To read this content please select one of the options below:

FESM-based approach for stiffness modeling, identification and updating of collaborative robots

Mingwei Hu (Robot Research Division, Jiangsu Automation Research Institute, Lianyungang, China)
Hongwei Sun (Robot Research Division, Jiangsu Automation Research Institute, Lianyungang, China)
Liangchuang Liao (Robot Research Division, Jiangsu Automation Research Institute, Lianyungang, China)
Jiajian He (Robot Research Division, Jiangsu Automation Research Institute, Lianyungang, China)

Industrial Robot

ISSN: 0143-991x

Article publication date: 26 May 2022

Issue publication date: 2 January 2023

112

Abstract

Purpose

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with high precision and can eliminate the modeling error between the actual stiffness model and the theoretical stiffness model.

Design/methodology/approach

To simultaneously ensure the computational efficiency and modeling accuracy of the stiffness model, this method introduces the finite element substructure method (FESM) into the virtual joint method (VJM). The stiffness model of the cobots is built by integrating several 6-degree of freedom virtual joints that represent the elastic deformation of the cobot modules, and the stiffness matrices of these modules can be identified and obtained by the FESM. A model-updating method is proposed to identify stiffness influence coefficients, which can eliminate the modeling error between the actual prototype model and the theoretical finite element model.

Findings

The average relative error and the cycle time of the proposed method are approximately 6.14% and 1.31 ms, respectively. Compared with other stiffness modeling methods, this method not only has high modeling accuracy in high dexterity poses but also in low dexterity poses.

Originality/value

A hybrid stiffness modeling method is introduced to integrate the modeling accuracy of the FESM into the VJM. Stiffness influence coefficients are proposed to eliminate the modeling error between the theoretical and actual stiffness models.

Keywords

Acknowledgements

This work was supported by the Defense Industrial Technology Development Program(CN) [grant numbers JCKY2020206B008], the High-level Innovation and Entrepreneurship Talent Introduction Plan of Jiangsu Province [grant numbers JSSCBS20211456].

Citation

Hu, M., Sun, H., Liao, L. and He, J. (2023), "FESM-based approach for stiffness modeling, identification and updating of collaborative robots", Industrial Robot, Vol. 50 No. 1, pp. 35-44. https://doi.org/10.1108/IR-02-2022-0042

Publisher

:

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles