. The random
measurement errors are referred to as &1 to e13 and g5 to £93.

For the construction of the MTMM matrix and the HTMT, only the correlations among
the indicators are required. Two types of correlations should be distinguished: monotrait-
heteromethod correlations and heterotrait-heteromethod correlations (Campbell and Fiske,
1959). The former include the indicator correlations within one and the same construct. For
£, this would be the correlations between the indicators x71, ¥12 and x73. The latter refer to
the correlations between the indicators of two different constructs (Campbell and Fiske,
1959; Henseler et al., 2015). In our example, the correlations between the indicators of &1 (x11,
%19, and x713) and the indicators of &, (x21, X290, and x23) are the heterotrait-heteromethod
correlations.

Figure 2 shows the full MTMM matrix for the model depicted in Figure 1; its elements
are the indicator correlations 7. For our theoretical example, the correlations among the
indicators x17 to x93 can be found in the lower triangle of the matrix. The monotrait-
heteromethod correlations are framed by a solid line, whereas the heterotrait-heteromethod
correlations are framed by a dashed line. Regarding the MTMM matrix, monotrait-
heteromethod correlations should be larger than the heterotrait-heteromethod correlations
to ensure that constructs can be discriminated in a model (Campbell and Fiske, 1959).

X11 X12 X13 X21 X22 X23
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Figure 1.
A model with two
constructs




IMDS
121,12

2640

Figure 2.
MTMM matrix for the
two factor model
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Henseler et al (2015) picked up this idea and translated it into a ratio of correlations.
Specifically, the HTMT is the ratio of the arithmetic mean of the heterotrait—heteromethod
correlations 7, and the geometric mean of the arithmetic means of the monotrait-
heteromethod correlations 7,4, and 7 j5,. In general, the HTMT can be calculated as follows:

arithmetic mean of indicator
correlations between &; and &

1 K K;
KK Z ZVig,ih
HTMT; = EENE M
y 2 K—-1 K; 2 K]—l KJ
. Vigih "3 T3 Tigin
Ki(K: —1) ggl 1121 K (K - 1) g=1 h=g+1 "

arithmetic mean of indicator arithmetic mean of indicator

correlations within & correlations within &
where K; and K; denote the number of indicators belonging to construct & and &;, respectively.

To establish discriminant validity, the HTMT value should be different from 1 because the
HTMT is an estimator for the inter-construct correlation; if the correlation between two
constructs is 1, they cannot be discriminated properly (Henseler et al, 2015). For this
judgment, the proposition was to compare the HTMT to a pre-defined threshold value
(Henseler et al, 2015; Voorhees et al, 2016; Franke and Sarstedt, 2019). Recommended
threshold values range from 0.85, which is considered a conservative benchmark (Henseler
et al., 2015; Voorhees et al,, 2016), to a more liberal cut-off value of 0.9 (Henseler et al, 2015;
Franke and Sarstedt, 2019) or higher. The choice of the threshold level should, however, be
made against the background of how conservative the researcher wants to be in assessing
discriminant validity and how confident (s)he is regarding the uniqueness of the constructs
(Henseler et al., 2015; Franke and Sarstedt, 2019).

In addition, the HTMT can be exposed to statistical inference. Specifically, Henseler et al.
(2015) and Franke and Sarstedt (2019) suggested to investigate whether the upper bound of
the 90% bootstrap confidence interval is larger than 1 warranting a type I error rate of 5%. If
the value of 1, i.e. the two constructs are perfectly correlated, is larger than the upper bound of
the bootstrap confidence interval, it can be concluded that the construct correlation is



significantly smaller than 1 (Henseler et al, 2015; Franke and Sarstedt, 2019). Whereas
Henseler et al. (2015) found that statistical inference about the HTMT is the most liberal way
of assessing discriminant validity, Franke and Sarstedt (2019, p. 441) clearly advocate that
“researchers should prefer inferential tests over simple cutoff values.”

To further illustrate the logic of the HTMT criterion, we use a numerical example based on
the correlations in the upper triangle of the MTMM matrix in Figure 2. The mean value of the
heterotrait-heteromethod correlations is 0.5, whereas the geometric mean of the mean
monotrait—heteromethod correlations (0.7 and 0.4) equals 0.5291. Taken together, the HTMT
is computed as follows:

0.5
HTMT = ——— = 0.945. 2
v0.7-0.4 N

Applying heuristic rules for the HTMT, the value of 0.945 in Equation (2) is then compared to
a threshold value, e.g. 0.85 for more conservative and 0.90 for more liberal assessments. The
HTMT value of 0.945 clearly exceeds even the more liberal HTMT level of 0.90. Hence, based
on the heuristic rules, the HTMT value above the two threshold values indicates a lack of
discriminant validity.

Moreover, we construct a 90% bootstrap confidence interval around the HTMT based on
999 bootstrap runs (Henseler et al, 2015; Franke and Sarstedt, 2019) using the percentile
bootstrap approach (Aguirre-Urreta and Ronkko, 2018). The upper bound of the 90% percentile
bootstrap confidence interval is 0.9899. Consequently, the value of 1 is not covered by the
confidence interval showing that the HTMT value of 0.945 is significantly different from 1.

Recent studies have demonstrated a good performance of the HTMT (Henseler ef al., 2015;
Voorhees et al., 2016; Franke and Sarstedt, 2019). Another major advantage of the criterion is
that its computation is hardly demanding, because only the indicators’ correlation matrix is
required as input for simple calculations (Henseler ef al, 2015; Voorhees et al., 2016). In
contrast to other approaches, no model estimates are required for its computation (Franke
and Sarstedt, 2019). Consequently, it does not suffer from Heywood cases—a phenomenon not
untypical for factor analysis (see Krijnen et al, 1998). Hence, it is an easily applicable method
to assess discriminant validity independent of the employed estimator (Voorhees et al., 2016;
Franke and Sarstedt, 2019).

Noteworthily, the HTMT does not come without disadvantages. Specifically, the HTMT
makes the rather rigid assumption of tau-equivalent measurement models (Henseler ef al, 2015;
Ronkkd and Cho, 2020). To illustrate this, Figure 3 depicts two different types of measurement
models: Figure 3a represents a tau-equivalent measurement model, which assumes that all
loadings (1) are equal, i.e. all covariances among the indicators are equal (Lord and Novick,
1968). In contrast, Figure 3b shows a congeneric measurement model, in which this assumption
is relaxed and indicator loadings (4;, A2 and A3) can vary (Joreskog, 1971).

Transferred to our example in Figure 1, the HTMT assumes that all indicator loadings of
one construct are equal, i.e. 417 = A12 = A13and Ag; = Aas = Ag3. This assumption, however, is
unlikely to hold in most empirical research settings. As McNeish (2018, p. 414) puts it: “Tau
equivalence tends to be unlikely for most scales that are used in empirical research—-some
items strongly relate to the construct while some are more weakly related.” Relaxing the
assumption of tau-equivalence and assessing discriminant validity in the case of congeneric
measurement models, in which indicator loadings may differ from each other (i.e. A11 # 412 #
A1z and Aoy # Aog # Ag3), requires a revision of the traditional HTMT.

The HTMT2
We propose a new version of the HTMT, which we name HTMT2-an idea initially sketched
by Henseler (2021). The purpose of the HTMT2 is to relax the HTMT’s assumption of

HTMT?2
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Figure 3.
Measurement models
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tau-equivalence and thus to allow for assessing discriminant validity in the context of
congeneric measurement models. In doing so, HTMT’s principle of comparing heterotrait—
heteromethod correlations to monotrait—heteromethod correlations in the MTMM matrix
remains untouched. Hence, like the HTMT, the HTMT2 is based on correlations as a measure
of linear dependency among variables. In contrast to the HTMT, for the calculation of the
HTMT?2, the geometric mean instead of the arithmetic mean is used for calculating the
average indicator correlation. The use of the geometric mean is inspired by the fact that the
variance-covariance matrix implied by reflective measurement models is based on products
of loadings, i.e. the loadings are linked in multiplicative and not an additive way. Against this
background, the use of the geometric mean appears more suitable. Moreover, as we will show
in this section, the use of the geometric mean draws the HTMTZ2 into a consistent estimator
for the inter-construct correlation in the case of congeneric measurement models.
The HTMT?2 is given by Equation (3).

geometric mean of indicator
correlations between ¢; and ¢&;

K, K'
K| T T
7ngl1
g=1 h=1
HTMT2; = 3)
L o[ K-1 K
L1 s\ 1T 1T e
g=1 h=g+1 g=1 h=g+1
geometric mean of indicator geometric mean of indicator
correlations within ¢&; correlations within ¢

In the numerator of Equation (3), the geometric mean of the heterotrait—heteromethod
correlations is calculated, while the denominator is composed of the geometric means of the
two geometric means of the monotrait—heteromethod correlations. In contrast to
the arithmetic mean, the geometric mean is only defined for strictly positive values. For



the HTMT?2, this means that all indicator correlations used for calculating the HTMT2 must
be greater than zero. This requirement is also known from the calculation of Cronbach’s alpha
which also requires that all indicators are positively correlated (Sijtsma, 2009).

Subsequently, we show that the HTMT2 is a consistent estimator for the inter-construct
correlation ¢. Let x; to x, be the K; indicators of constructs &;and x;1 to xjx; the K;indicators
of construct &;. The empirical correlation matrix S of the indicators is generally given as
follows:

1 Tiviz -+ Mgk, Tagt o Tige oo VK
72,1 1 cee Tigg o Ti2p Tige o --- TiZjk;
§_ | rmin T - 1 rgp Ve - VKK N
| o T Tl 1 7y 71 @
71,41 7142 e J1iK; 7172 cee J1JK;
Vgt Ti2iz oo Tk, T4 1 cee Tk
iga Vi e DRk GG kg e 1

Furthermore, we assume that the empirical correlation matrix Sis a consistent estimate of
%, i.e. plim S = X, where plim is the probability limit, and X is the correlation matrix implied
by the reflective measurement models:

1 Mdis ... ki, @idadn @pdakn ... @idadi,
/Iizj«il 1 e ﬂ,l'zﬂ,l}{i (pl-]-/ll'z/ljl QDl-]-/ll’z/ljz v (p,-]-/liz/lej
5 Aix A Aighia ... 1 QikikAn Pkl - CMKAK, 6)
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gDi]-ﬂ]Q/{ﬂ gol-jijzﬂiz e QoijljzﬂiKz /1]'2/1]'1 1 N ﬂjzle,.
@ik ikt oo Qikidia A Aikdp - 1

where A;, denotes the factor loading of indicator x;, on construct &, and ¢;; is the correlation
between constructs &; and &;. Considering the HTMT2:

K K;
|
plim HTMTZ; = plim b - ®
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Table 1.
Loading patterns (first
experimental factor)
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Consequently, plim HTMTZ2;; = ¢;; (g.e.d.). It is noted that the HTMTZ2 does not make any
specific distributional assumption about the indicators. To show consistency of the HTMT2,
it is sufficient that S'is a consistent estimate of X. However in the case of ordinal categorical
indicators, the Pearson correlation may be replaced by a correlation measure that takes the
scale of such indicators into account such as the polychoric or polyserial correlation
coefficient (Olsson ef al,, 1982). Similar has been suggested for the calculation of Cronbach’s
alpha (Zumbo et al, 2007).

= ©)

10)

i

Evaluating the HTMT?2: a Monte Carlo simulation

To investigate the performance of the new criterion, we ran a Monte Carlo simulation, in
which we compared the HTMT2 to the traditional HTMT. The aim was to explore the
HTMTZ2’s finite sample behavior as well as its relative performance when the assumption of
tau-equivalence is sequentially relaxed. To judge the performance of the two measures, we
examined their estimated bias for the inter-construct correlation ¢, i.e. the difference between
the mean of the estimated and true inter-construct correlation.

For the simulation, we considered a model containing two constructs each measured by
three indicators. To relax the assumption of tau-equivalence, we increased the heterogeneity
in the loading patterns from homogeneous patterns (1) to substantially heterogeneous
patterns (6). To do so, we increased and decreased the loadings in one block by 0.05 from
pattern to pattern. The loading patterns used for the simulations are displayed in Table 1.

Loading Heterogeneity }\,1 1 A 12 A 13 }\2] )\,22 )\.23
Pattern

1 no 0.70 |0.70 |0.70 |0.70 |0.70 |0.70
2 0.65 |0.70 |0.75 |0.65 |0.70 |0.75
3 0.60 |0.70 |0.80 |0.60 |0.70 |0.80
4 0.55 070 |0.85 |055 |0.70 |0.85
5 0.50 |0.70 | 090 |050 |0.70 |0.90
6 high 045 070 | 095 |045 |0.70 |0.95




Since the HTMT assumes tau-equivalent measurement models, we expect an increasing
bias for more heterogeneous loading patterns. In contrast, the HTMT?2 is expected to be less
biased, ie. it produces an average inter-construct correlation close to the population
counterpart. As an additional experimental factor, we varied the sample size; the factor levels
were 100, 250 and 500 observations per sample (in analogy to Henseler ef al., 2015) in order to
investigate the finite sample behavior of the two measures. Since the HTMT?2 is a consistent
estimator for the inter-construct correlation, we expected that the higher the sample size, the
smaller the bias. We presumed a similar behavior for the HTMT in the case of tau-equivalent
measurement models. Moreover, we applied both the HTMT and the HTMT?2 to the
indicators’ population correlation matrix. As a final experimental factor, we considered four
different levels of inter-construct correlations, i.e. ¢ = 0.75, 0.85, 0.90 and 1.00 (in analogy to
Henseler et al., 2015; Franke and Sarstedt, 2019). We refrained from studying medium and
lower degrees of inter-construct correlations, because in these cases discriminant validity
infringements become less likely. In total, we studied 6 (loading patterns) X 4 (3 different
sample sizes + population correlation matrix) X 4 (inter-construct correlations) = 96
conditions.

The complete simulation was conducted in the statistical programming environment R
(R Core Team, 2020, Version 4.0.2). For each condition, we drew 1,000 data sets from a
multivariate normal distribution with means of zero and a variance-covariance matrix equal
to the model-implied correlation matrix of the corresponding condition. To generate the data
sets, we used the mvrnorm function of the MASS package (Venables and Ripley, 2002). To
compute HTMT and HTMT2 values, we used own R implementations. A total of 72,024
values were calculated for each of the HTMT and the HTMT2.

Finally, for a fair comparison, we removed data sets for which at least one negative
indicator correlation was observed. Although the HTMT can be technically calculated in this
case, its results are not trustworthy because negative and positive correlations cancel out.
Similarly, the HTMT2 cannot be calculated in this case, as the geometric mean is not defined.
Such cases occurred most frequently under the condition of small sample size in combination
with a low inter-construct correlation and a substantial heterogeneous loading pattern. In this
situation 7.2% of the data sets were removed. In all other situations, the share of removed
data sets was below 5%.

Results and discussion

The simulation results are shown in Figure 4 [1]. The results for the different sample sizes
including the indicators’ population correlation matrix are visualized in the rows of Figure 4.
In the columns, the four considered values of the inter-construct correlations are displayed.
The vertical lines in each cell represent the six different loading patterns ranging from “no
heterogeneity” to “high heterogeneity” (see Table 1). Finally, the black solid line with circles in
each cell represents the results for the HTMT, whereas the dashed line with triangles
represents the results for the HTMT?2.

The results clearly indicate that the HTMT2 outperforms the HTMT in several situations.
As expected, HTMT2 results are rather unaffected by the loading patterns when it comes to
estimating the inter-construct correlation. In contrast, the HTMT’s estimated bias increases
when loading patterns become more heterogeneous. In other words, the HTMT becomes more
distorted the more heavily indicator loadings deviate from each other, ie. the more a
measurement model diverges from tau-equivalence. In these cases, the HTMT may lead to
erroneous conclusions regarding discriminant validity assessments of measurement models.

Considering the size of inter-construct correlations, both HTMT2 and HTMT results
remain unaffected. However, larger inter-construct correlations increase HTMT’s bias,
particularly in case of a substantially heterogeneous loading pattern.

HTMT?2
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Figure 4.
Simulation results
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Finally, with regard to sample size, HTMT2’s bias disappears for large sample sizes as
expected. In case of small sample sizes (# < 100), the HTMT2 is slightly downward biased,
particularly for smaller inter-construct correlations (¢ < 0.85). In the case that the HTMT and
the HTMT2 are calculated based on the indicators’ population correlation matrix, the HTMT2
shows no bias. In contrast, the HTMT is biased if the assumption about tau-equivalence is
violated.

As aresult, the HTMT2 is a suitable measure to assess discriminant validity in the case of
congeneric measurement models as it provides consistent estimates of inter-construct
correlations. Since the HTMT?2 is based on the MTMM matrix and follows the same logic as
the HTMT, it benefits from the same advantages as the HTMT. In particular, the HTMT2 can
be easily calculated based on the indicator correlations without performing any further
estimations. Hence, the HTMT2 can be calculated without time consuming procedures even
for large sample sizes making it an attractive measure in the era of big data. To conclude, the
HTMT?2 includes HTMT’s advantages, while overcoming HTMT’s drawback of being only
consistent for tau-equivalent measurement models. Consequently, researchers and
practitioners should prefer the HTMT2 over the HTMT in situations, in which indicator
loadings deviate from each other.



In line with prior research on the traditional HTMT, we recommend using statistical
inference for the HTMT?2 to detect discriminant validity problems (Franke and Sarstedt, 2019;
Ronkko and Cho, 2020). As for the HTMT, this can be done by constructing bootstrap
confidence intervals for the HTMT2 to investigate whether the confidence interval covers the
value 1 (Henseler et al, 2015) [2]. If this is the case, a researcher has found no empirical
evidence against a construct correlation of 1, which raises doubts about discriminant validity.

Conclusion and future research

In this paper, we have introduced the HTMT2 as an improved version of the HTMT criterion
to assess discriminant validity in structural equation modeling (Henseler et al, 2015). We
have proved that the HTMT?2 is a consistent estimator for the inter-construct correlation in
the case of congeneric measurement models and thus outperforms the HTMT. Since the
HTMT?2 is equally based on the MTMM matrix comprising the correlations between the
indicators in the measurement model, it benefits from the same advantages as the traditional
HTMT criterion, ie. its computation is straightforward without any need for estimation
procedures. In contrast to the HTMT, the HTMT2 relaxes the rigid assumption of tau-
equivalent measurement models thus equalizing one of HTMT’s main disadvantages.

To limit the scope of our study, we only focused on the application of the HTMTZ2 in the case
of reflective measurement models. However, in empirical studies researchers also deal with
formative measurement models. Currently, the literature does not provide a unique definition
about formative measurement (Diamantopoulos and Winklhofer, 2001). Formative
measurement can either refer to the causal-formative measurement model (e.g. Bollen, 1984;
Bollen and Lennox, 1991) or the composite model (Fornell and Bookstein, 1982). For composite
models, the application of the HTMT and HTMT2 is of little value because the correlations
among the indicators of one construct are unconstrained by the composite model and thus do
not depend on the loadings (Henseler ef al, 2014; Dijkstra, 2017; Schuberth et al, 2018). As a
consequence, the HTMT2 will not converge in probability to the construct correlation because
the loadings do not cancel each other out. However, the HTMT2 can be applied to constructs
embedded in causal-formative measurement models if additional reflective measures are
specified for their identification such as in the multiple indicators multiple causes (MIMIC)
model (Joreskog and Goldberger, 1975). In this case, only the reflective indicators should be used
for calculating the HTMT2. Applying the HTMT2 to formative indicators is problematic,
because neither the monotrait-heteromethod nor the heterotrait-heteromethod correlations of
formative indicators are informative about discriminant validity.

Our research paves the way for future avenues of research. First and foremost, the HTMT2
is not defined for cases, in which indicator correlations are negative. Monotrait-heteromethod
correlations may be negative, if one or more indicators are negatively worded to measure the
associated construct. In this case, reverse coding of the indicator(s) may represent a way to
solve this issue. Future research may particularly investigate cases, in which heterotrait—
heteromethod correlations become negative. For these cases, solutions to deal with negative
heterotrait-heteromethod correlations for the HTMT2 need to be developed.

Second, further research is needed to identify appropriate threshold values indicating
discriminant validity infringements. Even though we share the prevailing opinion on
preferring statistical inference over applying heuristic rules (Franke and Sarstedt, 2019;
Ronkko and Cho, 2020), there may be some groups of users, for whom it is more convenient to
compare the HTMT?2 statistics to a predetermined cut-off value. Therefore, future simulation
studies may identify threshold values to identify discriminant validity infringements.

Third, future research should investigate the performance of the various bootstrap
confidence intervals for the HTMTZ2 and their suitability for statistical inference in this
context.

HTMT?2

2647




IMDS
121,12

2648

Finally, to evaluate the HTMT?2 in more detail, its performance could be compared to other
methods of assessing discriminant validity (e.g., the well-known Fornell-Larcker criterion
(Fornell and Larcker, 1981) or the constrained phi approach (Joreskog, 1971). Simulation
studies as well as empirical studies could serve as a foundation for this direction of research.
Both cut-off values and statistical inference should be taken into account.

Notes
1. A table with the numerical simulation results can be received upon e-mail request to Jorg Henseler.

2. For the computation of the HTMT2, users may refer to the following website: www.henseler.com.
The bootstrapping procedure for the HTMTZ is implemented in ADANCO 2.3. Interested users may
consult www.composite-modeling.com for further information. In addition, the HTMT2 is
implemented in the R package cSEM (Rademaker and Schuberth, 2020).
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