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Abstract
Purpose – The measurement capabilities of the data envelopment analysis (DEA) models are used to
train the artificial neural network (ANN) models for the best performance modeling of the sawmills in
Ontario. The bootstrap DEA models measure robust technical efficiency scores and have benchmarking
abilities, whereas the ANN models use abstract learning from a limited set of information and provide the
predictive power.

Design/methodology/approach – The complementary modeling approaches of the DEA and the ANN
provide an adaptive decision support tool for each sawmill.

Findings – The trained ANN models demonstrate promising results in predicting the relative efficiency
scores and the optimal combination of the inputs and the outputs for three categories (large, medium and
small) of sawmills in Ontario. The average absolute error in predicting the relative efficiency scores varies
from 0.01 to 0.04, and the predicted optimal combination of the inputs (roundwood and employees) and the
output (lumber) demonstrate that a large percentage of the sawmills shows less than 10% error in the
prediction results.

Originality/value – The purpose of this study is to develop an integrated DEA-ANN model that can help
in the continuous improvement and performance evaluations of the forest industry working under uncertain
business environment.

Keywords Artificial intelligence, Decision support systems, Benchmarking, DEA, Data analytics,
Efficiency analysis, Artificial neural network, Best performance modeling, Continuous improvement,
Data envelopment analysis, Feed forward neural network, Forest industry Ontario

Paper type Research paper

1. Introduction
The data envelopment analysis (DEA) is a non-parametric linear programming optimization
technique, which is used for measuring the relative operational efficiencies of several
decision-making units (DMUs) having several inputs and outputs (Lovell, 1993; Fare et al.,
1994). The DEAmodels compare the inputs and the outputs of the DMUs by establishing an
efficiency frontier and by evaluating the efficiency of all DMUs relative to that frontier
(Charnes et al., 1978; Banker et al., 1984; Coelli et al., 2005; Cooper et al., 2011). However, the
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DEA technique has limited usage in decision-making for the industry because of its
incapability in predicting either the relative efficiency scores or the optimal combinations of
the inputs and the outputs under uncertain supply and demand conditions (Mostafa, 2007;
Mostafa, 2009; Wang et al., 2013). This study trains artificial neural networks (ANN) for
predicting the relative efficiencies of the DMUs and the optimal combinations of the inputs
and outputs.

The DEA technique measures three types of efficiencies (the overall technical efficiency
[OTE], the pure technical efficiency [PTE] and the scale efficiency [SE]), and allows us to
evaluate the performance of the DMUs without specifying the production function.
Moreover, when we know a priori, the costs of inputs and the prices of the outputs, the DEA
is also able to find the most optimal combination of inputs and outputs by using the costs as
relative weights of inputs and prices as relative weights of outputs. However, the costs of
inputs and the prices of outputs are highly sensitive and keep changing based on the
uncertain supply and demand conditions. In addition, other factors that can also influence
the cost and price sensitivity include changes in the economic environment, competition,
quality and service. With changing costs of inputs and prices of outputs, the optimal
combinations of the inputs and outputs also change, which in turn change the relative
efficiencies of the DMUs. Therefore, the industry managers need an advanced prediction
framework that quickly adapts to the changing market conditions (supply of inputs and
demand of outputs), continuously assesses the relative technical efficiencies and computes
the optimal combinations of the inputs and the outputs that provide the best performance
(McAdam et al., 2008).

Artificial intelligence (AI), which is a branch of computer science that creates intelligent
machines with reasoning and problem solving skills, can be used for the prediction of
relative efficiencies of the DMUs and the optimal combinations of the inputs and outputs.
The AI in this case may be achieved by using ANN, which are modeled based on the human
learning paradigm, and acquire knowledge through the iterative learning process and
weight adjustment between interconnected neurons. The ANN learns from a limited set of
information, known as the training data, and provides nonlinear mapping and predictive
power for the test data by searching for weight sets that form the best fit for the observed
data sets through generalization (Yi and Thomas, 2009). The simplest type of ANN is a feed
forward neural network, wherein the connections between the nodes do not form a cycle, but
the information moves only in the forward direction, from the input nodes through the
hidden nodes to the output nodes (Schmidhuber, 2015). The ANN consists of multiple layers
of computational units, with each neuron in one layer directly connected to the neurons in
the subsequent layer.

The ANN models continuously evaluate the relative efficiencies of the DMUs under
uncertain demand and supply conditions, and the knowledge developed in this area is
regularly shared with the managers and adapted in the industry for strategic decision-
making. Therefore, the predictive power of the ANN can help industry managers in
continuous improvement and in performance evaluations that make methodological
advancements in the uncertain business environment. This study is an extension of the
research work by Shahi and Dia (2019a) to help the sawmill managers in predicting the
relative efficiencies and the optimal combinations of inputs and outputs by developing and
training the ANN models with the results obtained from the DEA models. We develop and
train two ANN models in this study. The first ANN model (ANN-1) is trained from the
results of the DEA-1 model, which is used to measure the relative efficiencies of the
sawmills, using roundwood and number of employees as inputs and lumber produced as
output. All the five variables (three input and output variables, viz. roundwood, number of
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employees and lumber and two efficiencies PTE and OTE) are used to train the ANN-1
model. The test ANN-1 model then uses the test data of three input and output variables
(roundwood, number of employees and lumber) to predict the two efficiency scores (PTE
and OTE). The second ANN model (ANN-2) is trained from the results of the DEA-2 model,
which is used to measure the optimal combinations of the inputs and output of the sawmills,
using roundwood and number of employees as inputs and lumber produced as output.
Three independent ANN-2 (a, b, c) models are trained to predict the optimal value of
roundwood (ANN-2a), optimal number of employees (ANN-2b) and optimal value of lumber
(ANN-2c). Each of these three ANN-2 models are trained with four variables (three input and
output variables, viz. roundwood, number of employees and lumber and one optimal value
of either of input or output variables). Although a few studies have used the ANN modeling
approach in other industries with promising results (Athanassopoulos and Curram, 1996;
Emrouznejad and Shale, 2009; Hsiang-Hsi et al., 2013; Kuo et al., 2012; Kwon, 2014; Kwon
et al., 2016), there are no such studies for predicting the DEA efficiency scores and optimal
inputs and outputs using the ANNmodeling approach in the forest products industry.

The purpose of this study is to develop and train ANN models having performance
measurement and prediction capabilities for sawmills in Ontario. The proposed ANN
models use the bootstrap DEA (BDEA) as a preprocessor for training, and the subsequent
feed forward neural network model conducts the prediction task of relative efficiencies and
optimal combination of inputs and outputs for each sawmill in Ontario. The specific
objectives of this study are as follows:

� to first train the ANN models using results from the BDEA models for performance
measurement and prediction capabilities;

� to test the predictive capabilities of the trained ANN model for predicting the
relative efficiencies of the Ontario’s sawmills; and

� to use the trained ANN model for predicting the optimal combination of inputs and
output for the Ontario’s sawmills under uncertain supply and demand conditions.

This paper is organized as follows. The related literature is reviewed in Section 2. Section 3
outlines the BDEA and the ANN modeling approach. Section 4 describes the results of the
modeling approach for three categories of sawmills in Ontario. Section 5 offers the
concluding remarks and suggestions for future studies.

2. Literature review
Both DEA and ANN techniques have been used in several research areas independently,
and both these techniques have their own benefits and drawbacks (Athanassopoulos and
Curram, 1996). However, using them together combines the benefits of both DEA (to process
the data) and ANN (to perform the predictions) techniques. The integrated DEA-ANNmodel
has been used in many industries including healthcare analytics (Misiunas et al., 2016). The
use of integrated DEA-ANN models does not mandate any causality requirement, which
makes these models extremely suitable for performance improvement and decision-making
in the current environment of demand and supply uncertainty in the forest industry. The
non-parametric approach of DEA is a well-known method for measuring the relative
efficiencies of the DMUs with multiple-inputs and multiple-outputs. The advantage of the
DEA approach is that it evaluates the efficiency of each DMU in the dataset by comparing it
with the efficiency of the other DMUs, while allowing every DMU in the dataset to have its
own production function. DEA has been used as a decision analysis tool in several areas,
including manufacturing (Wahab et al., 2008; Lu et al., 2013; Lozano, 2014), chemical
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processing industry (Pitchipoo, 2012; Sun and Stuebs, 2013), logistics (Xu et al., 2009;
Mirhedayatian et al., 2014), telecommunication (Cooper et al., 2001), mining, oil and gas
production (Dia et al., 2019; Dia et al., 2018) and health care (Jacobs, 2001; Gok and Sezen,
2012; Ferrier and Trivitt, 2013), railways and airports (Feli et al., 2011; Georges Assaf and
Gillen, 2012; Adler et al., 2013; Bhanot and Singh, 2014), social enterprise (Dia and Bozec,
2019), incineration plants (Chen et al., 2014), service industry such as banks and hospitals
(Paradi et al., 2011; Paradi and Zhu, 2013; Peng et al., 2013). A most recent survey of DEA
applications is found in Emrouznejad and Yang (2018). The applications of DEA for
assessing the relative efficiencies and for benchmarking purposes are also found in the
forest industry (Shahi and Dia, 2019a, 2019b).

Empirical applications of the DEA for evaluating the relative efficiencies of the DMUs in
the forest management sector have been summarized in the literature (Xue et al., 2018).

The measurements of technical efficiency in the forest management sector have been
used for evaluating the impact of government policies and forest tenure reforms on the
production of social and environmental goods (Diaz-Balteiro and Romero, 2008; Xue et al.,
2018). The efficiency and productivity of the wood products manufacturing sector have also
been evaluated and summarized (Sowlati, 2005; Salehirad and Sowlati, 2006). It was found
that the productivity growth compensates for price increases and enhances competitiveness.
It was further found that the technical efficiency directly affects costs, profits and capital
investments. The relative technical efficiencies in the forest bio-refinery were also evaluated,
and it was concluded that the current forest products industry, with its existing
infrastructure offers a suitable platform for being expanded into future integrated forest bio-
refineries (Huang et al., 2009). Shahi and Dia (2019a) further improved the application of
DEA in the forest industry by using BDEA, which allows the construction of confidence
intervals and estimation of robust efficiency scores. They used the BDEA models for
analyzing the relative technical efficiency of 125 sawmills in Ontario and found low levels of
overall technical and managerial efficiencies in the Ontario’s sawmills over the entire study
period. Shahi and Dia (2019b) further used the BDEA model for analyzing the relative
efficiencies of 23 pulp and paper mills in Ontario and found low levels of relative efficiencies
due to the management of operations as well as scale of operations, especially during the
economic downturns. The DEA results are limited to assessing the relative technical
efficiencies and cannot be used for prediction purposes by the forest industry managers
under uncertain supply and demand conditions. The ANN model acquires knowledge
through an iterative learning process from a limited set of information and can provide the
predictive power. Therefore, the complementary features of the DEA and ANN can be used
to build an adaptive decision-making tool for the forest industry mill managers under fast-
changing business environment.

The ANN models, which allow the modeling of nonlinear processes, are used for solving
many problems such as image processing and character recognition, classification, pattern
recognition, dimension reduction and others (Knoll et al., 2016). This is because the ANN
models have the ability to model and extract unseen features and relationships, and unlike
other traditional models, ANN models do not impose any restrictions on the input and
residual distributions. The ANN models have found widespread applications for face
recognition in social media, cancer detection in healthcare, to image processing in
agriculture. The ANN models require sufficient size and quality of data, which are used to
train the models (Knoll et al., 2016). The ANN models are trained using either supervised
learning or unsupervised learning, depending on whether input features of the training data
are linked to the labels of the data or are just used for clustering of unlabeled data into
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different groups (Jain et al., 2000). Further research in the ANN models have led to the
development of deep neural networks in the field of deep learning.

The ANN models are being increasingly used in the literature for input-output based
performance evaluation and benchmarking techniques (Yi and Thomas, 2009; Hsiang-Hsi
et al., 2013; Kwon, 2014; Kwon et al., 2016). In the industry, the most significant application
of the ANN models is found in data mining, which includes the processes of data
understanding, data preparation and data analysis and knowledge generation (Knoll et al.,
2016). The studies exploring predictive potential of the ANNmodels have been used to:

� analyze the effects of total quality management and operational flexibility on
hospital performance (Alolayyan et al., 2011);

� dynamic job shop scheduling (Alpay and Yuzugullu, 2009);
� evaluate service quality to outpatients (Carlucci et al., 2013);
� investigate engineering performance in constructionmanagement (Georgy et al., 2005);
� make intermittent demand forecasts (Kourentzes, 2013; Lau et al., 2013);
� conduct green supplier selection (Kuo et al., 2012);
� examine optimal collaborative benchmarks in a supply chain (Li and Dai, 2009); and
� evaluate total duration in project management (Li and Liu, 2012).

The ANN models have been used in a hybrid approach with the DEA models to determine
the relative efficiencies, when there are heterogeneous levels of input and output
relationships amongst the decision-making units (Samoilenko and Osei-Bryson, 2010). The
integrated DEA-ANN models have been used for pre- and post-prediction for performance
and efficiencies in supplier evaluations systems (Ozdemir and Temur, 2009). The DEA
models have also been used to pre-process data to enforce monotonicity upon the inputs that
could be subsequently used for predictions using ANN (Pendharkar and Rodger, 2003).
There have been examples of using the ANNmodel first, and then the outputs are processed
through DEA model to rank the predictions from the ANN (Olanrewaju et al., 2012). The
hybrid DEA-ANN models have also been used to handle fuzzy data (Hatami-Marbini et al.,
2011). However, the integrated DEA-ANN models have not been used in the forest industry
for predicting either the relative efficiencies or the optimal combinations of the inputs and
outputs. This study fills the gap in the literature by developing the DEA-ANN models for
sawmills in Ontario. The performance measurement and prediction of the DEA-ANN
models can significantly enhance the managerial decision-making process in the
performance evaluation and continuous improvement of the forest industry in Ontario.

3. Integrating bootstrap data envelopment analysis with artificial neural
network models
3.1 Bootstrap data envelopment analysis
The CCR model estimates the OTE and assumes constant returns to scale was developed by
Charnes, Cooper and Rhodes (Charnes et al., 1978). The dual model of the input oriented CCR
model is represented as follows:

Minu 0 ¼ z0 � «
Xm
i¼1

s�i þ
Xm
r¼1

sþi

 !
(1)
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xij0z0 �
Xn
j¼1

l jxij � s�i ¼ 0; i ¼ 1 . . .m (2)

Xn

j¼1

l jyrj � sþr ¼ yrj0 ; r ¼ 1 . . . t (3)

where n is the number of DMUs, t is the number of outputs,m is the number of inputs, xis is
the value of the input s for DMUi, and yir is the value of the output r for DMUi. The
parameters l j (j = 1,. . .,n) in equations (1) and (2) classify the benchmark DMUs and define
an envelope for the evaluated DMU0. The parameter u 0 in equation (1) is the efficiency ratio
of the evaluated DMU0. The parameter z0 in equations (1) and (2) indicates the proportion of
inputs, for an inefficient DMU, needed to produce outputs equivalent to its benchmark
DMUs. The parameters si

- and sr
þ in equations (1–3) correspond to the slacks associated

with the inputs i and the outputs r, respectively.
The BCC model estimates the PTE and assumes variable returns to scale, was developed

by Banker, Charnes and Cooper (Banker et al., 1984). The dual of the BCC oriented input
model is obtained by adding the following convexity constraint to the equations (1–3):

Xn
j¼1

l j ¼ 1 (4)

The SE is evaluated as the ratio of the OTE and the PTE as in equation (5). The SE
measures the extent by which the overall technical efficiencies can be traced back to the
whole operations’ scale rather than the management effectiveness and evaluates if the DMU
has the optimum scale size and the right amount of resources to operate (Banker et al., 1984):

u SE
0 ¼ u CCR

0

u BCC
0

(5)

Simar and Wilson (1998) further helped improve the DEA technique, which is based on a
deterministic-based approach by proposing the bootstrapping methodology. The
bootstrapping methodology in frontier models allows the construction of confidence
intervals and the generation of robust efficiency scores. The bootstrapping methodology
simulates the data generating process (DGP), using the Monte Carlo simulation process and
provides robust estimators of the original unknown sampling distribution (Toma et al.,
2017). Thus, for the relative efficiencies u k (as in equation (1)) in the DEAmodel, the DGP, P,
generates a random sample, x = {(xk,yk jk = 1,. . .,n)}, to estimate u k according to
equation (6):

û k ¼ Min u jyk#
Xn
i¼1

g iyiju xk �
Xn
i¼1

g ixij
Xn
i¼1

g i ¼ 1jg i � 0ju � 0ji ¼ 1; . . . ; n

( )

(6)

The bootstrap procedure determines P̂ as an estimator of the true unknown DGP generated
through the dataset x . The efficiency estimates lead to a new population, which can be used
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to create a new dataset x * ¼ f x*i ; y*i
� �

j i ¼ 1; . . . ; nÞg . This new sample dataset defines
the corresponding x̂* and ŷ*, whose distributions are known since P̂ is known. A Monte
Carlo approximation is used in the analytical computation of P̂ generating B pseudo-
samples, x *

b, where b = 1,. . ., B are pseudo-estimates of relative efficiencies (Simar and
Wilson, 1998). The linear programming technique is used to estimate the efficiencyû b of
each DMU, using the input-output data (xk, yk),where k = 1,. . ., n. In our study, we run 2000
iterations of this procedure to ensure enough convergence of the confidence intervals.

3.2 Optimum values using data envelopment analysis
Performance evaluation is an important activity for any DMU in identifying its
shortcomings in the managerial and technical efficiencies, as well as in devising goals for
the optimum values of inputs and outputs that maximize profits. The most optimal inputs
and outputs for each DMU refer of the fewest inputs that can be used to produce the most
outputs, using one of the several production plans. However, the use of optimal combination
of the inputs and the production of optimal combination of outputs, depends on the cost of
the inputs and the price of the outputs, which assign the relative weights to the inputs and
outputs. For example, let w be the vector ofm inputs costs, 2 Rm

þ , and let p be the vector of t
output prices, p 2 Rt

þ. In this situation, we can calculate the costs wx and revenue py of a
given production plan (x, y), and thereby evaluate this production plan using the cost and
revenue combination (wx, py). In principle, we calculate the relative efficiency using DEA of
this aggregated model, (wx, py) in the same way as we did for (x, y), either using variable
returns to scale or constant returns to scale (Bogetoff and Otto, 2011).

This way, we can define the cost-efficiency CE as the ratio between the minimal cost and
the actual cost, ¼ wx*

wx , where x* is the optimal minimal cost input combination found by
solving the cost minimization problem. The revenue-efficiency RE is defined as the ratio
between the maximum revenue and the actual revenue, RE ¼ py*

py , where y
* is the optimal

revenue output combination found by solving the revenue maximization problem. The
linear programming DEA optimization problems (cost minimization and revenue
maximization) are formulated in the same way as in equations (1–6) above and are solved by
the linear programming method in the R package using lpSolveAPI (Bogetoff and Otto,
2011).

3.3 Artificial neural network models
ANN are effective machine learning tools in pattern recognition and analysis. We leverage
the multi-layer feed-forward neural networks to predict the efficiency scores and the optimal
DMU inputs and outputs, using two ANN models (ANN-1 and ANN-2). A multi-layer feed-
forward neural network is equivalent to a mathematical function f (X, 1) = Y, where X is
the input vector,Y is the output vector, and1 is the neural network weights. From the DEA
data, the input vector consists of the roundwood consumed by the sawmill, the number of
employees working in the sawmill, and the amount of lumber produced by the sawmill.
Therefore, the input of the ANN-1model is a three-tuple:

X = (xroundwood, xemployees, xlumber). The ANN-1 model architecture is designed for
predicting the efficiency scores (u PTE and u OTE) (Figure 1). Because the efficiency scores
(PTE and OTE) have the same range: {u j u [ R, 0# x# 1}, the ANN-1 model is trained to
predict both PTE and OTE simultaneously.

The ANN-2 model architecture is designed for predicting the optimal inputs (roundwood
and employees) and output (lumber) for each DMU (Figure 1). From the DEA optimal data,
the input vector consists of the optimal roundwood consumed by the sawmill, the optimal
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number of employees working in the sawmill, and the optimal amount of lumber produced
by the sawmill.

The input of the ANN-2 model is also a three-tuple:
X = (xroundwood, xemployees, xlumber). However, the output of the ANN-2 model, optimal

inputs (yoptimal roundwood and yoptimal employees) and optimal outputs (yoptimal lumber) have
different units. Therefore, we use three different ANN-2 models of the same architecture to
predict yoptimal roundwood (ANN-2a), yoptimal employees (ANN-2b), and yoptimal lumber (ANN-2c),
separately.

Both ANN-1 and ANN-2 models have the same number of layers and the same number of
neurons in each layer except for the output layer. The ANN-1 model has two output neurons,
whereas the ANN-2 model has only one output neuron. For both ANN-1 and ANN-2, the first
layer (input layer) has three input neurons, the other three hidden layers have 512, 256 and 128
neurons, respectively. The ANN models consist of multiple layers, each containing
computational units modeled like biological neurons, which are connected to the neurons in the
subsequent layers. The network configuration is iteratively tuned using the gradient descent-
based optimization algorithm, which prunes the nodes based on values of the weight vector
after a certain number of training epochs (in our case it was 500). With the proper training
method and sufficient training data, the ANN models can learn the complex hidden patterns
among the input data and the expected output data (target data). The network of
interconnected neurons internally organizes itself to reconstruct the complex functional
relationships among the input and the associated output data. We use the rectified linear unit
(ReLU) activation function for each hidden layer for both ANN-1 and ANN-2 models. The
activation function of the output layer of ANN-1 model is a sigmoid function, which controls
the range of the outputs (u PTE and u OTE) between 0 and 1, whereas the output layer of ANN-2
has no such activation function, because the range of outputs (optimal predicted values of
inputs and outputs) does not vary between 0 and 1. The output value is compared with actual
output and an error is calculated, which is then propagated back through the network, and the
connection is strengthened using the gradient descent-based optimization algorithm. The
process of feed-forward output value and back-propagated error value is repeated until the
convergence is reached to an acceptable error value.

3.4 Sequential process flow diagram of the integrated model
The sequential process flow diagram in Figures 2 shows the integrated DEA-ANNmodeling
approach. There are two stages in the modeling approach:

Figure 1.
ANN-1 andANN-2
model architectures
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(1) DEA data collection stage and training ANN models; and
(2) testing (predicting) ANN models stage.

In the DEA data collection stage, we use the DEA-1 model to generate the relative efficiency
scores based on the BCC and CCRmodels, respectively.We use the DEA-2 model to generate
the optimum values of the inputs and outputs using the cost of the inputs and the price of
outputs. The dataset contains 303 large sawmills, 374 medium sawmills and 725 small
sawmills. We partition each sub-dataset of large, medium and small DMUs into training and
test data sets (90% for training and 10% for testing). Therefore, we have 272 DMUs for large
sawmills, 336 DMUs for medium sawmills and 652 DMUs for small sawmills in our training
datasets; and 31 DMUs for large sawmills, 38 DMUs for medium sawmills and 73 DMUs for
small sawmills in our test datasets. In the training ANN models stage, we use the DMU
inputs (roundwood and employees) and outputs (lumber) as the input to the ANNs. We use
PTE and OTE (regular or bootstrap) as targets to train the ANN-1, and the optimal
roundwood, optimal number of employees, and optimal lumber as targets to train ANN-2 (a),
(b) and (c) models, respectively. The minimum number of training epochs (or iterations) in
the ANNmodels depends on the number of nodes, number of hidden layers and the learning
rate. We used the optimal error approach, which gives the minimum mean square error
between the model output and the training data, as we decreased the learning rate from
0.001 to 0.0001 with a learning rate discounting factor of 0.9. We initialized the network
weights through the Xaiver Glorot method (Glorot and Bengio, 2010). To prevent the neural
networks from overfitting, we used a 50% dropout for each fully connected layer and used
regularization for all the weights, encouraging all the weights to be small. We used ten-fold
cross-validation and monitored the training and cross-validation accuracy during the
training process, and finalized the total number of training epochs to 500, which gives the
minimummean square error or the highest accuracy.

Finally, in the testing ANNmodels stage, we run the trained ANNs on the test dataset to
evaluate the predictive performance of the trained ANN models. Once the predictive

Figure 2.
Sequential process
flow diagram of the
integrated DEA-ANN
models
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performance of the ANN models is satisfactory, we can use these ANN models to make
predictions in the application stage.

4. Ontario sawmills case study
The forest industry in Ontario is an important contributor to the province’s economy and
plays a key role in the development of several rural and remote communities. The revenue
from the sales of the Ontario’s forest products industry was $15.5bn, and the industry
provided over 150,000 well-paying jobs in 2018, in addition to supporting several
communities across the province (Ontario Forest Industries Association (OFIA), 2019).
Ontario’s forest products industry focuses on the production of a variety of products
including lumber, structural board, pulp, paper, newsprint and value-added products. There
are more than 150 sawmills in Ontario, engaged in the production of about 6 million cubic
meters of lumber every year (OFIA, 2019). Ontario’s sawmills have been facing extreme
competitive pressures in the global market from the low-cost producers, reduced demand
and a volatile Canadian dollar. The trade disputes with the USA, Ontario’s largest export
market and strict environmental regulations have further affected the performance of the
sawmill industry. To improve the operational efficiency of the sawmill industry working
under highly uncertain business environment, the mill managers need decision support tools
that can help in the continuous improvement and performance evaluations of the sawmills.

For this case study, the annual data for the inputs and the output of the 125 Ontario’s
sawmills (with 1402 sample data observations) were obtained from the Ontario Ministry of
Natural Resources and Forestry (OMNRF) for a period of 17 years (1999 to 2015) (For details
of the dataset see Shahi and Dia, 2019a). The inputs data include the annual roundwood and
other fibre consumption (aggregated together) in cubic meters, and the number of
employees, whereas the outputs data includes the lumber and other fibre (aggregated
together) output in cubic meters. The OMNRF categorizes sawmills into large (consuming
more than 100,000 cubic meters of roundwood annually), medium (consuming between
10,000 and 100,000 cubic meters of roundwood annually) and small (consuming less than
10,000 cubic meters of roundwood annually) sawmills based on the roundwood
consumption of the sawmills. The descriptive statistical measures of the input and output
data for large, medium and small sawmills are shown in Table 1. The large and medium
sawmills consume most of the roundwood and employ large number of employees, although
there are many more small sawmills in Ontario. The small sawmills are mostly located in
remote and rural areas of the province (Shahi and Dia, 2019a).

4.1 Efficiency prediction using artificial neural network-1
The first BDEA-1 model is used for analyzing the relative technical efficiencies (PTE, OTE and
SE) for the large, medium and small sawmills. The results of efficiencies obtained from the
DEA-1 model are summarized in Table 2. The ANN-1 model is used to predict the relative
efficiencies (PTE, OTE and SE) of the three categories of sawmills (large, medium and small).
The three-layered feed-forward neural network model ANN-1 was used by acquiring its
adaptive learning ability from the DEA results. The data set was partitioned into training and
test data in 9:1 ratio. Therefore, 90% of the sawmills were used for the training data and 10% of
the sawmills were used as test data. The results of the comparison of efficiencies obtained from
the DEA-1 model and those predicted from the ANN-1 model (summarized in Table 2) show
that the predicted values (mean, median and standard deviation) for large, medium and small
sawmills are very close to those obtained from the DEA-1 model. A further analysis of variance
of the comparison of regular and bootstrap efficiencies shows that there is no statistical
difference between these efficiencies for large and medium sawmills (Table 3). However, for
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small sawmills, all efficiencies other than the regular PTE are statistically significantly
different between the predicted ANN-1 model values and those obtained from the DEA-1
model. This may be due to large variation in the consumption of inputs and production of
outputs of the small sawmills as compared to the large sawmills. The operational efficiencies of
the large sawmills were comparatively higher as they made huge capital investments in
upgrading their technology. Whereas the small sawmills had lower operational efficiencies as
these were unable to make any adjustments in their inputs with changing and uncertain

Table 1.
Descriptive
statistical measures
of the input and
output data for large,
medium and small
sawmills

Roundwood (cum) Number of Employees Lumber Output (cum)

Large
303 303 303
511242.10 187.20 287445.80
487726.00 169.00 248888.00
247118.60 96.94 163794.00

Medium
374 374 374
53936.07 52.89 31065.54
38076.00 38.00 24656.50
43981.75 44.79 22135.97

Small
725 725 725
6070.88 10.59 3360.29
4863.00 7.00 2709.00
5283.01 13.19 2826.10

Total
1402 1402 1402
128017.00 60.04 72147.50
14798.00 18.00 9376.50
233700.70 86.18 137265.80

Table 2.
Comparison of the
efficiencies obtained
from the DEA-1
model and predicted
efficiencies obtained
from ANN-1 model
for large, medium
and small sawmills

DEA-1 Model ANN-1 Predictions
OTE PTE SE OTE PTE SE

Sawmills Regular Bootstrap Regular Bootstrap Regular Bootstrap Regular Bootstrap

Large
Mean 0.59 0.58 0.61 0.57 0.98 0.59 0.58 0.60 0.57 0.98
Median 0.54 0.53 0.55 0.52 1.00 0.54 0.53 0.55 0.52 1.00
Std Dev 0.16 0.16 0.17 0.15 0.05 0.16 0.16 0.17 0.15 0.04

Medium
Mean 0.66 0.66 0.67 0.65 0.98 0.66 0.65 0.67 0.65 0.98
Median 0.61 0.60 0.64 0.62 1.00 0.60 0.59 0.64 0.61 0.99
Std Dev 0.21 0.21 0.21 0.2 0.04 0.21 0.21 0.21 0.21 0.02

Small
Mean 0.59 0.58 0.61 0.59 0.97 0.62 0.61 0.63 0.61 0.98
Median 0.52 0.51 0.54 0.52 1.00 0.58 0.57 0.58 0.57 1.00
Std Dev 0.18 0.18 0.19 0.18 0.10 0.17 0.17 0.19 0.18 0.06
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market demand conditions. The large and medium-sized sawmills survived the periods of
uncertainty in demand and supply by utilizing a higher percentage of roundwood and
converting it to useful products, thereby reducingwastage.

The adaptive learning capability of ANN-1 model can be also be observed by high
correlations (R-values) between the actual and predicted efficiencies (PTE, OTE and SE). The
correlation varies between 0.99 to 1.00 for the large and medium sawmills, and between 0.86 to
0.96 for the small sawmills in Ontario (Table 4). The results of comparison also show low error
rates (Average Absolute Error [AAE] and Maximum Absolute Error [MAE]) between the
predicted and observed values as summarized in Table 4. The average absolute error varies from
0.01 to 0.04 for all the sawmills in Ontario. The maximum absolute average varies from 0.05 to
0.39 for the large andmedium sawmills, and from 0.33 to 0.41 for small sawmills (Table 4).

The performance of the ANN-1 in accurately predicting the relative efficiencies of the
sawmills is shown in Figures 3, 4 and 5 for large, medium and small sawmills in Ontario,
respectively. The figures show the error percentage between the actual and predicted
efficiencies (PTE, OTE and SE) scores for large, medium and small sawmills, sorted by the
scale of error. The predicted efficiencies show high levels of prediction accuracy with very
few sawmills showing more than 10% error. Only a few small sawmills show very high

Table 3.
Analysis of variances
between efficiencies
obtained from the
DEA-1 model and

predicted efficiencies
obtained from ANN-1

model for large,
medium and small

sawmills

Sawmill Efficiency DF SumSq MeanSq F-Value P-Value

Large Regula PTE Category 1 0.002 0.002 0.071 0.789
Residuals 604 17.590 0.029

Bootstrap PTE Category 1 0.002 0.002 0.096 0.757
Residuals 604 13.382 0.022

Regular OTE Category 1 0.003 0.003 0.121 0.728
Residuals 604 15.919 0.026

Bootstrap OTE Category 1 0.001 0.001 0.018 0.892
Residuals 604 14.850 0.024

Scale Category 1 0.001 0.001 0.677 0.411
Residuals 604 1.174 0.002

Medium Regula PTE Category 1 0.010 0.006 0.126 0.723
Residuals 746 33.190 0.044

Bootstrap PTE Category 1 0.002 0.002 0.059 0.757
Residuals 746 31.300 0.042

Regular OTE Category 1 0.001 0.002 0.041 0.808
Residuals 746 32.730 0.044

Bootstrap OTE Category 1 0.001 0.002 0.015 0.839
Residuals 746 32.240 0.044

Scale Category 1 0.000 0.001 0.128 0.903
Residuals 746 0.717 0.043

Small Regula PTE Category 1 0.120 0.124 3.409 0.0.065
Residuals 1448 52.600 0.036

Bootstrap PTE Category 1 0.150 0.146 4.507 0.034*
Residuals 1448 47.090 0.033

Regular OTE Category 1 0.250 0.251 7.931 0.005**
Residuals 1448 45.820 0.032

Bootstrap OTE Category 1 0.300 0.296 9.645 0.002**
Residuals 1448 44.460 0.030

Scale Category 1 0.032 0.032 4.615 0.032*
Residuals 1448 9.945 0.007

Note: Significance: “*” 0.05, “**” 0.01, “***” 0.001
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errors in over predicting the relative efficiencies. However, previous literature has shown
that the prediction accuracy can be improved with large amounts of training data, as the
feed forward neural networks exhibit a regression type of learning and perform better in
detecting the central values of the data rather than extreme points (Athanassopoulos and
Curram, 1996; Ülengin et al., 2011; Pendharkar and Rodger, 2003).

4.2 Optimum combinations of inputs and outputs prediction using artificial neural network-2
The second DEA-2 model optimizes the vectors of multiple inputs and outputs by
minimizing the costs and maximizing the revenue using an underlying DEA technology

Table 4.
Performance of the
ANN-1 for efficiency
prediction for large,
medium and small
sawmills in Ontario

Efficiency Large Medium Small
R AAE MAE R AAE MAE R AAE MAE

Regular PTE 0.99 0.01 0.12 0.98 0.02 0.39 0.96 0.03 0.35
Bootstrap PTE 0.99 0.01 0.11 0.99 0.01 0.39 0.96 0.04 0.41
Regular OTE 1.00 0.01 0.10 0.99 0.01 0.30 0.95 0.03 0.33
Bootstrap OTE 1.00 0.01 0.05 1.00 0.01 0.15 0.95 0.04 0.41
SE 0.89 0.01 0.12 0.46 0.02 0.39 0.86 0.02 0.39

Notes: R: Correlation between actual and predicted efficiency, AAE: Average Absolute Error, MAE:
Maximum Absolute Error

Figure 3.
ANN-1 learning and
prediction error for
large sawmills
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ANN-1 learning and
prediction error for
medium sawmills
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(variable returns to scale, VRS or constant returns to scale, CRS). The decision to use
optimum inputs and produce optimum outputs depends on the cost of roundwood, the
employees wage rate, and the price of lumber, which vary continuously. For example, the
variation in the average annual price of lumber for the study period from 1999–2015 is
shown in Figure 6 (Random Lengths framing lumber composite prices 2019). We used the
average cost of roundwood as $55 per cubic meters, the employee wage rate of $25 per hour,
and the average price of lumber as $300 per thousand board feet for the study period.

The ANN-2 model is used to predict the optimum values of the inputs (roundwood and
employees) and output (lumber) of the three categories of sawmills (large, medium and
small). The three-layered feed-forward neural network model ANN-2 was used for this
purpose. The data set was again partitioned into training and test data in 9:1 ratio.
Therefore, 90% of the sawmills were used for the training data and 10% of the sawmills
were used as test data. Since the DEA-2 model optimizes the inputs and outputs using either
the VRS or CRS technologies, the results of the predicted optimal inputs and outputs from
ANN-2 model are compared with those obtained from the DEA-2 models using both VRS
and CRS technologies for optimization (Table 5). The results of the comparison indicate that
the predicted optimal inputs and outputs are very close to the actual values obtained from
the DEA-2 model. A further analysis of the comparisons of the optimal inputs and outputs
between the predicted and actual values shows no statistically significant difference
between the two values (Table 6).

Figure 5.
ANN-1 learning and
prediction error for

small sawmills
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Figure 6.
Average annual
lumber prices
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The optimal inputs and outputs values are further used to check the relative efficiencies
obtained from the both the VRS and the CRS technologies for optimization. The results of
the comparison of the descriptive statistical measures (mean, median and standard
deviation) of the regular and bootstrap efficiencies for large, medium and small sawmills are
shown in Table 7. The results demonstrate that the average values of efficiencies obtained
using the optimum values of the inputs and outputs are higher than those obtained from the
first DEA-1 model for the large and medium sawmills, whereas the average values of
efficiency using the optimum values for the small sawmills are lower as compared to those
obtained from the first DEA-1 model. This is because of the scale of operations of the small
sawmills and their inability to produce large outputs with reduced inputs. The study period
also includes two economic downturns in 2001–02 and 2008–09, which impacted the
housing starts in the United States, the biggest market for the Ontario sawmills. The large
and medium sawmills were able to recover from this economic downturn by making capital
investments in improved technology, but the small sawmills mostly closed their operations
during that period. In addition to the collapse of the US housing industry, the disruption of
fibre supply chains caused by the economic recessions has further impacted fibre utilization
in the sawmills, thereby impacting their efficiencies. Moreover, the efficiencies obtained
using the VRS technology for optimization are in general higher as compared to the
efficiencies obtained using the CRS technology for optimization. The sawmills that are able
to adapt to the VRS technology may perform much more efficiently than the sawmills that
can only operate on CRS technology.

Table 5.
Comparison of
optimal inputs and
output obtained from
the DEA-2 model and
predicted values
obtained from the
ANN-2 model for
large, medium and
small sawmills

TechnologySawmills Optimal values from DEA-2 Model
Predicted Optimal values from ANN-2

Model
Roundwood

(cum)
Employees

(#)
Lumber
(cum)

Roundwood
(cum)

Employees
(#)

Lumber
(cum)

VRS Large Mean 291021.41 135.16 485702.30 297998.26 138.96 493775.48
Median 249512.85 124.50 470650.25 237722.38 116.06 417387.03
Std
Dev

174879.80 53.85 219938.77 201229.85 70.49 244631.02

Medium Mean 31476.28 26.19 46772.06 30557.56 25.65 44694.53
Median 24719.36 17.88 37749.34 24208.73 16.69 37475.45
Std
Dev

23316.91 21.99 29407.96 23500.84 22.57 25763.65

Small Mean 3381.59 6.43 5108.46 3432.71 6.53 5076.50
Median 2713.44 5.58 4779.17 2371.65 5.28 4104.98
Std
Dev

2852.58 3.17 3637.06 2947.46 3.25 3408.61

CRS Large Mean 288022.43 143.29 500532.18 294670.12 146.82 509995.23
Median 249387.28 124.07 476958.40 237408.31 107.45 424424.91
Std
Dev

164122.56 81.65 243708.42 190991.84 106.79 270883.94

Medium Mean 31128.83 20.75 53026.84 30423.48 20.53 48719.10
Median 24706.74 16.47 37752.08 24142.64 15.64 38577.16
Std
Dev

22181.07 14.79 42710.62 23033.90 15.55 36510.87

Small Mean 3365.64 6.42 5864.24 3415.76 6.51 5912.92
Median 2713.32 5.18 4794.30 2374.29 4.53 4441.83
Std
Dev

2830.60 5.40 4916.01 2924.49 5.58 4838.20
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The adaptive learning capability of the feed-forward neural network model (ANN-2) can be
observed by high correlations (R-values) between the actual and predicted inputs
(roundwood and employees) and output (lumber) and low error rates (AAE and MAE) for
both the training and the test data sets as summarized in Table 8. The accurate predictions
of the optimum combination of inputs and outputs under constantly changing supply and
demand conditions is of direct consequence to themill managers.

The ANN-2 model also demonstrates high level of prediction accuracy as shown in
Table 9. The percentage of sawmills that predict less than 10% prediction error for optimal
values of input (roundwood) include 46% large, 98% medium and 99% small sawmills
using the VRS technology for optimization. The percentage of sawmills that predict less
than 10% prediction error for optimal values of input (employees) include 64% large, 93%
medium and 96% small sawmills using the VRS technology for optimization. Whereas, the

Table 6.
Analysis of variances

between optimal
inputs and output
obtained from the

DEA-2 model using
VRS technology for

optimization and
predicted values

obtained from the
ANN-2 model for

large, medium and
small sawmills

Technology Sawmill Input/Output DF SumSq MeanSq F-Value P-Value

VRS Large Roundwood Category 1 2.21eþ 9 2.21eþ 9 0.081 0.776
Residuals 604 1.65eþ 13 2.74eþ 10

Employees Category 1 833 833 0.286 0.593
Residuals 604 1.76eþ 6 2.91eþ 3

Lumber Category 1 5.98eþ 9 5.98eþ 9 0.137 0.711
Residuals 604 2.63eþ 13 4.36eþ 10

Medium Roundwood Category 1 7.31eþ 6 7.31eþ 6 0.014 0.906
Residuals 746 3.92eþ 11 5.26eþ 8

Employees Category 1 36 36 0.077 0.781
Residuals 746 3.46eþ 5 4.64eþ 2

Lumber Category 1 1.59eþ 7 1.59eþ 7 0.019 0.890
Residuals 746 6.24eþ 11 8.36eþ 8

Small Roundwood Category 1 6.00 6.00 0.000 0.999
Residuals 1448 1.18eþ 10 8.13eþ 6

Employees Category 1 0.00 0.392 0.039 0.843
Residuals 1448 1.45eþ 4 10.024

Lumber Category 1 2.13eþ 6 21.26eþ 5 0.169 0.681
Residuals 1448 1.82eþ 10 1.26eþ 7

CRS Large Roundwood Category 1 2.02eþ 9 2.02eþ 9 0.083 0.773
Residuals 604 1.47eþ 13 2.43eþ 10

Employees Category 1 1.00 1.00 0.000 0.989
Residuals 604 4.01eþ 6 6.65eþ 3

Lumber Category 1 8.27eþ 9 8.27eþ 9 0.155 0.694
Residuals 604 3.26eþ 13 5.34eþ 10

Medium Roundwood Category 1 1.02eþ 2 1.02eþ 2 0.000 1.000
Residuals 746 3.66eþ 11 4.91eþ 8

Employees Category 1 0.02 0.02 0.000 0.993
Residuals 746 1.63eþ 5 218.61

Lumber Category 1 5.44eþ 6 5.44eþ 6 0.003 0.956
Residuals 746 1.35eþ 12 1.81eþ 9

Small Roundwood Category 1 2.60eþ 1 2.60eþ 1 0.000 0.999
Residuals 1448 1.16eþ 10 8.01eþ 6

Employees Category 1 0.00 0.006 0.000 0.988
Residuals 1448 4.22eþ 4 29.17

Lumber Category 1 2.13eþ 4 2.13eþ 4 0.001 0.977
Residuals 1448 3.57eþ 10 2.46eþ 7

Note: Significance: “*” 0.05, “**” 0.01, “***” 0.001
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percentage of sawmills that predict less than 10% prediction error for optimal values of
output (lumber) include 67% large, 34% medium and 28% small sawmills using the VRS
technology for optimization. However, the prediction accuracy for optimal values of inputs
and outputs are much higher for all sawmills using the CRS technology. This is because the
optimum values obtained using the CRS technology for optimization have lesser variation as
compared to the those obtained for VRS technology for optimization. Therefore, the ANN-2
model provides a highly accurate adaptive decision support tool in not only setting the
performance output goals, but also in deciding the optimum combinations of the inputs.
With the changing values of the costs of the inputs and price of the output used, the mill
managers can easily predict the optimal combinations of these inputs and the outputs under
highly volatile business environment. The optimal combinations of the inputs and the
outputs further help the mill managers in selecting actionable measures that assist in
achieving and sustaining the performance and continuous improvement of the sawmills.

5. Implications and managerial insights
The sawmills in Ontario are the primary forest products industry contributing to the
provincial economy and supporting many remote and rural communities. These sawmills

Table 7.
Comparison of the
efficiencies obtained
from the optimal
inputs and output
using VRS and CRS
technologies for
optimization

VRS Optimization CRS Optimization
OTE PTE SE OTE PTE SE

Sawmills Regular Bootstrap Regular Bootstrap Regular Bootstrap Regular Bootstrap

Large
Mean 0.45 0.42 0.67 0.64 0.71 0.43 0.41 0.61 0.59 0.74
Median 0.46 0.43 0.63 0.62 0.74 0.44 0.42 0.58 0.58 0.77
Std Dev 0.11 0.10 0.17 0.16 0.19 0.11 0.11 0.17 0.16 0.18

Medium
Mean 0.44 0.42 0.72 0.70 0.66 0.27 0.24 0.57 0.55 0.53
Median 0.39 0.38 0.75 0.74 0.63 0.26 0.23 0.51 0.50 0.50
Std Dev 0.16 0.15 0.21 0.21 0.24 0.10 0.09 0.22 0.22 0.23

Small
Mean 0.29 0.29 0.41 0.38 0.71 0.04 0.03 0.16 0.13 0.37
Median 0.31 0.30 0.39 0.36 0.79 0.04 0.03 0.14 0.12 0.26
Std Dev 0.14 0.14 0.10 0.08 0.28 0.04 0.03 0.13 0.09 0.24

Table 8.
Performance of the
ANN-2 for optimum
inputs (roundwood
and employees) and
optimum output
(lumber) prediction
for large, medium
and small sawmills
in Ontario

Technology Inputs/Output Large Medium Small
R AAE MAE R AAE MAE R AAE MAE

VRS Roundwood 0.95 36707.29 379604.70 0.99 816.92 56319.73 1.00 1.88 76.84
Employees 0.95 12.12 75.72 0.97 1.88 54.76 1.00 0.08 1.87
Lumber 0.97 43399.93 182190.30 0.94 7347.55 45311.22 0.94 901.07 12083.95

CRS Roundwood 0.96 33130.54 212177.70 1.00 584.12 3855.57 1.00 0.86 52.54
Employees 1.00 0.39 2.97 1.00 0.02 2.96 1.00 0.01 0.42
Lumber 0.97 43676.05 194318.90 0.99 3387.57 35980.40 0.97 249.35 31576.73

Notes: R: Correlation between actual and predicted optimum inputs and outputs, AAE: Average absolute
error, MAE: Maximum absolute error
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have experienced uncertain variations in demand and supply due to the economic
downturns and structural changes in the global markets, which have resulted in several mill
closures and reduced production. However, these uncertain conditions have also presented
new opportunities to the forest products industry for using the emerging technologies (for
example, ANN models). The results of our study, which demonstrate the use of emerging
technology for performance improvement and decision-making, clearly demonstrate that the
main source of operational inefficiency in Ontario sawmills has been due to managerial and
technical issues and not due to the scale issues. This has resulted in the inputs not being
efficiently utilized in the sawmills. Therefore, the mill managers should focus their attention
on improving the operational efficiency and the competitiveness of Ontario’s sawmills
through streamlining manufacturing processes, reducing costs, improving raw material
usage andmaking capital investments in the new and improved technology.

The results of analysis of the category-wise (large, medium and small) operational
efficiencies of the sawmills further revealed that their performance was impacted differently
based on their size. The operational efficiencies of the large sawmills were higher as they
made huge capital investments in upgrading their technology. This has helped the large
sawmills improve their inputs utilization and conversion of timber to useful products,
thereby reducing wastage. However, the smaller sawmills had low operational efficiencies
throughout the study period, as these were unable to make any adjustments in their inputs
with changing and uncertain market demand conditions. Whereas, only those medium-sized
sawmills survived the uncertainty in demand and supply that were able to increase the
percentage of roundwood converted to products and reduce the proportion of mill residues.
The new and emerging technologies and business processes offer innovative ways of
predicting the operational efficiencies in future uncertain supply and demand scenarios.
These new technologies and business processes provide new opportunities in generating
social and economic values from the inputs in the sawmills and also help in adding new
revenue streams from inputs, diversifying product lines and boosting the share of products
in the marketplace. These technologies further enhance the familiarity of the employees with
the key performance metrics and opportunities for continuous improvement in the sawmills.
The ANN models can be used for continuously evaluating the performance of the sawmills
and for strategic decision-making. Moreover, the traditional models that evaluate optimum
inputs/outputs are unable to account for the complex non-linear relationships involved in the
forest products industry. The ANN models have the ability to handle unseen patterns and
non-linear relationships. This requires a close working relationship of the forest products
industry with academia and research organizations through research projects, continuous
training and workshops. The sawmills in Ontario should make use of the operational and
tactical decision-support tools that monitor the manufacturing processes and provide
process control information to improve their strategic decision-making.

6. Conclusion
The purpose of this study was to develop an adaptive decision support tool, which could be
used for predicting the relative efficiency scores and the optimal combination of the inputs
and the outputs based on the changing business environment for the forest industry in
Ontario. The ANN models were developed utilizing the training data from the performance
measurement capabilities of the DEA models. The ANN models were used to predict the
relative efficiency scores and the optimal combination of the inputs and the outputs of three
categories (large, medium and small) of sawmills in Ontario. The model provides promising
prediction results with high accuracy.
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The ANNmodels provide the mill managers with a performance measurement and evaluation
tool that has the predictive power to make decisions under uncertain supply and demand
conditions. The sawmills in Ontario, which form an important forest products industry contributing
to the social well-being of the local communities and to the economic prosperity of the entire
province, have been struggling under fast-changing business environment and uncertain supply
and demand conditions. The ANN models help the mill managers in dealing with economic
fluctuations and uncertain market demand conditions that continuously affect the performance of
the sawmills in Ontario. The ANN models can continuously evaluate the performance of the
sawmills under these uncertain conditions, and the knowledge developed in this area could be
regularly shared with the mill managers and adapted in the industry for strategic decision-making.
The forest products industry is highly affected by the trends of globalization, and the increasing
dynamics of product lifecycles. Challenged bymassivefluctuatingmarket demands and prices, and
varied requirements to support individual customer needs, the forest products industry needs tools
to evaluate the inputs/outputs and make forecasting on a regular basis. The forecasting problems
are very complex with a lot of underlying known and unknown factors. Traditional forecasting
models have certain limitations, and these cannot consider the complexities and non-linear
relationships. The ANN models provide robust alternative, given their ability to extract unseen
patterns and non-linear relationships. Also, unlike the traditional models, the ANN models do not
impose any restriction on the inputs/outputs and residual distributions. Therefore, the ANNs have
proved to be powerful models that have awide range of applications. Further, the ANNmodels can
be used in the forest products industry in improving their supply chainsmanagement, which spans
the movements and storage of raw materials, work-in-process inventory and finished goods from
the point-of-origin to the point-of-consumption. Our study is unique in predicting the optimal
combination of the inputs and the outputs for the best performance of the sawmills in Ontario. One
of the limitations of this study is the limited amount of data to train the ANN models. The
prediction accuracy of the ANN models could be further improved with more training data for the
ANNmodels.
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