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Abstract
Purpose – Computer vision for automated analysis of cells and tissues usually include extracting features
from images before analyzing such features via various machine learning and machine vision algorithms. The
purpose of this work is to explore and demonstrate the ability of a Convolutional Neural Network (CNN) to
classify cells pictured via brightfield microscopy without the need of any feature extraction, using a minimum
of images, improving work-flows that involve cancer cell identification.
Design/methodology/approach – The methodology involved a quantitative measure of the performance
of a Convolutional Neural Network in distinguishing between two cancer lines. In their approach, they
trained, validated and tested their 6-layer CNN on 1,241 images of MDA-MB-468 and MCF7 breast cancer cell
line in an end-to-end fashion, allowing the system to distinguish between the two different cancer cell types.
Findings – They obtained a 99% accuracy, providing a foundation for more comprehensive systems.
Originality/value – Value can be found in that systems based on this design can be used to assist cell
identification in a variety of contexts, whereas a practical implication can be found that these systems can
be deployed to assist biomedical workflows quickly and at low cost. In conclusion, this system demonstrates
the potentials of end-to-end learning systems for faster and more accurate automated cell analysis.
Keywords End-to-end learning, Convolutional neural network, Cancer cell line classification
Paper type Research paper

1. Introduction
Convolutional neural networks were developed initially in the 1980s and were called
Neocognitron (Fukushima, 1980; Fukushima et al., 1983; Fukushima, 1987). They are
broadly part of a wide set of models called Multi-Stage Hubel-Wiesel Architectures. In 1989,
LeNet-5 was introduced which simplified the architecture and used the back-propagation
algorithm to train the entire architecture in a supervised fashion (LeCun et al., 1989). The
architecture was successful for tasks such as optical character recognition and handwriting
recognition. Convolutional neural networks have been an important aspect of deep learning
in recent years. They were mainly responsible for the re-emergence and popularity of neural
networks. The work of Alex Krizhevsky and Ilya Sutskever which won the ImageNet Large
Scale Visual Recognition Competition in 2012 (ILSVRC-2012) was disruptive in the fields of
artificial intelligence, machine learning and computer vision community (Krizhevsky et al.,
2012). Since then Convolutional Neural Networks have been heavily applied to all
sorts of problems, from various object detection and image segmentation problems
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(Chen et al., 2014; Redmon et al., 2015; Ren et al., 2015) and to specific domains like medical
image analysis (Albarqouni et al., 2016; van Grinsven et al., 2016; Yang et al., 2017;
Esteva et al., 2017).

Their effectiveness can be attributed to their ability to handle translation invariances in
images by relying on shared weights and exploit spatial locality by enforcing a local
connectivity pattern between neurons of adjacent layers. We chose them for this reason,
knowing we wanted a model that could visually detect and differentiate between different
breast cancer cell lines such as MDA-MB-468 and MCF7 in an end-to-end fashion. According
to the American Cancer Society, breast cancer is the leading diagnosed cancer for American
women, not including skin cancer, with more than 250,000 new cases of invasive cases
expected and more than 40,000 deaths as of 2017, making it an important target to address
stateside (DeSantis et al., 2017). This is especially the case in developing regions abroad, where
care is less accessible, especially due to a lack of sophisticated equipment, reagents and more
may hinder detection. In efforts to diagnose and treat cancer, tools that can assist less
equipped labs are increasingly important. Within this, we present a tool that can distinguish
between images of cell lines via brightfield microscopy, without additional preparation, that
may assist automated detection tools and diagnoses.

2. Data
We used a collection of 1,241 grayscale images of MDA-MB-468 andMCF7 breast cancer cell for
training, validation and testing our model. Sample images from the data set can be seen
in Figure 1. Our data set contains 664 MDA-MB-468 breast cancer cell images and 577 MCF7
breast cancer cell as shown in Figure 2. MDA-MB-468 cells and MCF7 cells were cultured and
then placed into three separate six-well cell plates and imaged at 400X via brightfield
microscopy. Images were separated into brightly and dimly lit categories and then tiled into
128×128 pixel images for analysis. Given the broadness of the wells and cell positions imaged,
lighting differed, adding a challenge to the process, which can reflect practical research realities
and variations, leading to difficulty in automated systems properly detecting cells.

The data set was split into training set, validation set and testing set with a 8:1:1
ratio (995, 123, 123), respectively. The dimensions of all the images were reshaped
to 128×128 pixels. The images were then transformed by standardization so our
image pixel values that would act as inputs to our model would have a similar range
for more stable gradients during training. To increase the variation in our data set
to ensure our trained model generalizes beyond its training data. We further augmented the
images with random horizontal flips, 5° rotations, width shifts, height shifts
and zooms.

100�m 100�m

MCF7 sampleMDA-MB-468 sample

Figure 1.
Samples of MDA-MB-
468 and MCF7 breast
cancer cell lines that
were used in training
the convolutional
neural network
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2.1 Model architecture
We use a six-layer convolutional neural network trained and tested on 1,241 grayscale images
of MDA-MB-468 andMCF7 breast cancer cells. Our convolutional neural network architecture
is based on the ScaffoldNet architecture (Akogo and Palmer, 2018). As shown in Figure 3, our
network ScaffoldNet starts with two two-dimensional convolutional layers with a 3×3 kernel
size and 32 output filters with the first as its input layer. Then followed by a single
two-dimensional convolutional layers also with a 3×3 kernel size and 64 output filters.

We then introduce a two-dimensional global average pooling layer to reduce the spatial
dimensions of our tensor (Lin et al., 2013). Global average pooling performs dimensionality
reduction to minimize overfitting by turning a tensor with dimensions h×w×d into 1×1×d,
which is achieved by reducing each h×w feature map to a single number simply by taking the
average of all hw values. To further prevent overfitting, we then add a dropout regularizer
with a fraction rate of 0.5 (Srivastava et al., 2014). Then, we introduce a 32-unit densely
connected neural network layer into our network architecture, followed by another dropout
regularizer with a 0.5 fraction rate. Our final output layer is a single unit dense neural
network layer.

128×128
input

3×3×32 3×3×32 3×3×64 0.01

Convolutional layer+RELU

Global Average Pooling

Dense layer+RELU

Dropout Regularizer

Dense layer+Sigmoid

Notes: The model propagates the input image through its four hidden layers and then outputs
predicted probabilities between 0 and 1, represent both MDA-MB-468 and MCF7 classes
respectively, with the threshold being 0.5. This example accurately outputs 0.01, which
represents MDA-MB-468 cell class

Figure 3.
The architecture of
our convolutional

neural network based
on the ScaffoldNet

architecture
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Figure 2.
The complete data

set contains 664
MDA-MB-468 breast
cancer cell images

and 577 MCF7
breast cancer cells
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All convolutional and densely connected layers except the output layer use the rectified
linear unit activation function:

f xð Þ ¼ max 0; xð Þ;
where x is the input to a neuron (Hahnloser et al., 2000).

The final single neuron output layer uses a Sigmoid activation function:

S xð Þ ¼ 1
1þe�z;

where x is the input to a neuron and e is the natural logarithm base (also known as
Euler’s number).

Our convolutional neural network is trained end-to-end with the first-order
gradient-based optimization algorithm, Adam, using the standard parameters (β1¼ 0:9
and β2¼ 0:999) (Kingma and Ba, 2014). Then, we use the cross-entropy loss function for
binary classification:

� y log pð Þþ 1�yð Þlog 1�pð Þð Þ;
where log is the natural log; y, the binary indicator (0 or 1) if class label c is the correct
classification for observation o p-predicted probability observation.

We train our model using mini-batches of 32. We use a learning rate (α) of 0.001, and pick
the model with the lowest validation loss.

2.2 Model training and validation
Using the training set (995 images), our convolutional neural network was trained with
Adam optimization algorithm. Cross-entropy loss function and the accuracy classification
score were used as metrics. The accuracy score formula is:

accuracy y; ŷð Þ ¼ 1
nsamples

Xnsamples�1

i¼0

1 ŷi ¼ yið Þ;

where the ŷi is the predicted output for ith sample yi is the (correct) target output computed
over nsamples.

Our model was trained in eight epochs and its hyperparameters tuned using the
validation set (123 images). After just the first epoch, our model had the following
performance results on the validation set:

• Accuracy score: 94.31 percent; cross-entropy loss: 0.1801.

After the eighth epoch, our model’s final performance results on the validation set were:

• Accuracy score: 98.37 percent; cross-entropy loss: 0.0934.

2.3 Model testing and results
After all training and validation, we finally evaluated our model on the test set (123 images). The
test set is the final evaluation for amodel and changes are not made to the model after the results.

ScaffoldNet’s final performance results on the test set were;

• Accuracy score: 99.00 percent; cross-entropy loss: 0.0926.

From the results of the final evaluation, we can tell that our model generalizes well and does
not overfit, the high accuracy performance on the validation set is consistent with the
evaluation results on the test set.
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To further evaluate our convolutional neural network’s output quality, we use the
receiver operating characteristic (ROC) metric and its area under curve (AUC) score. We use
the ROC curve to plot our model’s true positive rate on the Y-axis, and false positive rate on
the X-axis. Our convolutional neural network classifier has a near-perfect AUC score of
0.98 as shown in the plot shown in Figure 4.

3. Related work
Some earlier works exist within the domain of computer vision for automated analysis of
cells and tissues. Some of such works segment various cells from each image, and then
extract features like size and shape from such cells. These extracted features are then used
to train machine learning models or further analyzed by other machine vision algorithms.
This includes examples where they extract features from segmented blood cells and then
classify them via multilayer perceptrons (Lin et al., 1998). Other examples include grading of
cervical intraepithelial neoplasia by extracting geometrical features that are analyzed using
a combination of computerized digital image processing and Delaunay triangulation
analysis (Keenan et al., 2000) and localization of sub-cellular components via threshold
adjacency statistics which are then analyzed by support vector machine (Hamilton et al.,
2007). Others compare extracted features and raw pixel densities analyzed via Bayesian
classifier, K-nearest neighbors, support vector machine and random forest (Timothy et al.,
2016). Unlike all these works, we used deep learning in an end-to-end fashion, where we train
our convolutional neural network to directly analyze raw pixel values without any need for
feature extraction. This drastically simplifies the process of developing automated computer
vision systems for cell and tissue analysis. By eliminating feature extraction, computer
vision system can then fully and truly learn important regularities pertaining cells
themselves rather than being limited by rules via extracted features we create.

4. Conclusion and outlook
We developed a convolutional neural network that accurately classifies MDA-MB-468 and
MCF7 breast cancer cells after being trained on 995 brightfield breast cancer cell images,
validated with 123 brightfield breast cancer cell images and then tested on 123 brightfield
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Figure 4.
As seen on the curve,

our convolutional
neural network

classifier has a high
AUROC score of 0.98
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breast cancer cell images. The convolutional neural network performed well, with a
99 percent accuracy score and 0.98 AUC score, indicating reliability for classification
purposes. We believe that this system holds promise for expansion into other cancerous and
normal cell lines of other diseases cases as may be reflected in upcoming work. More
importantly, it can potentially help lower barriers for care in less equipped labs.
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