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Abstract
Purpose – The purpose of this paper is to develop a framework to evaluate and assess the performance of the COVID-19 vaccine distribution
process that is sensitive to the unique supply-side and demand-side constraints exhibited in the US vaccine rollout.
Design/methodology/approach – A queuing framework that operates under two distinct regimes is formulated to analyze service rates that
represent system capacity to vaccinate (under the first regime) and hesitancy-induced throughput (under the second regime). These supply- and
hesitancy-constrained regimes form the focus of the present paper, as the former reflects the inherent ability of the nation in its various jurisdictions
to mobilize, whereas the latter reflects a critical area for public policy to protect the population’s overall health and safety.
Findings – The two-regime framework analysis provides insights into the capacity to vaccinate and hesitancy-constrained demand, which is found
to vary across the country primarily by politics and region. The framework also allows analysis of the end-to-end supply chain, where it is found that
the ability to vaccinate was likely constrained by last-mile administration issues, rather than the capacity of the manufacturing and transportation
steps of the supply chain.
Originality/value – This study presents a new framework to consider end-to-end supply chains as dynamic systems that exhibit different regimes
because of unique supply- and demand-side characteristics and estimate rollout capacity and underlying determinants at the national, state and
county levels.
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1. Introduction

The World Health Organization declared the COVID-19 viral
outbreak a global pandemic in March of 2020. It took under a
year for vaccines to be developed, for several to receive
authorization for emergency use and for rollouts to begin
around the world. The deployment of COVID-19 vaccines
represents a unique man-made experiment in extreme logistics.
An operation of such scale, magnitude and urgency requires a
complex, global network of transport and logistics facilities and
services. The logistical processes must move not only vaccines
but ancillary equipment such as syringes and dry ice for
refrigeration to enable vaccination at desired rates within its
limited shelf life. They must also mobilize last-mile distribution
and local labor-intensive administration processes. In addition
to the supply-side constraints in manufacturing, distribution
and administration, the COVID-19 vaccines face demand-side
considerations that determine the take-up rate as people in the
USA, and around the world must voluntarily accept the offered
vaccines. Initially, the demand for vaccines well outpaced the
supply in the USA and around the world, but as the rollout

progressed, a significant population of unvaccinated people was
left questioning the safety and efficacy of the vaccines, likely
due to widespread misinformation (Loomba et al., 2021). Both
supply and demand-side constraints have affected the USA’
ability to quickly reach high vaccination rates, which has left
open the possibility for new strains to emerge, potentially
requiring boosters (Macmillan, 2021), and ultimately
extending theCOVID-19 pandemic’s disruption to daily life.
As of October 2021, over 213 million people received at least

one vaccine dose, and over 185 million people were fully
vaccinated by either the single-dose vaccinemade by Johnson &
Johnson or by one of the two-dose series made byModerna and
Pfizer-BioNTech in the USA. This constitutes 64% and 55%
of the US population, respectively. While the first doses were
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administered in the USA in December of 2020, vaccine
production did not significantly ramp up until March 2021
when 71million doses were distributed within themonth, more
than twice the 33 million doses delivered across the USA in
February 2021. The peak 7-day rolling average of the daily
vaccination rate was on April 13, 2021, when 3.38 million new
doses were administered in the USA. Since the Spring of 2021,
however, this rate has dramatically reduced with just over
500,000 new doses administered on July 11th across the
nation. Between August and September of 2021, the
vaccination rate has once again increased, likely in response to
the spread of the highly contagious Delta variant across the
country and the full approval of the Pfizer vaccine by the FDA
onAugust 23.
These observed trends in vaccination rates indicate aggregate

changes in the relationship between the supply and demand for
vaccines in the USA. Based on observations in the USA, the
vaccination rate can be characterized in multiple regimes, as it
initially exhibits a supply-constrained behavior where there is
extreme demand to get vaccinated, followed by a hesitancy-
constrained behavior once there is a sufficient supply of
vaccines. In this paper, vaccination rates and administered
doses are tracked and compared at a national, state and county
level and analyzed through a queuing framework to understand
how the supply-constrained capacity to vaccinate and the
hesitancy-constrained behavior of people to seek vaccination
vary across the country. Analysis using this multi-regime
framework allows us to characterize the COVID-19 vaccine
rollout and develop principles for the robust design and
resilient operation of future extreme logistics deployments,
while also recognizing how different factors affect vaccination
rates.
The paper’s main contributions consist of the following:

� formulating a two-regime characterization of the vaccine
deployment as an extreme logistics process;

� quantifying the practical capacity of such deployments at a
national level;

� characterizing the factors that determine an area’s capacity
to vaccinate its population and its variability across
different spatial units (county and state level); and

� providing insight into the determinants of vaccine
hesitancy as a limiting factor on the ability to fight future
pandemics.

While the framework’s applicability is general, the specific
vaccination and hesitancy rate models developed are based on
US data.
The paper is organized as follows. Section 2 presents a review

of relevant studies, followed in Section 3 by a description of the
data that forms the basis of the analysis presented in this paper.
The conceptual framework and overall methodology are
described in Section 4. Estimation of vaccination capacity and
vaccine hesitancy rates, respectively, are conducted using
multiple regression models that relate these rates to socio-
demographic, economic and other indicators at the county
level; themodels and associated results are presented in Section
5. Finally, Section 6 contains a discussion of the two-regime
model presented and conclusions regarding the logistical
preparations for futuremass deployments.

2. Literature review

Queuing theory is used to mathematically understand how
people or objects move through systems. Basic queuing theory
refers to objects, servers or restrictions and queues or reservoirs,
where the system is defined by the rate of arrival into the queue,
the amount of time required for service and the number of
servers available (Newell, 2013). Fundamentally, when the
arrival rate is low relative to the capacity of the server(s), the
waiting times are low and the queue length is short. However, if
the arrival rate is relatively high, the waiting times and queue
lengths are longer. Queue lengths fluctuate and may build up
over time due to stochasticity in both the arrival and service
processes, even when service rates exceed arrival rates on
average (Kleinrock, 1975). The performance of queueing
systems can be assessed through the time spent waiting in the
queue, the time required for service, the proportion of time
servers are used, system throughput, queue length, etc. (Hall,
1991). Graphically, queuing systems can be represented
through cumulative arrival and departure curves where the
queue length is extracted from the vertical distance between
the curves, and the waiting time in the system is represented by
the horizontal distance between the curves. Extracting
individual or object-level statistics, however, requires an
understanding of the service discipline, which may be other
than “First-Come-First-Served”.
Application areas of queuing theory are broad, aiding

operations research in service industries, supply chain
management and transportation, among other fields. For
example, queuing frameworks are often used in traffic flow
theory to understand system performance at bottlenecks by
tracking cumulative vehicle arrivals and departures over time
(Newell, 1993). While knowledge of the arrival rate parameter
into the system is often considered central to a queuing
analysis, methods for inferring these statistics empirically are
also prevalent. Larson’s Queue Inference Engine considers
only the recorded timestamp data for when automated teller
machine service starts and stops and provides a method to
estimate customer waiting time from the digital transactional
data (Larson, 1990). Although classical queuing theory
primarily considers the stochastic fluctuations from a stationary
state, generalizations of queuing approaches can model
nonlinear interactions in a continuous fluid interpretation of
supply chains to capture behaviors such as the bull-whip effect
of inventory increases up a supply chain (Helbing and Lämmer,
2005).
In medical and health-care settings, queuing analysis can be

used to analyze inefficiencies within systems through resource
allocation and scheduling problems, ultimately improving
measures such as patient waiting time, prescription fill time,
hospital bed utilization and staff and facility management (C
and Appa Iyer, 2013). Many of these studies focus on
documenting the distribution of experienced waiting times and
utilization rates and identifying facility-specific bottlenecks in
the health-care systems that can be addressed (C and Appa
Iyer, 2013). Typically in these applications, waiting time
problems are considered with an assumed Poisson arrivals
process and a negative exponential service time distribution
(Kapadia et al., 1985). Queuing applications in health care
often tackle supply-constrained problems.
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In addition to applications in resource utilization and patient
experience, health-care supply chains can also be viewed within a
queuing framework. Vaccine supply chains can broadly be
categorized into four main segments: the national sourcing of
vaccines, vaccine storage, vaccine transport and vaccine
administration. Vaccine distribution has long been a challenging
task in low-income countries (De Boeck et al., 2020), however
even in the USA, the distribution of vaccines has experienced
many of the uncertainties seen in other supply chains. The supply
of tetanus and diphtheria vaccines for children, for example,
exhibited extreme shortages in late 2000 due to two
manufacturers reducing production (CDC, 2001). As a result,
thousands of children were not immunized on time, heightening
the risk of epidemic outbreaks andmotivating the development of
stochastic inventory models to establish adequate vaccine supply
during production interruptions (Jacobson et al., 2006).
However, the vaccines supply chain also exhibits some unique
characteristics as it is often characterized by a “misalignment of
objectives and decentralized decision making” as manufacturers
are not always developing vaccines themselves, and those
receiving vaccines are not usually paying for the product (Duijzer,
van Jaarsveld andDekker, 2018). Additionally, those who pay for
vaccines are typically not-for-profit organizations, which often
leads to supply chain asymmetries and a need for better
coordination (Herlin and Pazirandeh, 2012).
Particularly in the context of the COVID-19 pandemic, the

intense level of demand and the severe shortage of supply in the
earlymonths of the rollout proved an extreme logistics event for
even the largest economies. Vaccines were originally allocated
to states by the federal government according to the 181
population size in the states (Singer, 2021). States may then
allocate doses across their jurisdictions. As of May 10, 2021,
however, many have found the vaccine supply sufficient,
allowing providers to directly order doses (Texas DSHS,
2021). From end-to-end, the vaccine rollout faces a variety of
challenges related to manufacturing, cold chains, last-mile
delivery and hesitancy-constrained demand (Alam et al., 2021).
Once the vaccines are sourced from the limited number of
manufacturers, initial transportation constraints not only
include the timely delivery of first-generation vaccines and
ancillary equipment in an ultra-cold chain, but they must also
stop cargo from being stolen and prevent any disruptions that
could threaten the viability of vaccine doses (Forman et al.,
2021). At the end of the supply chain, the manpower to
administer doses and hesitancy may have constrained
vaccination rates. Vaccination hesitancy is driven by both
personal concerns and misinformation around the speed at
which the vaccines were developed as well as the suspicions
about the varying requirements and regulatory advice across
governments and agencies (Forman et al., 2021). Similar
effects are the result of anti-vaccination sentiment driven by the
rapid spread of misinformation on social media (Roozenbeek
et al., 2020).
As discussed, the supply chain and administration of

COVID-19 vaccines face unique challenges on both the supply
and demand sides. To fully characterize the end-to-end vaccine
pipeline, it is necessary to consider how the dynamics of the
system have evolved over the period between December 2020
and September 2021.

3. Data sources and preparation

This study focuses on theUSA vaccine rollout, primarily due to
data availability, including contextual data directly from major
players in the rollout process. The two-regime framework
presented in the paper is the result of tracking and analyzing
vaccination metrics over time at various spatial levels in the
USA. Data for this study is obtained from a Web portal
dashboard developed by the authors to track vaccine logistics.
This dashboard pulls data daily from the US Centers for
Disease Control and Prevention, along with various state
departments of health, to augment missing data from the
centers for disease control and prevention (CDC) portal. In
addition to these data sources, the dashboard pulls data from
theU.S. Census Bureau’s statistical regions and divisions (U.S.
Census Bureau, 1984) and county-level demographic data (U.
S. Census Bureau, 2019), 2020 presidential election results
(MIT Election Data 1 Science Lab, 2021) and urbanization
level (USDA ERS, 2013) to characterize vaccination rates
across the country.
An important part of our data collection effort is to

contextualize the vaccine logistics process, understand the flows
of vaccine and ancillary products and correctly interpret the
information provided through the various official channels.
Accordingly, interviews were conducted with representatives of
the unit originally referred to as “Operation Warp Speed”,
representatives of the major carriers involved in various stages of
the vaccine supply chain, health officials at the state, county and
city levels, and entities physically performing vaccination such as
pharmacies and hospitals. The main picture that emerges from
these interviews is that the delivery of vaccines and ancillary
products from the manufacturers and their warehouses to the
designated locations in each state essentially flowed accordingly
to plan. All players in that supply chain generally lived up to
expectations and managed to complete deliveries on a weekly
schedule; disruptions occurred only for one week due to severe
inclement weather in parts of the midwestern USA. In other
words, all entities involved in this process agreed that the
planning that went into this operation resulted in a smooth and
generally predictable delivery process from sources to intended
destinations. The significance of this information is in helping
interpret where the bottlenecks existed in the process.
Throughout the distribution process, as shown in the graphs in
the next section, the quantities that the CDC indicated had been
delivered to the various states were consistently above the ground
vaccination rate. This fact is critical to the two-regime
interpretation advanced in this paper, as described in the next
section.

4. Methodology

4.1Motivation and general observations
The COVID-19 vaccine rollout in the USA exhibited multiple
phases. Initially, there is a buildup phase when supply ramps
up, starting in December 2020 and continuing through the
beginning of 2021. The ramp-up process encompasses both
production and distribution processes and local agencies’
abilities to vaccinate residents, as various last-mile models are
pursued in various parts of the country, in different parts of the
same state and, in some instances, the same county. A supply-
constrained phase follows where the demand for doses exceeds
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the capacity to administer. In this regime, the system
experiences extreme demand but is limited by the ability to
vaccinate. In a queuing framework, the supply-constrained
regime can be interpreted as the vaccination capacity of the
system. Following this regime, the system exhibits a hesitancy-
constrained vaccination rate, where the vaccination rate in
effect reflects the behavior of people to seek vaccination and is
therefore no longer reflecting the system’s capacity to provide
this service, instead depicting demand under hesitancy.
Figure 1 depicts the average daily number of doses

administered for the previous 7-days across the USA from
December 2020 to September 2021. Various daily events are
labeled.
As shown in Figure 1, the daily dose administration rate

increases steadily from December of 2020 until mid-April
2021. The peak 7-day average vaccination rate is experienced
on April 13, when over three million doses are administered
across the country. The daily number of doses administered is
receptive to transportation delays, as seen by the dip in
administered doses following the winter storm delays in
February (Nirappil et al., 2021). Additionally, the daily
administration has steadily increased from July onwards, likely
in response to guidance from the CDC regarding the Delta
variant.
While the national vaccine administration follows the trend

depicted in Figure 1, actual vaccination rates vary depending
on local conditions. Figure 2 depicts the daily vaccination rate
across counties. To account for differences in county size, the
county daily population percent vaccinated is plotted over time.
Counties are aggregated based on region, politics and
urbanization, where data points represent the average daily
rates across counties in each aggregation group. Regional
aggregation groups are determined by the U.S. Census
statistical regions. Politically, counties are labeled based on the
2020 Presidential Election results, where counties that
recorded more than 60% of their votes for the Democratic or
Republican party nominee are labeled, respectively, and those
without the threshold of votes are “Center.” Finally, to capture

urbanization, counties are labeled according to the 2013 Urban
Influence Code, which is developed by the US Department of
Agriculture’s Economic Research Service. The 2013 Urban
Influence Code ranges from 1 to 12, where 1 indicates a county
within a large metro area of 11 million residents and a score of
12 indicates counties not adjacent to any metro/micro area and
do not contain towns of at least 2,500 residents.
Evident in Figure 2 are clear differences by region, politics

and urbanization. At peak vaccination, counties in the
Northeast can vaccinate close to 0.7% of their population per
day while counties in the South are averaging just under 0.3%
of their populations. Democratic-leaning counties and urban
counties generally vaccinated at higher rates. It is of interest
that county-groups with lower peak vaccination rates, such as
southern, Republican-leaning and rural counties, exhibit their
peaks significantly earlier than other county-groups.

4.2 Conceptual framework
The preliminary plots above show distinctions in vaccination
rates across the country. Fully analyzing the end-to-end
performance of the vaccine supply chain requires understanding
how and why vaccination rates vary. This conceptual two-regime
framework allows analysis of supply chain performance both in
breadth and depth. Due to data availability, the conceptual
framework is applied at the national, state and county levels in the
USA.
When considering the adoption of vaccines, a diffusion curve

where agents are individually making adoption decisions is
expected. Diffusion curves for the adoption of technology, for
example, often show an adoption rate that is proportional to the
number of both adopters and remaining potential adopters,
resulting in an S-shaped logistic curve. This is expected for a
process such as vaccine adoption. However, the COVID-19
vaccination rate is constrained by supply on one hand, and
hesitancy on the other, in varying capacities across the country,
giving rise to different curves, which vary in slope, inflection
points and asymptotes from county to county. Therefore,
extracting and analyzing characteristics of these curves from

Figure 1 National daily vaccination rate
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county to county under the two regimes gives insights into how
the vaccination distribution process differs across the country.
Each county has a certain maximal vaccination rate, which

occurred between the beginning of March and end of April.
This peak rate represents the local capacity to administer
vaccines, in some instances augmented by resources made
available by other jurisdictional levels such as the state or
national governments. This interpretation is predicated on the
fact, evident in Figure 3, that the vaccine delivery curve (as
supplied through the US Federal Government to states and
counties) always lies above the cumulative vaccination curve.
Considering the cumulative curve, the maximal rate is
represented by the maximal tangent slope of the administration
curve. After this initial peak, demand for vaccines shrinks and
the system transforms into a hesitancy-constrained system,
where the capacity to administer doses, or service rate, is now
larger than the demand for doses. Identifying this regime
requires analysis of a stabilizing slope in the cumulative curve
post-April 2021. These supply-constrained and hesitancy-
constrained regimes form the focus of the present paper, as the
former reflects the inherent ability of the nation in its various
jurisdictions to mobilize, while the latter reflects a critical area
for public policy to protect the population’s overall health and
safety.
In the national model of the number of vaccines

administered over time, the two-regime framework is
characterized by a capacity rate and a hesitancy-constrained
demand rate that are tangential to the administration rate
curve. Figure 3 illustrates the cumulative number of doses
administered and distributed in the USA between December
2020 and September 2021. The curve is smoothed to reflect
the 7-day average number of doses. The plot shows the
characteristic line for the capacity-constrained and hesitancy-

constrained regimes, extracted according to the methodology
detailed in the following section.
In the national model, the capacity-constrained regime is

characterized by the vaccination rate experienced in mid-April,
while the hesitancy-constrained regime is characterized by a
stable slope between mid-June and mid-August. The capacity-
constrained regime reflects a rate of 3.4 million doses
administered per day, while the second regime reflects a
hesitancy-constrained demand of 690,000 doses administered
per day. The curve for doses distributed closely follows the
vaccination rate in April and May, indicating sufficient supply
of vaccines, but perhaps insufficient capacity to administer
doses.

4.2.1 The supply-constrained regime
The supply-constrained regime is characterized by the
maximum vaccination rate experienced in a region. In this
paper, the vaccination rate is aggregated up to weekly
vaccination figures. The characteristic of the supply-
constrained regime is found empirically by taking the
maximum slope after buildup has been established, as follows:

max yi1 1 � yið Þ 8i 2 1; . . . ;N

where:
yi = cumulative vaccination metric on day/week i (doses

administered, population % vaccinated, etc.)
N= the number of days/weeks in the supply constrained regime.

4.2.2 The hesitancy-constrained regime
The hesitancy-constrained regime is characterized by the
stabilized slope in the second regime area, which is a direct
reflection of the hesitancy-affected demand for vaccination.

Figure 2 Average county vaccination rates by region, politics and urbanization
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Because of the variation in when this regime starts across
regions, the characteristic rate for the hesitancy-constrained
demand is determined using a set of three simple linear
regression models with time as the independent variable and
the vaccination rate as the dependent variable. The first model
fits a regression line using the weekly vaccination rates seen
between (May 15 and July 15), the second model uses data
points from (May 30 to July 30) and the third uses data from
(June 15 to July 15). These ranges are identified by visual
inspection to reflect most regions. The characteristic rate is
found from the followingmodel:

vaccination ratei ¼ b0 1b1 � WeekNumberð Þ1 ei i 2 R

where:
R= the set of datapoints graphically identified in the hesitancy-

constrained regime.

The model with the highest r2 value is selected and b1 is taken
as the hesitancy-constrained demand rate. For the national
model, the r2 values range from 0.979 to 0.987 with
characteristic slopes ranging from 110,000 to 690,000 doses
administered per day.

4.3 Analysis method for comparing regime
characteristics across counties
To understand how the capacity-constrained vaccination rate
and hesitancy-constrained demand for vaccines vary across the
country, a simple ordinary least squares (OLS) linear regression
model is developed where a set of independent variables, or

regressors, are used to explain a relationship with the
dependent or response variable, yi. Each datapoint, i, in the set
has a response variable and regressors, xi = [xi1, xi2, . . .,xip]

T

and is used to construct a function of the following form:

yi ¼ b0 1b1xi1 1 � � � 1bpxip 1 «i ¼ xTi b1 «i;

i ¼ 1; . . . ;n

where b0 is the intercept values and bk are partial slopes
representing the resulting change in yi for a one unit increase in
xik, when all other regressor values are held constant. In the
OLS method, b parameters are chosen to minimize the sum of
squared residuals of themodel.

5. Results

In this section the extracted rates from analyzing the vaccine
rollout across different spatial units are presented first at a state
and then county level. The distribution of extracted rates is
then presented and the variation in rates is plotted spatially.
Finally, multiple regression models are developed to relate
these rates to socio-demographic, economic and other
indicators.

5.1 Graphical results
Figure 4 depicts the extracted supply-constrained
vaccination rate and hesitancy-constrained demand at a
state level for the state of California, IL, LA and New
Hampshire. These states are selected as they represent each

Figure 3 Conceptual regime framework (USA National Model)
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of the four main regional areas in the USA, as well as reflect
large-, small- and mid-sized states. The results are presented
graphically and are plotted along with the number of doses
administered over time, as well as the supply curve of doses
delivered to each state.
Figure 4 shows that California, IL, NH and Louisiana

administered 8,000, 7,000, 13,000 and 6,000 doses per 100k
population at their capacity on 3/28, 3/7, 3/7 and 4/11,
respectively. When considering the hesitancy-constrained regime
characteristics, the range of demand for vaccines is lower, however,
with approximately 1,490, 1,340, 1,460 and 1,020 doses
administered per 100k, respectively. New Hampshire, LA and
Illinois all reach their vaccination capacity significantly before the
peak of the national model in mid-April. California, however,
experiences peak vaccination near the peak in the national model.
Except for New Hampshire, where the number of distributed
doses is close to the vaccine administration rate in mid-April, the
distributed doses generally follow the vaccination rate trend for
other states. The vaccination rate curve falls below the distribution
curve for most states, indicating that the supply-constrained
regime is characterized not by a delivery problem, but instead by
the actual ability to vaccinate. This indicates a last mile problem as
there are doses available to vaccinate at higher rates.

Figure 5 depicts the same extracted supply-constrained
vaccination rate and hesitancy-constrained demand at a county
level for Cook County, IL, DeKalb County, GA, Los Angeles
County, CA, Miami-Dade County, FL and Travis County,
TX. These counties are selected as they represent many of the
largest metropolitan regions in the USA and cover many of
the main U.S. Census Bureau Regions. The plots display the
population percent vaccinated in each county over time.
Vaccine supply data is not directly available at the county level
but can be inferred through tracked vaccination rates. It should
be noted that there may be discrepancies in the correlation
between the population percent vaccinated and doses
administered due to non-adherence to second doses and one
dose vaccines. However, this is a reasonable proxy given the
available data.
Figure 5 shows that Miami-Dade, DeKalb, Los Angeles,

Cook and Travis County administered doses to 4.9, 2.3, 3.8,
4.4 and 5.3% of their populations at capacity during the week
of 5/9, 4/18, 4/11, 4/11 and 4/4, but only 1.2, 0.4, 0.7, 1.3 and
0.6% of their populations, respectively, in the hesitancy-
constrained regime. Except for Miami-Dade County and
Travis County, the peak vaccination rates are experienced near
the national model peak inmid-April.

Figure 4 State-level regime characteristics

Figure 5 County-level regime characteristics
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5.2 Capacity and hesitancy estimations
The two-regime methodology is applied to every county in the
USA and analyzed to understand spatial differences across the
country in vaccination ability and hesitancy-constrained
demand.
Figure 6 displays the distribution of the extracted supply-

constrained vaccination rates and hesitancy-constrained
demand for vaccines in counties across the USA Outliers are
truncated in this graph.
Both distributions of extracted rates follow a bell-shaped curve.

The supply-constrained rate peaks with a mean of 3.87% of the
population vaccinated per week and a median of 3.62%, with a
standard deviation of 2.02%. The distribution of hesitancy-
constrained demand rates peaks with a mean of 0.469% of the
population vaccinated per week and a median of 0.4%, with a
standard deviation of 0.28% Thus, there is variation in the

extracted regime characteristic slopes in counties across the
nation.

5.2.1 The capacity-constrained regime
Figure 7 maps the variation in capacity-constrained service
rates for counties across the continental USA. Counties in red
indicate a lower capacity rate for vaccination, whereas counties
in green indicate a higher capacity rate for vaccinations.
Counties without any color indicate missing or incomplete
vaccination data.
Across counties in the USA, there are considerable differences

in vaccination rate. Outliers in this graph include counties in
Vermont which experienced vaccination rates of over 20% per
week. This is likely due to the high demand and small
populations present in these counties. Counties in Virginia and
Georgia, however, experience rates closer to 1%–2% vaccinated

Figure 6 Histogram of capacity rate and hesitancy-constrained demand across counties

Figure 7 Capacity service rate across counties
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per week, indicating significant regional differences in maximum
capacity to vaccinate.
The box plots in Figure 8 further display political variation in

capacity rates at a county level. Each boxplot contain datapoints
for the extracted capacity regime and the population of the
county. The size of each point represents the population size, and
major counties are labeled.
As shown in Figure 8, Democratic-leaning counties generally

have much higher capacity to vaccinate than those in Center
and Republican-leaning counties. The median for Democratic-
leaning counties is 4.6%, while the median is 3.7% and 3.5%
for Center and Republican-leaning counties. The spread of
vaccination rates in Democratic counties ranges across 6.6%,
and the range for Center-leaning counties is 7.9% and 6.5% for
Republican-leaning counties. The effect of population size on
capacity is not particularly evident, as both large and small
counties are able to vaccinate at similar rates, indicating
population size alone is not a main driver of capacity to
vaccinate.

5.2.2 The hesitancy-constrained regime
Figure 9 maps the variation capacity-constrained service rates
for counties across the continental USA. Counties in red
indicate a lower hesitancy-constrained demand, while counties
in green indicate a higher vaccination rate under hesitancy.
Counties without any color indicate missing or incomplete
vaccination data.
The hesitancy-constrained vaccination demand in Figure 9

varies across the country, however it does not exhibit the exact
patterns as the capacity-constrained rate in Figure 7. Many
counties experience low vaccination rates in both regimes,

indicating an overall lower capacity to vaccinate and low
demand for vaccines in the second regime. Counties in the
Northeast, however, experience high capacity-rates and low
hesitancy-constrained demand. Thismay indicate an exceeding
high initial vaccination level, leaving few unvaccinated to drive
the second regime.
The box plots in Figure 10 further display political variation

in hesitancy-constrained demand for vaccines at a county level.
As in Figure 8, each boxplot contains datapoints for the
extracted characteristic slope and population of the county.
As shown in Figure 10, Democratic-leaning counties

generally have much higher hesitancy-constrained demand
rates that those in Center and Republican-leaning counties.
This indicates that the hesitancy-constrained demand for
vaccines is higher. The median for Democratic-leaning
counties is 0.645%, while the median is 0.42% and 0.38% for
Center and Republican-leaning counties. The spread of
vaccination rates in Democratic counties ranges 1.4%, and the
range for Center-leaning counties is 0.96% and 0.35% for
Republican-leaning counties. These indicate a difference in the
spread of hesitancy-constrained demand for vaccinations, with
a larger variation in rates amongDemocratic counties. Just as in
Figure 8, the effect of population size on demand is not clear as
hesitancy-constrained demand for vaccines varies among
similar sized counties, indicating population size may not be the
main driver of demand under hesitancy.

5.2.3 Relationship between regimes
Figure 11 depicts the relationship between the characteristic
slopes of the two regimes. Each data point represents the
regime estimates for a single county, the color indicates the

Figure 8 Distribution of county capacity-constrained rates by politics
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Figure 9 Hesitancy-constrained vaccination rate across counties

Figure 10 Distribution of county hesitancy-constrained demand by politics

COVID-19 vaccine distribution process

Sharika J. Hegde, Hani Mahmassani and Karen Smilowitz

Journal of Humanitarian Logistics and Supply Chain Management

Volume 13 · Number 2 · 2023 · 111–124

120



political leaning of the county and the size of the point reflects
county population.
Figure 11 shows a slight positive correlation between the

rates. Republican-leaning counties tend to have a lower
demand for the same capacity estimates.

5.3 Determinants of vaccination capacity and
hesitancy-constrained demand
The following section develops multiple linear regression
models to understand the various factor affecting two regime
characteristics. The models focus on regional, political and
urbanizationmetrics.

5.3.1Model specification
In this analysis, the exogeneous variables available to us and
their sample statistics are as follows:
� Percent Not White/Asian – (Numeric) Percentage of the

county not identifying as fully White or Asian. This is used
as a metric to understand minority and racial differences.
Values range from 1.5 to 100 with a mean of 17.5 and a
standard deviation of 17.3.

� Urban Influence Code – (Numeric) County score ranging
from 1 to 12, where 1 indicates a county within a large
metro area of 11 million residents and 12 indicates a
county that is not adjacent to any metro/micro area and
does not contain a town of at least 2,500 residents. Values
range from 1 to 12 with a mean of 5.1 and a standard
deviation of 3.4.

� Percent Democrat – (Numeric) County percentage voting
for the Democratic candidate in the 2020 Presidential
Election. Values range from 0 to 0.9 with a mean of 0.3
and a standard deviation of 0.2.

� Democrat Governor – (Binary) Takes a value of 1 if the
state’s governor identifies as Democratic.

� Region – (Categorical) U.S. Census Bureau Regions:
West, Midwest, South and Northeast.

5.3.2 Capacity-constrained vaccination rate model
The final model specification for estimating the capacity-
constrained regime vaccination rate is given as follows:

CapacityRatei ¼ b0 1b1 � Regionð Þ1b2 � DemocraticGovernorð Þ
1b3 � UrbanInfluenceð Þ
1b4 � DemocraticGovernor � UrbanInfluenceð Þ
1b5 � PercentDemocratð Þ
1b6 � DemocraticGovernor � PercentDemocratð Þ
1b5 � DemocratLeaningð Þ
1b7 � DemocraticLeaning � PercentNotWhiteAsianð Þ1 e

Table 1 depicts theOLS linear regression results.
The capacity-constrained model confirms the ordering that

counties in the Northeast typically experience higher capacity
for vaccinations, followed by the Midwest, then the West, and
finally the South. Regional and political effects are the most
pronounced as a Democratic state governor is expected to
increase a county’s weekly population vaccinated by 0.54
percentage points. The effect of a unit decrease in urbanization
increases a county’s vaccination capacity by 0.11 percentage
points and this effect is augmented by 0.04% when the county
is within a state with aDemocratic governor. This indicates that
rural counties tend to have higher capacity vaccination rates.
This may be due to the sheer size of the population being
smaller and more manageable. It may also indicate Democratic
governor’s push to improve vaccination ability in rural
communities. Just as in governor politics, as the percent of
Democratic voters increases in a county, the vaccination
capacity also increases by 0.6 percentage points. However, the
combined effect of a percentage point increase in Democratic
voters in a county within a state with a Democratic governor is
reduced by 0.03 percentage vaccinated per week at capacity.
Finally, in Democratic-leaning counties, the vaccination
capacity decreases by 0.02 for each additional population
percent that is not White or Asian. This may be indicative of
access issues, where race and may play a role in access to

Figure 11 Relationship between hesitancy and capacity-constrained rates
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vaccines and vaccination sites. Other races were explicitly
tested in this model and were determined insignificant.

5.3.3 Hesitancy-constrained demand model
The final model specification for the estimating the hesitancy-
constrained regime vaccination rate is given as follows:

HesitancyRatei ¼ b0 1b1 � Regionð Þ1b2 � DemocraticGovernorð Þ
1b3 � UrbanInfluenceð Þ
1b4 � DemocraticGovernor � UrbanInfluenceð Þ
1b5 � PercentDemocratð Þ 1 e

Table 2 depicts theOLS linear regression results.
The hesitancy-constrained model shows regional differences

as well; the Midwest has the lowest hesitancy-constrained
demand followed by South,Northeast and then theWest.
Just as in the model for the capacity-constrained vaccination

rate, regional and political effects are the most pronounced.
However, a Democratic state governor is expected to decrease a
county’s hesitancy-constrained demand.
The parameter estimate for urban influence indicates that an

increase in United States Department of Agriculture Economic
Research Service code, or a decrease in urbanization, reduces
the hesitancy-constrained demand. The combined effect of
rural areas in states with Democratic governors, however, is a
slightly higher demand for vaccines, indicating state leadership

has an effect in rural communities. Finally, as the percent of
Democratic votes increases by one percentage point in a
county, the hesitancy-constrained demand for vaccines
increases slightly.
It is of note that the sign for the Democratic governor

regressor and urban influence code changes between the two
models. This indicates that counties in states with Democratic
governors and counties in more rural communities are more
likely to have high vaccination capacities, but lower hesitancy-
constrained demand for vaccines. This is likely due to the initial
push to get vaccinated which is seen inDemocratic states where
Governors themselves are more likely to reveal that they are
vaccinated and encourage others to get vaccinated for
economic reopening (Associated Press, 2021), which may have
resulted in more resources put in place to vaccinate at higher
capacities. Those remaining unvaccinated in these regions
likely experience extreme hesitancy and are very unlikely to get
vaccinated.
The results of this aggregate cross-sectional study can be

used to make broad policy decisions to improve vaccination
distribution and availability in the USA. Further behavioral
analysis into the mechanisms causing vaccine hesitancy
behavior in individuals, however, is needed to develop strong
policy solutions and survey-based research may provide more
robust insights. Survey studies of vaccine acceptance in the
USA, UK and Australia found that, while over 25% of the

Table 1 OLS Regression results (capacity-constrained)

Regressor Coefficient Std err t P>jtj
Intercept 2.00 0.15 13.36 0.00
Northeast 1.11 0.15 7.28 0.00
South �0.79 0.09 �8.99 0.00
West �0.20 0.11 �1.89 0.06
Democratic governor 0.54 0.23 2.39 0.02
Urban influence 0.11 0.01 8.61 0.00
Democratic governor – Urban influence 0.04 0.02 1.98 0.05
Percent democrat 0.05 0.00 15.66 0.00
Democratic governor – Percent democrat �0.03 0.01 �5.90 0.00
Democratic-leaning 0.60 0.09 6.60 0.00
Democratic-leaning – Percent not white/Asian �0.03 0.00 �9.21 0.00

Dep. variable Capacity-Constrained Rate R-squared 0.267
Method OLS Adj. R-squared 0.265

Table 2 OLS regression results (hesitancy-constrained)

Regressor Coefficient Std err t P>jtj
Intercept 0.3549 0.019 19.055 0
Northeast 0.0328 0.022 1.459 0.145
South 0.0289 0.011 2.536 0.011
West 0.1636 0.015 10.646 0
Democratic governor �0.1313 0.019 �7.068 0
Urban influence code �0.0138 0.002 �7.1 0
Democratic governor – Urban influence 0.0059 0.003 2.042 0.041
Percent democrat 0.0064 0 17.683 0

Dep. Variable Hesitancy-constrained demand R-squared 0.210
Method OLS – Least Squares Adj. R-squared 0.207
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population is unwilling to receive vaccines, a majority of this
group is not anti-vaccine and may be persuaded through public
health initiatives (Trent et al., 2022). Additionally, it was found
in New York City and Phoenix that trust and confidence in
government was associated with the decision to accept a
vaccine. Other survey studies have found that religiosity was
negatively correlated with vaccine acceptance (Troiano and
Nardi, 2021) and the experience of previous racial
discrimination increased hesitancy by 21% (Savoia et al.,
2021). Finally, further studies have found increased hesitancy
in racial and ethnicminorities (Nguyen et al., 2021).
In conjunction with the findings in this paper, this indicates

that American policymakers may want to prioritize increasing
vaccine acceptance in counties with lower vaccination
percentages as it would provide greater gains toward herd
immunity for the country as a whole. The unique polarizing
context in the USA requires specific, tailored initiatives across
the country. Policy recommendations include countering
misinformation through public health communications that are
designed around societal and cultural beliefs in individual
populations (McAteer et al., 2020). These initiatives should
take a community-based approach to identify subpopulations
and address their concerns to promote the value of vaccination
(Wells et al., 2022).

6. Discussion and conclusion

Considering the COVID-19 vaccine rollout within a multi-
regime framework provides insights into a complex system.
Characterizing the system by the vaccination rate allows us to
evaluate the supply chain and determine potential bottlenecks
with only knowledge of the vaccination outcomes at one
terminal of the system. The COVID-19 vaccine supply chain
exhibits unique dynamics as the extreme demand is initially
unserved due to capacity constraints.Within weeks the demand
is no longer as intense, and the supply-chain capacity is
sufficient. This second regime is characterized by the hesitancy-
constrained demand. A multi-regime model allows for the
identification of these regimes and frames the end-to-end
vaccine supply chain as a dynamic system that experiences
constraints on both the supply and demand sides.
From this analysis, it has been shown that the capacity to

vaccinate varies significantly across the country by region,
politics and demographics. While the national average
capacity-constrained rate is 3.4 million doses administered per
day (or about 1% of the population vaccinated), the rate varies
with 75% of counties experiencing capacity rates between 2%
and 5%. From the hesitancy-constrained regime, there is a
clear distinction among political lines where Democratic-
leaning counties tend to have higher vaccination rates as the
hesitancy-constrained demand is higher than in Republican-
leaning counties.
Graphical analysis of the two regimes at the state level shows

vertical distance between the dose administration rate and the
number of doses delivered to the state for most states. This
indicates that there is sufficient vaccine supply at the state level
and the supply chain is constrained by the ability to vaccinate as
opposed to the availability of vaccines. Thus, the supply-
constrained regime can be considered a last-mile issue and not
a transportation or production issue. The second regime

exhibits exclusively last-mile concerns as hesitancy surrounding
vaccines drives the lower vaccination rate. Lessons can be
extracted from the state-level analysis on the importance of the
last-mile operations from a supply and demand perspective in
vaccine deployment.
The two-regime framework also helps frame the vaccine

rollout within the goal of vaccinating a significant amount of the
population. Framing the end-to-end supply chain within these
two regimes helps in analyzing and understanding the
determinates of low-vaccination rates on the supply and demand
side, to understand how these factors are limiting the overall
vaccination rates seen across the country. As the demand for
booster shots begins to rise, this framework shows that there will
not likely be a similar supply-constrained regime as there are
many more places to receive the additional dose from as the
supply is available. On the demand side, further behavioral survey
work is required to develop community-specific plans across the
USA to improve vaccination rates.
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