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Abstract

Purpose –This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring
architecture for smart manufacturing systems able to evaluate their overall status and detect eventual
anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the
specific anomalous event and the related risk classification for possible intervention, is hence proposed.
Design/methodology/approach – The proposed solution is a five-layer scalable and modular platform in
Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection
solution, designed by leveraging control charts, autoencoders (AE) long short-termmemory (LSTM) and Fuzzy
Inference System (FIS). The proper combination of these methods allows, not only detecting the products
defects, but also recognizing their causalities.
Findings –The proposed architecture, experimentally validated on amanufacturing system involved into the
production of a solar thermal high-vacuum flat panel, provides to human operators information about
anomalous events, where they occur, and crucial information about their risk levels.
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Practical implications – Thanks to the abnormal risk panel; human operators and business managers are
able, not only of remotely visualizing the real-time status of each production parameter, but also to properly
face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency
situation, such as the COVID-19 pandemic.
Originality/value – The monitoring platform is one of the first attempts in leading modern manufacturing
systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines,
cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect
causalities in complex dynamic systems by enabling the possibility of products’ waste avoidance.

Keywords Smart manufacturing, IoT, Cloud-assisted, Smart monitoring, AI algorithm, Anomaly detection,

Industry 5.0, Zero defect manufacturing

Paper type Research paper

1. Introduction
It is well-known that Industry 4.0 has completely reshaped the manufacturing sector by
integrating, within the production environment, different technologies such as artificial
intelligence (AI), Internet of Things (IoT), cloud computing (CC) and cyber physical systems
(CPSs). By integrating these technological pillars into an organized framework, Industry 4.0
is considered a technology-driven paradigm shift that aims at higher productivity through
the better utilization of resources (Jafari et al., 2022).

Conversely, Industry 5.0 recognizes the power of the industry to achieve societal goals
beyond jobs and growth, to become a resilient provider of prosperity – bymaking production
respect the boundaries of the planet – and placing thewell-being of the industry worker at the
center of the production process (Xu et al., 2021). The main difference between the two
industrial paradigms relies in the active role of human experts which coexist and work
together with efficient, intelligent and accurate machines, in order to obtain more resource-
efficient and costumer-preferred manufacturing solutions than that of Industry 4.0, which,
instead, promotes mass production. The main pillars of Industry 4.0 and Industry 5.0, as well
as the main differences between them, are detailed in Table 1.

Since the core value of Industry 5.0 is the human-centric vision, nowadays, this framework is
gaining momentum (Maddikunta et al., 2021). Specifically, the concept of the human-cyber-
physical system (HCPS) alongwith the so-calledOperator 5.0 is emerging.Operator 5.0 is a smart
and skilled operator able to use its creativity, ingenuity and innovation, aided by information
and technology. This new emerging view allows overcoming obstacles on the way to develop
novel and cost-effective solutions which make manufacturing operations’ long-term
sustainability and ensure workforce well-being in the face of difficult and/or unexpected
conditions (Mourtzis et al., 2022). In doing so, human centricity is one of the crucial aspects of
Industry 5.0, which aims at intertwining machines and humans in a synergistic collaboration to

Industry 4.0 Industry 5.0

i) Maximization of productivity via mass
production and emerging technologies

i) Exploitation of human experts’ creativity

ii) Reduction of production costs ii) Increasing of customized production
iii) AI, IoT, CC, CPSs and cognitive computing

as enabling technology
iii) Merging AI, IoT, CC and CPS with critical,

cognitive human thinking
iv) A fully automated production process iv) A fully automated production process in

collaboration with human experts
v) Active engagement of robots in large scale

production
v) Exploitation of robots/machines for repetitive

tasks and humans for critical thinking ones
vi) No skilled jobs vi) More skilled jobs
vii) No attention on environmental issues vii) Sustainable production with greener solutions

ix) Novel features: human centricity, sustainability
and resilience

Table 1.
Industry 4.0 vs
Industry 5.0
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increase productivity in the manufacturing industry, while safeguarding workers’ fundamental
rights (M€uller 2020). This cooperation, together with predictive analytics and operational
intelligence, allows creating fully automated production processes via the real-time processing/
elaboration of the data measured and the highly-equipped human specialists, connected
(also remotely) to the overall networked systems. Besides the human-centric approach,
the notion of resilience has been also introduced in this brand-new industrial revolution and
refers to the robustnesswith respect to disruptions/emergency production issues (Xu et al., 2021).
In this perspective, on one hand, in order to move toward more efficient and robust
manufacturing systems, simulation-based technologies constitute a focal point of digital
manufacturing solution since they allow the experimentation and validation of different
products, processes and manufacturing system configurations (Mourtzis 2020). On the other
hand, to ensure a robust and resilient smart production environment, the real-timemonitoring of
the production process becomes crucial not only in each time interval and for each operation
involved in themultistage processes, but also in maintenance and optimal scheduling activities.
The performance of a successful monitoring operation can be guaranteed due to the widespread
diffusion of different smart sensors, which ensure a multi-scale information flow, thus creating
knowledge about the main production parameters within the entire manufacturing process.
Moreover, by exploiting this information, it is also possible properly elaborating it in order to
capture and catch possible anomalies occurring into the multistage manufacturing systems.
Accordingly, it is also possible sending alerts when some critical/emergency events occur along
with their risk level and suggestions about possible human interventions.

In this perspective, the objective of this paper is to introduce a new IoT-based cloud-
assisted monitoring architecture for smart manufacturing systems able to check the
production status any time and, hence, understand if some anomalous events occur. As a
result, it offers to the manufacturers the possibility of timely and properly counteracting
abnormal situations. More specifically, the proposed architecture consists of five modular
layers, where the central one, i.e. the cyber module, represents its core. Indeed, it deals with
data collection, elaboration and processing operations, anomaly detection and classification
purposes by embedding into the platform a novel AI-driven algorithm which exploits both
statistical and AI-based tools. The human–automation symbiosis, i.e. the cooperation among
machine and human operators in production environment, properly designed, so to enable
their coexistence in a more efficient fashion, is the main feature of the proposed architecture,
which leads the proposed solution to be completely conceived in the Industry 5.0 framework.
Moreover, the proposed architecture also moves toward repair and prevention strategies
according to the sustainability objectives imposed by Industry 5.0 paradigm and the zero
defect manufacturing (ZDM) concept via the possible products waste avoidance.

Finally, the structure of the paper is as follows. Section 2 presents an overview of the
related works. In Section 3, a detailed description of an IoT-based and cloud-assisted
multistage manufacturing system is provided. A comprehensive explanation of the proposed
IoT-based and cloud-assisted monitoring architecture is given in Section 4, where the novel
AI-driven solution proposed for detection and classification anomalies is deeply detailed. The
experimental validation of the proposed architecture, carried out for a real case-study of
thermal high-vacuum flat panel (HVFP) production, is disclosed in Section 5. Finally,
concluding remarks are drawn in Section 6.

2. Related works
This work represents one of the first attempts toward a unified framework for monitoring
platform in smart manufacturing systems from Industry 5.0 perspective.Within this context,
the technical literature is split into twomain research lines: (1) conceptualization of IoT-based
platforms for smart manufacturing without addressing the problems related to their
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implementation and (2) the design of AI-based solutions to address defects’ detection and
prediction in manufacturing systems, but restricting their results on the performance
evaluation of the exploited tools without finding causalities in the smart manufacturing
processes evolution. Accordingly, in the sequel, the main latest real-time monitoring
platforms are investigated and, then, the specific tools enabling defects’ detection and
prediction in smart industrial environments are presented.

2.1 Toward the conceptualization of an IoT-based platform
Industry 4.0 is leadingmanufacturing enterprises to the newgeneration of cyber-physical systems
(CPSs) and network-enabled smartmanufacturing. Internet of Things (IoT), big data analytics, CC
and AI tools are recognized as the main enabling technologies within Industry 4.0 paradigm that,
linking interconnected “things” like sensors, actuators, controllers, robots and machines, allows
copingwith system complexitywhile improving the performance of the entire production system,
as well as its flexibility and the production rate (Yang et al., 2019). Although many efforts have
been made in this direction, how to build an integrated smart manufacturing platform, able to
emulate production environment andguarantee interaction/cooperationbetweenphysic and cyber
spaces, is still an open issue that only few works try to solve. For example, an advanced
manufacturing cloud of things (AMCoT) platform for enhancing and assuring yields is proposed
in the study by Lin et al. (2017) within the context of a bumping process of a semiconductor
company in Taiwan, where IoT, CC, big data analytics and CPS’s ad prediction technologies
represent its core value. Moreover, a new cloud-assisted self-organized architecture (CASOA) is
designed in the study byTang et al. (2017)where, based on both distributed agent-basedmodeling
approach and cloud, communication and negotiation among the different network entities are
ensured, thus enabling dynamic reconfiguration of the production process and its flexibility, but
without providing a discussion about the production status. Manufacturing objects virtualization,
data processing and data-driven decision-making are embedded within the platform designed in
the study by Woo et al. (2018) which, by exploiting again the agent framework, creates decision-
making models based on real and historical data. Again, the digital twin (DT) tool is exploited in
the study by Leng et al. (2021) to build architecture able to ensure the remote semi-physical
commissioning. Herein, the authors carry out its validation for the case study of a smartphone
assembly line, thus showing a reduction of commissioning iteration times.

Although the above-mentioned works represent first attempts toward practical solutions
that could bring benefits to modern industries, other works in the technical literature on the
field limit, instead, their analysis on the conceptualization of the main pillars required to
ensure smartness in manufacturing processes (see e.g. Zheng et al., 2018 and references
therein). However, they are so far from the Industry 5.0 paradigm. Indeed, very recently, the
brand new Industry 5.0 concept recognizes the power of industries in achieving, besides the
digitalization goals, environmental objectives and resilience w.r.t. emergency manufacturing
situations, while admitting workers’ centrality during each production stage (Maddikunta
et al., 2021). Specifically, this brings to the fifth industrial revolution aiming at changing
manufacturing systems via the combination of computation and digitalization skills with
manufacturers’ expertise, while the machines in the workplace become smarter and more
connected. One of the first attempts to show the benefits deriving from the collaborations
between robots and the human brain can be found in the study by Nahavandi (2019), where
the advantages of merging physical world with workers intelligence and information and
communication technologies (ICTs) in improving process efficiency are clearly explained.
Moreover, AI tools and, in particular, machine learning (ML), are deeply used by researchers
in the manufacturing industry field in order to successfully perform different operations,
such as scheduling, monitoring, quality assessment and failure detection (Nassehi et al., 2022).
In addition, as pointed out in the study by Javaid andHaleem (2020), ML andAI can be used to
analyze manufacturing process data, while the human critical thinking allows achieving
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higher accuracy and faster industrial automation. Finally Sherburne, 2020 highlights the
benefits of the potential use of Industry 5.0 in the textile industry via a qualitative research. In
this direction, thisworkwould lay the basis in proposing a unifiedmonitoring platformwhich
picks up digitalization and AI tools together with the additional Industry 5.0 strength points.

2.2 Detection and prediction algorithms via artificial intelligence
Detection strategies are related to the early detection of defects, anomalies and faults by
classifying them on the basis of the parameters causing undesirable effects (Caiazzo et al., 2022).
In this context, deep learning (DL) techniques are recently exploited for fault detection and for
discovering all intrinsic linear/nonlinear relationship among main manufacturing parameters.
For example (Wang et al., 2020a, b), introduces an extended deep belief network (EDBN) which
allows fully exploiting useful information from raw data, hence becoming additional inputs,
together with other hidden features, to each extended restricted Boltzmann machine (ERBM).
Again, to extract quality-relevant features from raw data, an autoencoder (AE) model, named
stacked quality-driven autoencoder (SQAE), is introduced in the study byYuan et al. (2020) and
consists of both classical input and quality variables in order to capture quality-relevant
features, as well as to neglect irrelevant ones. Most data-driven detection methods exploit
convolutional neural networks (CNNs) (Dong et al., 2019a, b), which are data-based online fault
diagnosis methods, with a good trade-off between accuracy and training period length due to a
significant reduction of the training time w.r.t. other DL methods (see e.g. Xu et al., 2020).
However, these methods need a large amount of data to be elaborated. When the required
information is reduced in number, a helpful tool could be the DT concept, consisting of a virtual
model of the physical system in cloud connected to the physical system itself for information
exchange purpose (Chakraborty et al., 2021). Anyhow, the training and testing data from DT
present the same feature distribution, and this could be not realistic due to multiple loading
conditions, working environments and faults’ severity (Han et al., 2020). To overcome these
limitations Han et al. (2020), proposes a deep transfer network (DTN) with joint distribution
adaptation (JDA). Other examples in this direction can be found in the study by Tabernik et al.
(2020), He et al. (2019), Chen et al. (2020) and Dong et al. (2019a, b) for surface-quality control of
industrial products. Moreover, other examples of the DL method for detection in the specific
additive manufacturing field are provided by Okaro et al. (2019) and Ravindranath et al. (2020).
For achieving, instead, combined fault detection and fault diagnosis of rare events in
multivariate time-series data (Park et al., 2019), combines an AE for rare events detection and a
long short-term-memory (LSTM) network for the identification of faults type. This technique
allows achieving a good trade-off between the AE strong low-dimensional nonlinear
representations of the rare event detection and the strong time-series learning ability of
LSTM for fault diagnosis. Due to the fact that abnormal samples are often of insufficient size in
real industrial environment (Jiang et al., 2019), andWu et al. (2020) propose aGaussianBayesAE
LSTM other approaches, different than DL, are exploited in the technical literature, such as the
support vector machine (SVM), e.g. in visual inspection (Zhou et al., 2019), but with difficulties in
treatingmultistagemanufacturing processes, wheremultiparameters have to be considered (Du
et al., 2015). Therefore, from the literature review about defects’ detection, it is possible observing
how the most common suitable tools exploited are the CNN and LSTM.

Besides detection, prediction strategies, aiming at forecasting the quality of each part of the
product before its production (Psarommatis et al., 2020; May and Kiritsis, 2019), are also deeply
investigated. In this context, future health conditions and the remaining useful life (RUL) of both
equipment and products are also investigated in order to schedule optimal maintenance actions,
hence timely performing preventive replacements and preventing unexpected failures while
minimizing total maintenance costs (Tian 2012; Liu et al., 2019; Petrillo et al., 2020). Indeed,
quality in amanufacturing process implies that the product performance characteristics and the
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process itself are designed tomeet specific objectives (Garc�ıa et al., 2019). In this framework, joint-
loss CNN architecture is proposed in the study by Liu et al. (2020) to deal with fault recognition
and RUL prediction in parallel by sharing the parameters and partial networks. Some extension
of CNN approaches, combined with the Takagi–Sugeno–Kang (TSK) fuzzy model, are also
suggested by Bhowmik et al. (2019) for guaranteeing surface roughness requirements of
products. Furthermore, it is worth noting that quality insurance is crucial for batch processes in
manufacturing and chemical industries due to their modeling difficulties and prediction
problems.Along this lineWang et al. (2020a, b), combines LSTMand stacked autoencoder (SAE)
to extract quality-relevant features by capturing nonlinear relationships during the training of
the networks. With the aim at improving the quality monitoring and prediction accuracy, a
generative neural networkmodel is proposed in the study byWang et al. (2019) for automatically
predicting work-in-progress (WIP) quality, while the extracted features are reformed as time
series. These latter are fed to a multilayer perceptron for product quality prediction and, finally,
the outputs are decoded into a forecast quality measurement. By analyzing the literature review
about prediction strategies, the majority of the articles concerns with unsupervised pretrained
networks (UPNs), which are recognized as the most efficient approach to extract the main
features from data and to neglect the redundant ones.

2.3 Contribution of the present work
The main contribution of this work lies in fact that it is one of the first attempts in leading
modern smart manufacturing systems toward the Industry 5.0 concept. The proposed IoT-
based cloud-assistedmonitoring platform fits the following Industry 5.0 core values (Xu et al.,
2021): (1) human centricity, where the human needs and interests become the heart of the
production system, hence, shifting the workers’ vision from costs to investments, (2)
resilience, which refers to the need of creating an higher level of robustness in industrial
environment, hence counteracting with disruptions and supporting critical emergency
situations and (3) sustainability, with the aim at reducing waste and environmental impact,
thus reaching better resource efficiency and effectiveness (Xu et al., 2021). Indeed, although
Lin et al. (2017), Tang et al. (2017) and Woo et al. (2018) represent first attempts toward the
conceptualization of smart manufacturing platform able to mimic production environment,
they are so far from the inclusion of the above-mentioned Industry 5.0 principles, since no
discussion about human centricity, resilience and sustainability issues is provided.

Conversely, the proposed monitoring platform represents a unified framework combining
human strengths, IoT technology on machines, and cloud-based solutions with AI to detect
causalities in complex dynamic systems. As a consequence, since workers play a crucial role
in the final stage of the detection algorithm according to human-centricity vision, the
proposed monitoring architecture is causality based, i.e. its elaboration results not only
provide the production status health but also identify and localize the anomaly variable. This
is in opposition, to the best of authors’ knowledge, with the aforementioned related works
which, instead, propose correlation-based anomaly detection solutions, i.e. they provide
information about production defects without specifying their causing or where the faults
occur. Specifically, although they exploit AI techniques, such as the EDBN (Wang et al.,
2020a, b), AE (Yuan et al., 2020; Jiang et al., 2019), the CNN (Dong et al., 2019a, b) and LSTM
(Park et al., 2019; Wu et al., 2020) are able to capture all the linear/nonlinear intrinsic relations
between input parameters, it is difficult recognizing their impacts on the results. To overcome
this issue, the proposed platform is endowed with fuzzy logic tools which, designed with the
aid of human expertise (according to human–automation symbiosis Industry 5.0 principle),
allows to clearly identify both the production defects’ correlations and causalities.

Furthermore, themonitoring platform alsomoves toward repair and prevention solutions,
which represent two strategies not widely addressed in the ZDM field. Indeed, repairing
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defected parts is often a difficult and costly process, while the prevention strategy is a
complex process requiring multiple inputs from different sources in order to be effective.
Therefore, the proposed platform tries to solve some of the crucial challenges pointed out in
the very recent survey works (Caiazzo et al., 2022; Psarommatis et al., 2020) about ZDM.
Specifically, it guarantees (1) adaptive quality prediction, since the platform provides a
quality prediction which reflects the current industrial process state, (2) data collection
management, since in the technical literature, no procedure for data collection, management
and elaboration is provided in a unified framework, thus breaking the barriers in the
implementation of the ZDM strategies in industrial realities and (3) repair as a sustainable
solution, since the platform result allows avoiding resource wastes with the aid of human
operators which, remotely connected, could timely know the health process status and
properly act. Hence, according to Industry 5.0 paradigm, sustainability and respects of
planetary boundaries are taken into account.

Most notably, the effectiveness of the proposed architecture is experimentally evaluated on
the manufacturing process of a solar thermal HVFPmade by a company in Italy. Experimental
results prove the efficiency of the proposed solution in recognizing, not only the nature of
possible anomalies, but also localizing them and understanding their causality, as well as their
risk levels. Indeed, human operators, remotely connected to the cloud, are supported by an
abnormal panel risk (APR)which provides the anomaly risk level and, hence, supports them into
the decision-making process by suggesting if some interventions are needed.

3. Problem statement: smart monitoring in manufacturing system
Consider amultistagemanufacturing system consisting ofN stations, each of them is associated
with the various stages of products’manufacture as reported in Figure 1. This latter provides a
high-level representation of a general cyber-physical production system (CPPS) which, by
exploiting smart devices, IoT technologies and CC, is characterized by the following three main
features: (1) smartness, since each single entity is able to acquire information from the
surrounding environment and to autonomously act, (2) connectivity, since there exist connection
links allowing cooperation and collaboration among the manufacturing entities and
(3) responsiveness toward internal/external changes (Monostori et al., 2016). At the physical
manufacturing level, machines within the smart stations are equipped with smart sensors,

Figure 1.
IoT-based and cloud-
assisted multistage

smart manufacturing
system
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smart meters, actuators and controllers, which represent the basic technology for collecting and
controlling production data in real time (Kang et al., 2016). They can connect each other via
communication technologies, such as Wi-Fi and Bluetooth, so to make production elements
smarter and self-adaptive (Qu et al., 2019). Interconnection among physical entities, cloud and
people is enabled thanks to low energy and high efficiency communication networks, such as
Wireless Sensor Networks (WSNs), Internet Protocol version 6 (IPV6), Wi-Fi, wireless personal
area netwok (WPAN), W-Mesh, WLAN, Wireless Wide Area Network (WWAN), 4G/5G,
Narrowband Internet of Things (NB-IoT), Bluetooth, Zigbee, radio frequency identification
devices (RFIDs) and Global Positioning System (GPS) (Qu et al., 2019). Finally, the data from
physical manufacturing entities are transmitted to the cloud-based data center to be further
analyzed. Specifically, the cloud infrastructure is responsible for the processes of data collection,
integration, storage, analysis, visualization and application. By leveraging cloud-based high
performance computing, big data analytics enables users to accelerate computationally
expensive taskswhile also reducing costs (Tao et al., 2018).Moreover, it isworth noting that new
emerging technologies for data storage and processing, such as fog computing (FC) and edge
computing (EC) can be also included in the schematic representation of Figure 1, which are able
to significantly reduce bandwidth requirement, latency time and service downtime.

Hence, in a multistage production environment, each station i (i5 1, . . .,N) is equipped with
smart devices able to measure all the variables involved into the current process stage and
endowedwith communication capabilities to share the acquired informationwith both the other
stations j (with j 5 1, . . ., N, i ≠ j) and a cloud-assisted upper layer. This latter gathers all the
information coming from the N stations, processes data and converts them into a user friendly
data format so as to aid operators, eventually in remote-access, in being aware of the real-time
status of the manufacturing systems. This allows humans to be supported into the decision-
making process and in the manufacturing system efficiencymonitoring. In this perspective, the
design of an innovative smart solution, able to guarantee the preventive maintenance strategy
and the enhancement of in-process quality control by reducing/eliminating the need for post-
process quality inspection is desirable. Monitoring plays a crucial role in ensuring product
quality and letting all themanufacturing facilities runmore efficiently. Indeed, thanks to the real-
time knowledge about the status of all the process stations; the manufacturing process can be
rearranged to counteract the specific products’ defects occurring into the ith station itself. The
anomaly detection algorithm should run on the cloud-assisted layer and, on the basis of data
herein stored, has to recognize abnormal behaviors into each stage i of the manufacturing
system. Furthermore, it has to classify the gravity risk level related to the problem occurred.
Accordingly, a proper alert notification has to be sent to the human operators, remotely
connected to the cloud-assisted upper layer, in order to aid them in making timely adjustments.
However, the identification of production anomalies is not a trivial task since a large variety of
information may cause the occurrence of anomalous events, which can be revealed by certain
patterns captured bydata time series.By analyzing the real-timedata combinedwith time series,
it is possible highlighting the overall correlations among the different data, impacting on the
whole process, so to characterize and localize the specific anomaly occurring, as well as its
gravity. This promotes the decision-making process via different kinds of notification alert to be
sent to the human operators, which, based on the revealed gravity of the anomaly and its work
experience, can decide if interventions are needed. In this operative framework, the aim of this
work is to propose new IoT-based and cloud-assisted monitoring architecture able to evaluate
the status of the overall multistage manufacturing system and detect eventual anomalies
occurring in the production. More specifically, w.r.t. this latter problem, a novel AI-based
detection algorithm is proposed. Based on the data sensing and communication capabilities of
each ith station, the novel algorithm is able to catch abnormal behavior into each production
stage and to capture data correlations so to identify the specific anomalous event and the related
risk classification for possible interventions.
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4. IoT-based and cloud-assisted monitoring architecture
To solve the problem stated in Section 3, the smartmonitoring architecture, reported inFigure 2, is
proposed.This is a scalable andmodular platformconsistingof five interconnected layers, namely,
(1) physical layer, (2) transmission layer, (3) cloud cyber layer, (4) real-timemonitoring layer and (5)
smart decision-making layer. The proposed architecture is modular due to its hierarchical
structure, which is based on different modules/layers. Each of them deals with a specific task and
can be also redesigned independently from each other based on the technological development
needs and/or requirements, without modifying the overall structure in Figure 2. Moreover, the
architecture is scalable since it can be easily reused or replicated for different production
environment, regardless of the number of production parameters to be monitored.

The physical layer is characterized by a network of distributed smart devices able to sense
and monitor in real time the main features of the production quality, as well as the crucial
parameters of machining processes. Specifically, the physical layer could be composed of RFID
tags, attached to the products to be processed, and different sensors, such as accelerometers,
dynamometers, thermocouple, pressure sensors, cameras and so on, hence allowing the
continuous monitoring of the equipment and the products health status.

Due to the recent advances in IoT, and in general, in ICT (Shahbazi and Byun, 2021), the
transmission layer aims at sharing the data, acquired by the distributed smart devices
network, with the central cloud-assisted data elaboration unit. The different data
communication technologies, including Ethernet, Wi-Fi, 4G/5G network, RS 232 and
Bluetooth, ensure the real-time information transmission in the different data formats
originated by the heterogeneous distributed smart entities exploited.

Data collection, storage and processing operations are performed at the cloud cyber layer.
Therefore, this layer, not only aims at collecting and storing the shared information coming from
the underlying two layers, but also at creating new knowledge from heterogeneous large amount
of data. The various manufacturing information can be classified into structured (such as for
example digit, symbols, tables), semi-structured (such as trees, graphs, XML documents) and
unstructured data (i.e. logs, audios, videos and images) (Zheng et al., 2018). Then, through CC, data
storage can be guaranteed in a highly cost effective, energy efficient and flexible fashion (Qi and
Tao, 2019) in order to process manufacturing information for predictive maintenance and
products’ quality insurance purposes. However, first of all, these data have to be precisely

Figure 2.
Smart monitoring
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preprocessed in order to put them into a suitable form for the next elaboration phase bydiscarding
redundant, misleading, duplicate and inconsistent information. The preprocessing operations
could involve the following steps (Alasadi and Bhaya, 2017): data cleaning in order to eliminate
garbage data; data integration; data reduction for converting the massive volume of data into
ordered, meaningful and simplified forms by means of feature or case selection. Once these
operations are completed, the new obtained dataset is fed to the proposed novel detection and
classification algorithm which provides a real-time monitoring of the manufacturing system and,
eventually, notifies the occurrence of anomalous events. The proposed novel cloud-assisted
detection and classification algorithm, designed via AI-based techniques, aims at capturing the
deviations of eachmanufacturing systemparameter from the nominal trend, hence classifying the
acquired data as normal or abnormal. This classification allows defining latent variables/indexes,
involvingdifferent correlatedparameters,which are properly processed in order to return accurate
information about the anomaly occurring into the specific stage of the manufacturing system
along with its risk assessment. Indeed, the algorithm provides a risk scale, with different gravity
levels, which suggests to the human operators, remotely connected to the cloud via the real-time
monitoring layer, if some interventions are needed. A proper discussion about the novel proposed
AI algorithm is provided in the next section.

The real-time monitoring layer, instead, allows the real-time visualization of the
manufacturing system, i.e. the monitoring data and the results of anomaly detection
algorithm, to the dedicated human operators, remotely connected. Visualization is performed
via user friendly graphical means (Mittal et al., 2019), such as charts, diagrams, graphs and
alert notificationmessages, which indicate the gravity, the type and the position of anomalies.

This fourth layer represents the bridge between the field-level manufacturing devices
and the high-level smart decision-making Layer, which is demanded to human operators
and/or business management system (e.g. enterprise resource planning (ERP)). Indeed,
based on the processed information about the manufacturing systems and the product
health status, rational decisions or interventions on the system could be undertaken. Note
that a rational and cognitive decision process would be unpractical if based on large
amount of rough/not processed data.

It is worth noting that the CPS modeling approach is the key enabler of a smart
manufacturing system. From Figure 2, this representation allows building bidirectional
interactions (highlighted via the bidirectional arrows in Figure 2) among the layers
involved in the resulting smart monitoring architecture (Ding et al., 2019). This
interaction and interoperability firstly guarantee the elaboration, the processing and,
hence, the creation of new knowledge which, related to the actual status of the
production, is sent to manufacturers via proper Human-Machine Interface (HMI) (from
the bottom to the top) via the displaying of the machine status, machine progress, as well
as alarm information. Then, smart operators (according to the Operator 5.0 concept) are
able to start a smart decision-making process in order to support efficient production
control with timely and proactive anomalies response within a flexible and robust
production environment (from the top to the bottom). More details about the integration
of remote control activities within the smart monitoring platform are provided in Section
4.2. Moreover, regarding the communication protocol in the smart manufacturing field, it
is worth noting that industrial communication networks are evolved through several
stages, ranging from dedicated Fieldbus networks, such as PROFIBUS and Modbus,
to modern Ethernet-based networks, such as EtherNet and EtherCAT, hence allowing
easier communication at a higher level. More recently, due to the IoT and wireless sensor
network (WSN) applications, new communication standards have emerged, such as
Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.15.1 and IEEE
802.15.4 (Lu et al., 2020). For more details about the latest developments on industrial
communication, interested readers may refer to Wollschlaeger et al. (2017).
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Remark 4.1. The cyber layer in Figure 2 refers to generic cloud-based cyber architecture.
The problem of selecting the most suitable cyber architecture is beyond the
scope of the work. However, it is worth noting that the wide adoption of IoT
devices has introduced new challenges in the current CC paradigm (Dustdar
et al., 2019). New cloud-based architecture, such as EC FC, are emerging;
thanks to their faster response time. Indeed, EC and FCwould allow to tackle
some challenges of CC, such as the low efficiency in analyzing a large
amount of data in short time and the negative impact of the Quality of
Service (QoS). However, although EC and FC enhance the energy saving
consumption and resources utilization, there still exist some open issues in
their implementation (Zietsch et al., 2020; Laroui et al., 2021).

4.1 Cloud-assisted anomaly detection and classification algorithm
The proposed cloud-assisted anomaly detection and classification algorithm leverages the
combination of control charts,AEwithLSTM layers (AE-LSTM), latent indices/variables and the
fuzzy inference system (FIS). The algorithm consists of twomain phases, i.e. detection of possible
anomalies and their classification. Its inputs are the multistage process parameters, not
necessarily labeled, which are categorized into normal distributed and not normal distributed. On
the basis of the different types of parameters, the solution processes the data according to two
different techniques, i.e. AE-LSTM for not normal distributed parameters and control charts
otherwise. Then, the algorithm returns information about possible deviations from nominal
parameters trend. The values of these deviations allow classifying the measured parameters as
normal or abnormal and, then, defining latent variables/indices, while maintaining the same
information content, aswell as reducing their dimensions and computational complexity. Finally,
these latent variables/indices become the inputs to the FIS which, leveraging properly defined
fuzzy sets and fuzzy rules, returns the anomaly risk assessment jointlywith the localization of the
anomalous events occurring. A flow chart of the proposed algorithm is reported in Figure 3,
where all the main involved decision steps are highlighted, while Figure 4 discloses its
functioning scheme along with the exploited tools. More specifically, Figure 4 points out how the
N acquiredmanufacturing systemparameters, involving both not normal distributed (i.e. the blue
line) and normal distributed (i.e. the red line), which are processed via the two possible anomaly
detection tools, hence obtaining the deviations vector dx5 [dx1, dx2, . . ., dxN], useful to construct
the latent variables vector y5 [y1, y2, . . ., yM], withM≤N. This latter vector represents the input
to the FIS, which elaborates the anomaly risk related to the detected anomalous parameter.

In the following, all the AI-based steps involved into the construction of additional
knowledge about the manufacturing system, i.e.

(1) input identification,

(2) AE construction with the LSTM layer,

(3) control chart construction,

(4) identification of indices/latent variables and

(5) construction of the FIS

are deeply detailed.
4.1.1 Input identification.This first step consists in identifying the typeof theparameters tobe

monitored, i.e. not normally distributed and normally distributed. To this aim, a proper statistical
analysis is carried outbyverifying thedistribution of thehistorical time series of eachparameter in
order to choose the best suitable anomaly detection method. For this task, the following tools
are exploited: graphs, such as the histograms, boxplots or quantile plots; descriptive indices,
such as the asymmetry and the kurtosis, returning null in case of normal distribution
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Figure 3.
Flow chart of the
proposed cloud-
assisted anomaly
detection and
classification
algorithm
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(Premaratne and Bera, 2000); tests of normality, such as the Shapiro–Wilk, which is preferable for
small samples (Royston 1992), or the Kolmogorov–Smirnov, used for larger samples (Dimitrova
et al., 2020). Oncedata distinction ismade, it is possible selecting the control chart detectionmethod
for normally distributed parameters and the AE-LSTM for the not normally distributed ones.

Algorithm 1. The AE-LSTM algorithm for thresholds’ definition via modified sliding
window training (SWT)

Figure 4.
Functioning scheme of

the proposed cloud-
assisted anomaly

detection and
classification

algorithm
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4.1.2 Autoencoder construction with the LSTM layer. This anomaly detection model leverages
an Artificial Neural Network (ANN) with AE structure and LSTM layers (Hochreiter and
Schmidhuber, 1997). All its hyper-parameters depend on the appraised case study and have to
be properly selected in order to obtain the best suitable configuration providing the highest
accuracy into the reconstruction phase. The first input to the ANN is the slide window allowing
to divide the time series in shorter subseries to be analyzed, whose dimensions depend on the
correlation among the time instant of each subsequence (Suzuki et al., 2014). This correlation can
be discovered via the correlogram of the available time series. As best practice, it is suggested
using a timewindow large enough to include the time instants which present higher correlation.

Algorithm 2. The AE-LSTM detection algorithm

The training phase is devoted to evaluation of the mean absolute error (MAE), which is
committed in the reconstruction of each subsequence (window) of the training set. The
maximum value of MAE, found during the training, is then set as the threshold for
recognizing if the different time series of the monitoring parameters are anomalous or not.
Algorithm 1 summarizes all the steps which allow the computation of thresholds for each not
normally distributed monitoring parameter, i.e. Tk ∀k.

Then, when a new time series is put in input to the AE-LSTM, this latter analyzes each of
their subsequences via the computation of theMAE for the reconstructed signals. Accordingly,
the MAE is compared with the threshold founded during the training phase and the algorithm
notifies if some anomalous events occur. This allows classifying each sample of the monitoring
parameters as normal or abnormal. The procedure is presented in Algorithm 2.
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4.1.3 Control chart detection. As mentioned before, this method allows analyzing the
normally distributed parameters of the manufacturing system. For the construction of the
control chart limits for each appraised parameter, i.e. UCL, CL and LCL, the random sampling
technique is exploited (Montgomery, 2020). The limits are computed by considering different
observations of the reference time series. These samples are plotted in the related control
chart in order to determine whether the considered parameter meets the prescribed
distribution or if it is out of control. In this latter case, these samples are marked as outliers
and, hence, excluded. Then, the control chart limits are re-computed via an iterative procedure
endingwhen all the parameter data are in control and the final limits are given. Once the UCL,
CL and LCL are derived for the appraised parameter, when the real-time observation of the
normal distributed parameters is put in input to the control chart, it returns the deviations of
the parameters from UCL or LCL. More specifically, if the parameter xk (∀k5 1, . . ., N) is in
control, i.e. within the UCL and LCL limits, the value of the deviation is dxk ¼ 0 and the
parameter xk is classified as normal. Conversely, if the parameter is out of control, then

dxk ¼
jxk � UCLj if xk > UCL

jxk � LCLj if xk < LCL

�
(1)

and the parameter xk is classified as abnormal.

4.1.4 Identification of indices/latent variables. The input at this elaboration stage is the
deviation vector dx, whose dimension is comparable to the one of manufacturing parameters
to be monitored. Since a large amount of parameters can characterize a multistage
manufacturing process, the dimension of the vector dx increases with the number of the
parameters xk. As a consequence, this can increase the computational burden required by the
subsequent fuzzy inference system. To avoid this issue, a vector of indices/latent variables
with lower dimension, i.e. y 5 [y1, y2, . . ., yM] with M < N, is constructed. The fundamental
aspect to be considered when constructing the indices/latent variables lies in the fact that
they should remain interpretable so as to be usable for the next elaboration step. To this aim,
the data correlation matrix and/or the scatter plots are used. Accordingly, it is possibly
merging parameters which are homogeneous and correlated.

4.1.5 Fuzzy inference system. The FIS is here exploited to capture the specific products’
anomalies from different parameters and to understand how they affect the final process
outputs. More specifically, the FIS determines, on the basis of the latent/indices variables, the
anomaly occurring into the production along with its level gravity. The proposed the FIS is
the Mamdani type (Pourjavad and Mayorga, 2019) and the fuzzy rules can be properly
designed, depending on the specific appraised manufacturing system, with the aid of process
experts. Indeed, these latter are able to provide a correct judgment about the production
results. The first phase of the FIS consists in identifying the linguistic variables, the related
terms and universes of reference, which represent the antecedents and the consequents in the
inference system. In this case, the antecedents are the latent indexes/variables previously
identified, while the consequents are the anomaly risks on the final outputs of the process.

Regarding the construction of the fuzzy set, they strongly depend on the specific case of
study and are derived by leveraging the expertise of the human operators/manufacture
engineers about the impact of parameters’ variations on the final outputs of the process. In
addition, the above information is combined with the ones describing the values assumed by
the deviation vector in correspondence of parameters’ variations. This operation is performed
by running the AE-LSTM and putting these parameters’ variations as its inputs. The fuzzy
rules IF-THEN type, covering the space of the possible combinations between the
antecedents, are also strongly related to the specific use case and are derived with the aid
of the experts of the manufacturing process and by exploiting, eventually, the correlation
matrix and/or scatter plots of the appraised parameters.
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Finally, thanks to the de-fuzzification operation, the FIS returns a database containing, for
each temporal instance, information about the risk level of the eventual anomalous outputs
and about the parameters causing anomalies, along with the related values.

4.2 Smart monitoring for remote control
The Iot-based cloud-assisted monitoring platform, herein presented, brings many benefits to
the smart manufacturing system from Industry 5.0 point of view. Indeed, given the
availability on cloud of real time data from field-level devices, human operators and business
managers are able to remotely visualize the real-time status of each production parameter via
smartphones, tablets and/or other connected devices. Accordingly, they can properly act,
only when necessary, on the specific manufacturing stage causing the eventual anomalous
events. This is especially relevant in emergency situation, such as the COVID-19 pandemic,
where factories are forced to operate with a reduced number of human operators. Therefore,
the proposed smart monitoring architecture provides a first attempt to the remote control of
smart manufacturing system and paves the way to the design of more sophisticated adaptive
remote control approaches, which lead to a more flexible production environment where
proactive decisions can be timely taken without any human interventions. Within this
framework, a possible conceptual architecture can be realized by integrating a distributed
control layer, able to autonomously take decisions on manufacturing processes, on the top
level of the architecture in Figure 2. This can be done by exploiting a network of smart control
devices which, based on the monitoring results provided by platform, further elaborates this
information and provides, for example, new set points to be imposed on each smart station
controller. This makes each production unit more responsive to abnormal events.

4.3 Smart monitoring for problem processing
Besides the real-time monitoring of each production entity health status and control
operations, other key operations have to be covered inmodern smartmanufacturing systems,
such as production planning andmaintenance scheduling tasks. Although these latter are not
the focus of the work, the proposed architecture, could involve, as further development, an
additional module for problem processing, which aims at finding recommended possible
solutions and estimating their effectiveness, while evaluating the resulting impacts on other
manufacturing activities. In so doing, this module is responsible for the maintenance
scheduling and production planning operations. Advanced analytics (AA) can be exploited to
solve the above-mentioned issues, hence improving the performance of the smart
manufacturing systems in the information age (Vater et al., 2019). Specifically, among the
different AA techniques, prescriptive analytics could be useful to determine the priority of
decisions/actions to be executed in order to achieve desired results, by answering the
following question:What do I have to do to achieve a desired goal?Through the introduction of
the problemprocessingmodule, Operator 5.0 can exploit predictive and prescriptive analytics
suggestions so to take smarter decisions and prescribe future activities within a near-, short-,
medium- and long-term horizon, thus enabling the vision of the so-called smart resilient
manufacturing system (Mourtzis et al., 2022). This results in an agile and flexible/
reconfigurable system able to react and recover from disruption by adjusting its functioning
prior to, during or after operational changes and disturbances, hence sustaining, required the
operations under both expected and unexpected conditions.

5. Case study: solar thermal high-vacuum flat panels production
In order to verify the effectiveness and the reliability of the proposed monitoring platform, an
experimental validation on a real manufacturing system, involving the production of solar
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thermal HVFPs with an operative temperature into the range [60; 200] 8C, is carried out. The
manufacturing system is composed of six stages, namely, (1) absorber pipe assembly
preparation, (2) framed glass preparation, (3) molded bottom preparation, (4) panel assembly,
(5) panel sealing and (6) panel conditioning. The stages from 1 to 3 lead to the threemain panel
components creation (see Figure 5(b)), while the remaining three guarantee the realization of
the innovative panel according to the specific requirements. More specifically, Stage 4 allows
assembling the different components produced in the previous three phases, while Stage 5
focuses on cleaning the panel. Finally, Stage 6 aims at realizing the required ultra high-
vacuum panel via a multi-zone oven (see Figure 5(a)). Since this stage is the most crucial to
ensure high quality of the final product, according to the manufacturers’ requirements and
availability, the experimental validation analysis is restricted at this stage. The main subject
of the panel conditioning phase is the cart transporting from one to four panels toward the ten
subzones of the oven (see 5(c)-(d)). The cart is composed of four floors (i.e. 0, 1, 2 and 3), where
all the floors are embedded with four lamps ensuring the reaching of the required panel
conditioning range temperature, while Floors 0 and 1 are also equipped with two heaters for
further increasing the temperature when necessary. Again, a proper pump, mounted on the
cart itself, is exploited to create the high-vacuum state inside the panels. The cart moves
toward the different oven sub-zones; thanks to a control system based on Programmable
Logic Controller (PLC) Siemens S7-1200, while smart sensors allow the measurements of
temperature, pressure and current of the ten production phases. By leveraging Microsoft
Azure IoT Hub, supporting Message Queue Telemetry Transport (MQTT) communication

Figure 5.
Panel conditioning

process: (a) production
line, (b) solar thermal

HVFP schematization,
(c) frontal cart view

with heaters at Floor
0 and 1 and

temperature sensors
and (d) back cart view

with temperature
sensors and vacuum

tube system
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protocol, these measurements are, then, sent to the Microsoft Windows-based Azure Cloud
with DBMS Microsoft Structured Query Language (SQL) Server 2019 for their proper
elaboration, according to the proposed IoT-based cloud-assisted anomaly detection and
classification algorithm. Note that, MQTT protocol is considered as the best suitable
connection protocol for machine-to-machine and IoT applications since it provides near-real-
time data transmission (El Attaoui et al., 2020). Finally, it is worth noting that anomaly
detection and classification algorithm, implemented via the Python 3.7 environment, run on a
virtual machine, in Azure Cloud, having the following specifications: Intel (R) Xeon (R)
Platinum 8171MCPU@2.60 GHz 2.10 GHz processor, 16 GBRAMand an internal storage of
250 GB. The exploited Python libraries are numpy, pandas, random, glob, math, seaborn,
matplotlib, tensorflow, keras, statsmodels, skfuzzy and itertools.

5.1 Tailoring the cloud-assisted anomaly detection and classification algorithm
In this section the cloud-assisted anomaly detection and classification algorithm is tailored to
HVFP case study. The inputs process identification, described in Section 4.1.1, allows defining
the parameters to be monitored along with the specification of their distribution as in Table 2.

The selected structure for the AE-LSTM is reported in Table 3, while all its hyper-
parameters are defined in Table 4. For the training and validation of the ANN, 25,000 samples
of offline in-control and out-of-control parameters are collected, whose 90% of total amount is
exploited for the training, while the remaining 10% for the validation phase. The
effectiveness of the training phase (see Algorithm 1) is disclosed via exemplary results,
related to the pressure of the cart in the Sub-zone 3 of the oven, in Figure 6, where it is possible
to appreciate the behavior of the loss function over the epochs (see Figure 6(a)) and the
distribution of the samples MAE (see Figure 6(b)). The correctness of the AE-LSTM
prediction is corroborated in the testing phase by the following performance indexes:
accuracy equal to 93.5% and recall equal to 88.77%.

After this training phase, according to Algorithm 2, it is possible deriving the different
anomaly thresholds for each time series of each not normally distributed parameter

The process parameter Tag
Approximate normal
distribution (Y/N)

The unit of
measurement

Vacuum system pressure P_CART N [mbar]
Vacuum cooling system
pressure

P_COOLING N [bar]

Vacuum system temperature T_MANIFOLD N [8C]
Cart temperature T_CART N [8C]
Current forced heating floor 0 C_HS_P0 Y [A]
Current forced heating floor 1 C_HS_P1 Y [A]
Temperature forced heating
right floor 0

T_HS_DX_P0 N [8C]

Temperature forced heating left
floor 0

T_HS_SX_P0 N [8C]

Temperature forced heating
right floor 1

T_HS_DX_P1 N [8C]

Temperature forced heating left
floor 0

T_HS_SX_P1 N [8C]

Lamps current floor 0 C_LP0 Y [A]
Lamps current floor 1 C_LP1 Y [A]
Lamps current floor 2 C_LP2 Y [A]
Lamps current floor 3 C_LP3 Y [A]

Table 2.
Monitoring parameters
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xk;p; p ¼ f1; . . . ;Mg; k ¼ f1; . . . ;Ng of each Sub-zone of the oven to be monitored. An
example of the founded thresholds Tk, referred to the Sub-zone 3, can be found in Table 5.

Next, the designed ANN is validated by considering the real time monitoring of new time
series referred to the appraised monitoring parameters. Exemplary results, again referred to
Sub-zone 3 for sake of brevity, are reported in Figure 7, where it is possible to appreciate the
occurrence of an anomaly for themonitoring parameter P_CART into the range [17 : 07 : 30; 17 :
07 : 47] and at 17 : 07 : 55.

Conversely, w.r.t. the normally distributed monitoring parameters, they are analyzed via the
random sampling technique with time series of ten samples and exploiting the Xbar-S chart

Hyper-parameter Value

Dropout 0.1
Activation function ReLU
Optimizer Adam
Learning rate 0.001
Loss function Mean square error (MSE)
Epochs 100
Batch size 1
Shuffle False
Window Lsw 5

Layer (type) Output shape Param #

LSTM (None, 5, 32) 4,352
Dropout (None, 5, 32) 0
LSTM (None, 16) 3,136
Dropout (None, 16) 0
Repeat Vector (None, 5, 16) 0
LSTM (None, 5, 16) 2,112
Dropout (None, 5, 16) 0
LSTM (None, 5, 32) 6,272
Dropout (None, 5, 32) 0
Time distributed (None, 5, 1) 33

Table 4.
AE-LSTM hyper-

parameters

Figure 6.
Exemplary training

process for the
P_CART variable: (a)
trend of loss functions
and (b) distribution of

samples MAE

Table 3.
AE-LSTM structure
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(Smith, 1994). The derived control chart limits, referred to the Sub-zone 3 of the oven, are reported
in Table 6. As example of the effectiveness of anomaly detection via the control chart for the
monitoring parameter C_HS is reported in Figure 8, where it is possible to appreciate the
occurrence of an anomaly at 17:07:27 and at 17:07:28 (see Figure 8(a)), while the other variables are
in control (see Figure 8(b)). The result of the anomaly detection stage provides the deviation error
vectors dx1, dx2, . . ., dxN for the N 5 14 monitored parameters. Note that, each deviation dxi

xk,p Tk

P_CART 0.0000109 [mbar]
P_COOLING 0.1024516 [bar]
T_MANIFOLD 2.5137849 [8C]
T_CART 6.3215789 [8C]
T_HS_DX_P0 9.2484836 [8C]
T_HS_SX_P0 8.7243003 [8C]
T_HS_DX_P1 5.5473661 [8C]
T_HS_SX_P1 6.2954115 [8C]

Table 5.
Derived thresholds for
each not normally
distributed monitoring
parameters xk,p of the
Sub-zone 3

Figure 7.
Anomaly detection
algorithm results
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(i5 1, . . ., 14) represents the difference between the actual value and the related threshold Tk for
the kth not normally distributed parameter, while it is equal to for normal distributed parameters.

Starting from the deviations vector, it is possible defining the indices/latent variables
(according to Section 4.1.4) by exploiting the correlation matrix and the scatter plot reported in
Figure 9.

This analysis allows grouping correlated parameters and, hence, it brings to the definition
of the latent variables as follows:

C_LP0

C_LP1

C_LP2

C_LP3

0IDX_lamp ¼
X4

i¼1
dxi

C_HSP0

C_HSP1
0IDX_heater ¼

X2

i¼1
dxi

T_HS_DX_P0

T_HS_SX_P0

T_HS_DX_P1

T_HS_SX_P1

T_MANIFOLD

T_CART

0IDX_temperature ¼
X6

i¼1
dxi

6

P_COOLING0IDX_P_COOLING ¼ dxi

P_CART0IDX_P_CART ¼ dxi:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(2)

Now, the FIS is exploited for identifying the abnormal panel risk (APR) for the detected
anomalous events. Within this phase, the antecedents are defined as the resulting latent
variables and the consequent as the APR. FIS features, derived with the help process experts,
are reported in Table 7, while in Figure 10 the membership function of the APR is disclosed.
Moreover, 48 fuzzy rules are derived according to IF-THEN-ELSE format, while the de-
fuzzification process is carried out via the Mean of Maximum (MoM) method.

xk,p UCL CL LCL

C_HS_P0 0.0319525 [A] 0.0027875 [A] �0.0263774 [A]
C_HS_P1 0.0319525 [A] 0.0027875 [A] �0.0263774 [A]
C_LP0 20.580363 [A] 19.9151917 [A] 19.2500204 [A]
C_LP1 20.580363 [A] 19.9151917 [A] 19.2500204 [A]
C_LP2 20.580363 [A] 19.9151917 [A] 19.2500204 [A]
C_LP3 20.580363 [A] 19.9151917 [A] 19.2500204 [A]

Table 6.
Derived UCL, LCL and
CL for each normally

distributed monitoring
parameters xk,p of the

Sub-zone 3
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Figure 8.
Anomaly detection via
control charts for
variables for normally
distributed monitoring
parameters

Figure 9.
Correlation matrix and
scatter plot for the
definition of the
vector y
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The final output of the FIS is a new database containing for each time instant the value of
possible anomalies, their deviations from normal trends, the value of the related latent
indices/variables and its APR. Exemplary final elaboration results, related to the
aforementioned manufacturing status, are reported in Figure 11. Herein it is possible to
observe that, when there is a combined anomaly into Lamps 1 (see Figure 8) and into the cart
(see Figure 7), the monitoring architecture notifies the anomaly occurring into final
manufacturing system output, as well as its relative gravity risk, i.e. “low” 1.5. Then, this final
result is reported to external users, connected to the platform, which suggests them that no
interventions are necessary yet. The latency between the occurrence of an anomalous event

Latent variable Linguistic modifiers Membership function Type

IDXlamp Moderate (0, 2, 4, 5) Antecedent
High (4, 6, 50, 50)

IDXheater Moderate (0, 2, 4, 5) Antecedent
High (4, 6, 50, 50)

IDXtemperature Moderate (0, 4, 10, 14) Antecedent
High (10, 16, 200, 200)

IDXPCOOLING Moderate (0, 0.1, 0.4, 0.5) Antecedent
High (0.4, 0.6, 10, 10)

IDXPCART Low (0, 0, 5 3 10�7, 10�6) Antecedent
Moderate (5 3 10�7, 5 3 10�6, 2 3 10�5, 3 3 10�5)
High (2 3 10�5, 3 3 10�5, 1100, 1100)

APR Low (0, 0, 2, 4) Consequent
Moderate (2, 4, 6, 8)
High (6, 8, 10, 10)

Table 7.
FIS setup

Figure 10.
Membership functions

of the APR

Figure 11.
Exemplary final

elaboration results
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and user-alarming, i.e. D, strongly depends on two main algorithm features, i.e. the sliding
window size Lsw and the sampling time of the monitoring platform T. For HVFP production,
the sampling time is selected as T 5 1 [min], while the sliding window size is reported in
Table 4. Therefore D5 Lsw 3 T 5 5 [min]. Note that although the latency is of the order of
minutes this latter has to be correlated to the specific manufacturing life-cycle process.
Indeed, since production time cycle of 1 HVFP is of about 9 hours, the latency D5 5 [min] is
reasonable due to the poor significance of parameters variations for smaller time intervals.

Finally, results show that a percentage of 95.46% of the normal samples are correctly
identified as normal, while the resulting 4.54% of them are false abnormal data. However, in
this latter case, it is worthy remarking that false abnormal samples lead to a lowAPR; thanks
to the integration of the FIS along with human expertise, which strongly improves the global
performances, thus suggesting to external users that no interventions are needed. This
highlights the crucial role of human operators in the final stage of the proposed detection
mechanism in Industry 5.0 perspective.

6. Concluding remarks
In this work, novel smart monitoring IoT-based cloud-assisted and AI-driven architecture is
proposed to evaluate the overall status of a multistage manufacturing process and detect
possible anomalies occurring. To this latter aim, a novel AI-based strategy is suggested. By
exploiting both statistical tools, it is able to identify and localize production abnormal events;
thanks to the combination of the proposed technique with human expertise. Experimental
results, carried out on a real manufacturing system, disclose the ability of the proposed
solution in capturing products’ health state while maintaining some core values, i.e. human-
centric aspect, resilience and products sustainability. This highlights how the proposed
architecture moves toward the new concept of Industry 5.0 for manufacturing systems, while
also solving some open challenges in ZDM context.

6.1 Future directions
Although smart monitoring is a key operation in modern smart manufacturing systems as
disclosed via the experimental results in Section 5, other crucial activities are required in order to
enhance productivity and optimize the whole production process. Based on considerations in
Sections 4.2–4.3, the integration of both distributed control and problem-processing modules
within the proposed IoT-based and cloud-assistedmonitoring architecture couldbe addressed in
the next future. Specifically, first of all, the introduction of a distributed control layer on the top of
the proposed architecture, based on the networked control system (NCS) theory, could be helpful
to reach faster and more proactive responsiveness to abnormal events by exploiting previous
production information in order to obtain deviations compensation. In this perspective, the aim
could be the generation of deviations’ compensations for subsequent production steps on the
basis of collected data, while, at the same time, the enabling of adaptive remote control would be
possible by exploiting cloud-computing services and/or its extension, such as fog/edge
computing. Secondly, a problem-processing layer could be effective to support the decision-
making process by suggesting recommended actions to smart operators along with the
evaluation of their potential impact on the whole manufacturing system. Here, the objective
would be the exploitation of advanced analytics and, in particular, prescriptive analytics to
determine the optimal sequence of decisions/actions for the resilient Operator 5.0, thus leading to
theminimization of human judgment in decision-making phase, which suffers from subjectivity.
In so doing, the huge amount of data from heterogeneous data sources could be exploited in
order to build adaptive prescriptive analytics models, which are able to dynamically adapt their
behaviour as soon as new data are acquired. However, real-time prescriptive analytics is still at

JMTM
34,4

530



its dawn since most of the existing works on the topic deal with offline approaches. Hence, the
development of real-time and sensor-driven information systems for prescriptive analytics, as
well as recursive algorithms will have to be studied for future extension of the platform, which
could also be able to process datawith time-varying characteristics and, thus, to solve large-scale
problems.
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