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Abstract

Purpose — This paper aims at developing a behavioral agent-based model for interacting financial markets.
Additionally, the effect of imposing Tobin taxes on market dynamics is explored.
Design/methodology/approach — The agent-based approach is followed to capture the highly complex,
dynamic nature of financial markets. The model represents the interaction between two different financial
markets located in two countries. The artificial markets are populated with heterogeneous, boundedly rational
agents. There are two types of agents populating the markets; market makers and traders. Each time step,
traders decide on which market to participate in and which trading strategy to follow. Traders can follow
technical trading strategy, fundamental trading strategy or abstain from trading. The time-varying weight of
each trading strategy depends on the current and past performance of this strategy. However, technical
traders are loss-averse, where losses are perceived twice the equivalent gains. Market makers settle asset
prices according to the net submitted orders.

Findings — The proposed framework can replicate important stylized facts observed empirically such as
bubbles and crashes, excess volatility, clustered volatility, power-law tails, persistent autocorrelation in
absolute returns and fractal structure.

Practical implications — Artificial models linking micro to macro behavior facilitate exploring the effect
of different fiscal and monetary policies. The results of imposing Tobin taxes indicate that a small levy may
raise government revenues without causing market distortion or instability.

Originality/value — This paper proposes a novel approach to explore the effect of loss aversion on the
decision-making process in interacting financial markets framework.
Keywords Loss aversion, Agent-based model, Fractal structure, Simulation analysis

Paper type Research paper

1. Introduction

Tobin (1978) argues that imposing small, uniform taxes on all financial transactions would
penalize short-term speculations and, hence, stabilize the financial market. Many European
Union countries impose taxes on financial transactions. However, introducing financial
transaction taxes in other financial markets is still under debate. Proponents believe that a
levy of financial transaction taxes would provide sizeable revenues to governments. On the
other hand, contrarians argue that introducing transaction taxes to financial markets would
reduce market liquidity and a higher price volatility would be ensued. Additionally, the
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growing role of electronic brokering would increase tax evasion possibilities. This results in
reducing the Tobin tax’s ability to yield revenues.

Hesitation of imposing a levy could be due to the unexpected results of market
crashes or instability. Collateral effects can be avoided by exploring the impact of
regulatory policies on the dynamics of artificial financial markets. The effect of
imposing Tobin taxes on the dynamics of artificial financial markets has been studied
in many studies (Westerhoff and Dieci, 2006; Westerhoff, 2008; Stanek and Kukacka,
2017). However, none of these studies has considered the effect of behavioral biases on
trader’s decision-making process.

The expected utility theory has led the analysis of decision-making under uncertainty.
Utility expectations was perceived as a normative model of rational choice (Eiselt and
Marianov, 2011) and formulated as a descriptive model of economic behavior (Friedman and
Savage, 1948; Neve et al., 2015). Therefore, it was assumed that all rational economic agent
would follow the utility theory most of the time. Markowitz (1952) proposes that utility
should be defined on gains and losses rather than on final wealth states. Later, Kahneman
and Tversky described several choice problems in which preferences under uncertainty
violate the axioms of the expected utility theory (Kahneman and Tversky, 1979, 1984, 1991,
1992; Kahneman et al., 1990).

Kahneman and Tversky reveal that risk aversion in the positive domain is associated
with risk-seeking in the negative domain; this effect is known as the reflection effect. These
propositions establish an alternative description model for decision-making under risk,
called the prospect theory. According to the prospect theory, people normally perceive
outcomes as gains and losses, instead of final states of wealth. However, gains and losses are
defined relative to some reference point, which may correspond to the current wealth
position. Additionally, gains and losses could be defined as the actual received or paid
amounts.

As proposed by Kahneman and Tversky (1979), a value function for changes of
wealth is concave above a reference point and convex below it. Accordingly, the
proposed S-shaped value function is defined on deviations from the reference point;
concave for gains and convex for losses and steeper for losses than for gains. The main
behavior affecting responses to changes in wealth is that the pain of losing a sum of
money seems to be greater than the happiness associated with gaining the same
amount. These findings have been supported by recent studies (McGraw et al., 2010;
Neve et al., 2015).

Few efforts have been spent to introduce behavioral biases to agent-based models
(Takahashi and Terano, 2003; Lovric et al., 2010; Li et al., 2014; Selim et al., 2015; Ezzat, 2016;
Feldman and Lepori, 2016). For instance, Selim ef al. (2015) investigate the effect of loss-
aversion behavioral bias on the switching behavior between technical and fundamental
trading strategies, market stability and price distortions. The authors study market
dynamics under two assumptions:

(1) chartists are loss-neutral; and
(2) chartists are loss-averse.

The results reveal that most of the traders prefer fundamental analysis over technical
analysis. Henceforth, loss aversion improves the market by minimizing its volatility and
distortion. Nevertheless, the above models are not designed to explore the dynamics of
interacting financial markets. Studying the interaction between international financial
markets is of crucial importance, especially after the recent global financial crisis
(Westerhoff and Dieci, 2006; Schmitt and Westerhoff, 2014).
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The main contributions of this paper are:

* introducing loss-aversion behavioral bias to the framework of interacting financial
markets proposed by Westerhoff and Dieci (2006);

* investigating the dynamics of interaction between two financial markets populated
with loss-averse agents; and

¢ examining the effect of levying transaction taxes on markets stability, price
distortion and the switching behavior between interacting markets following two
different trading strategies; fundamental and technical analysis.

The aforementioned models can replicate some important stylized facts, which are common
statistical features observed in most financial markets. Significant stylized facts are usually
formulated in terms of qualitative and quantitative properties such as price bubbles and market
crashes, random-walk prices, clustered volatility, excess volatility and long memory (Mandelbrot,
1963; Fama, 1970; Guillaume et al, 1997; Cont, 2001; Cont, 2005; Haas and Bigorsch, 2011).

A simple behavioral agent-based model of two interacting financial markets is
developed. The model is structured as follows. The markets are populated with two types of
agents; market makers and traders. At each time step, traders decide either to trade or to
stay inactive. Active traders follow technical or fundamental trading strategy as suggested
by previous surveys (Taylor and Allen, 1992; Menkhoff, 1997; Frankel and Froot, 1987a,
1987b, 1990) and laboratory experiments (Hommes, 2011). Technical trading aims at
exploiting price trends. Conversely, fundamental trading seeks to take advantage of mean
reversion. Traders can participate in one market at a time. The attractiveness of a trading
strategy is determined by the performance of this strategy in most recent past, which
demonstrates a learning behavior. Trading-strategy weights are computed using the
discrete-choice model proposed by Manski and McFadden (1981). However, traders
following technical analysis are loss-averse, where losses loom larger than equivalent gains.
Accordingly, weights of technical trading are expressed in terms of a piecewise linear
function proposed by the prospect theory (Kahneman and Tversky, 1979, 1984, 1991, 1992).
There is a market maker located in each market. Market makers set asset prices according to
the net submitted orders. For this purpose, a linear impact function proposed by Farmer and
Joshi (2002) is followed. Agents interact indirectly through their influence on price
adjustment. This affects the attractiveness of trading rules, which turns to affect the belief
adaptation process.

By simulation, the results show that the developed model can generate financial time
series that exhibit important stylized facts observed empirically such as bubbles and
crashes, volatility clustering, power-law tails, long memory and fractal structures.
Thereafter, the proposed model serves as a test-bed for policy makers to investigate the
effect of levying taxes on financial transaction. The impact of levying financial transaction
taxes on the market dynamics is extensively investigated.

The rest of the paper is organized as follows. In Section 2, the proposed agent-based financial
market model is presented. Asset pricing dynamics is investigated in Section 3. Furthermore, the
results of extensive Monte Carlo simulation are displayed. In Section 4, the effect of imposing
transaction taxes on market dynamics is investigated. Section 5 concludes the paper.

2. The model

There are two different stock markets, Market X and Market Z, located in two countries. It is
assumed that the countries either share the same currency or have agreed upon a fixed
exchange rate. For simplicity, the two stock markets are assumed to be symmetric. Thereby,



traders have no preference for one market over the other. There are two types of agents;
market makers and traders. In each time step 7, £ =0, 1,[. . .], 7, each trader decides either to
submit orders or abstain from the market. If a trader chooses to submit an order, she/he can
submit her/his order either to Market X or Market Z. In addition, the trader can follow either
technical or fundamental trading rule. Therefore, if the trader decides to submit an order,
she/he would choose between five trading alternatives (two different stock markets and
three different trading actions).

Market makers settle asset prices following a log-linear price impact function suggested
by Farmer and Joshi (2002). This function measures the relation between the orders quantity
(demand/supply) and the price of the asset. Thus, asset log price in period ¢ + 1 for Markets
Xand Z, can be given by:

# = 0f +a(wf D + DY) + of, )
and:
Vi =7+ a(wDF + o/ DF) + of, @

where p¥ and p? are the log prices at time ¢ in Markets X and Z, respectively, a is a
positive price settlement parameter, Df(c and DtZC are the orders submitted at time ¢ by
chartists to Markets X and Z, respectively, DY and D7 are the orders submitted at time ¢
by fundamentalists to Markets X and Z, respectively, w and wff are the weights of
technical and fundamental strategy, respectively, in Market X at time ¢, and w? and thf
are the weights of chartists and fundamentalists, respectively, in Market Z at time ¢. To
make the assumptions close to the real markets, noise terms a;' and o are added to catch
any random factors affecting the price settlement process in Markets X and Z,
respectively. It is assumed that o and of, t = 1, 2,[...], T are independent, identically
distributed (IID) normally distributed random variables with mean zero and constant
standard deviations o and %, respectively.

Chartists follow technical analysis to exploit price changes (Murphy, 1999).
Technical trading orders submitted to Markets X and Z, respectively, at time 7 can be
written as:

D =b(pf —p¥4) + BT, ®
and:
DF =b(pf —o7) + B, @)

where b is a positive reaction parameter (also called extrapolating parameter) that captures the
sensitivity of chartists to price changes. The first term at the right-hand side of equations (3)
and (4) represents the difference between the current and last price, which indicates the
exploitation of price changes. The second term captures additional random orders of technical
trading rules. Bf and B7,t=1,2,..., T are IID normally distributed random variables with
mean zero and constant standard deviation zr)/g and 0'% , respectively.
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Fundamental analysis assumes that prices will revert to their fundamentals in the short
run (Graham and Dodd, 2009). Orders submitted by fundamentalists to Markets X and Z at
time ¢ can be descried by:

DY = (¥ o) + 6
and:
DF = (77~ 17) + o, ©)

where ¢ is a reaction parameter (also called a reverting parameter) that captures the
sensitivity of fundamentalists to price mean reversion. /¥ and f7 are log-fundamental
values (or simply fundamental values) (Day and Huang, 1990). The first term at the right-
hand side of equations (5) and (6) represents market distortion at time 7, which computes the
deviation of index prices from their fundamentals, dist; = f; - p,. y{ and y? are introduced
to capture additional random orders of fundamental trading rules. y{ and
'ytZ ,t=1,2,...,T are IID normally distributed random variables with mean zero and
constant standard deviations (r{f and o, respectively. The log-fundamental values are
assumed to evolve following a random walk such that:

=+t @)
and:

fE=rt+nt, ®)
where 1% and 57 are fundamental shock values in Markets X and Z, respectively. % and
n?,t=1,...,T are IID normally distributed with mean zero and constant standard

deviations o ,x and oz, respectively. It is assumed that fundamental volatilities are equal
in both markets. It is also assumed that fundamental traders can calculate the fundamental
values.

The evolutionary part of the model depicts how beliefs are evolving over time (Brock and
Hommes, 1998). That is, how agents adapt their beliefs and switch between strategies. Belief

adaptation is mirrored in the strategy weights w;; w; = {wfc, w?”, w  w?  u) }, where

represents the weight of inactive agents and wf",wtzﬂwf(f 7thf are as indicated in
equations (1) and (2). Strategy weights are updated according to evolutionary fitness
measures (or attractiveness of the trading rules) which can be presented as:

4 = (exp(pf) — exp (s 1) ) DI, — tax* (exp(pf) — exp (8] ) )| DI, o
+ mA¥,,
41 = (exp(pf) — exp(pf ) ) DY, — tax* (exp(p) — exp(p¥ ) ) | DY, w0

Xf
+ mA;,



AF = (exp(pf) — exp(pf.,) ) DF, — tax” (exp(b) — exp (b7 ) ) IDF )
+mAZ,,

A7 = (exp(pf) — exp(pF.y) )DL, — tax (exp(p7) — exp(p?.y) ) |7
+ mAtz]:p

(12)

and:
A? =0, 13)

where AXe, AZ, AY A7 and AV are the fitness measures of following chartist strategy in
Market X, chartist strategy in Market Z, fundamental strategy in Market X, fundamental
strategy in Market Z and no-trade strategy, respectively. Inactive traders got zero
attractiveness for abstaining from trading. The fitness measure of the other two trading
rules, the technical and the fundamental analysis, depends on three components. The first
term of the right-hand sides of equations (9)-(12) is the performance of the strategy rule in the
most recent time. Notice that orders submitted in period ¢ — 2 are executed at the price
declared in period ¢ — 1. Gains or losses are recognized according to prices announced in
period . The second term of the right-hand side of equations (9)-(12) represents the costs of
trading in terms of transaction taxes, where tax” is the tax rate of Market X and fax* is the
tax rate of Market Z. The third term of the right-hand side of equations (9)-(12) denotes
agents’ memory, where 0 < =1 is the memory parameter that measures the speed of
recognizing current myopic profits.

Loss-aversion behavioral bias is proposed, inspired by Selim ef al. (2015), where chartists
evaluate their strategy fitness in terms of a value function of gains and losses (Tversky and
Kahneman, 1991; Benartzi and Thaler, 1993). The proposed value function implies that the
pain of losses is twice the satisfaction of equivalent gains. Therefore, the attractiveness of
technical strategy is given by:

w  [AXe if AX >0

c __ t =

L {AA{(C ifAY <0’ a9
5 (A% if AZ >0
c __ t t =
P {AA{C if A% <0 15

where A > 1 is the parameter of loss aversion that measures the relative sensitivity to gains
and losses. However, setting A = 1 reduces the value functions to v} = A% and v% = A%;
this case can be called loss-neutral chartists (Selim et al., 2015).

Following Manski and McFadden (1981), the weight of each strategy can be obtained by
the discrete-choice model as:

-

exp(r) .
€

1+ exp(ro) + exp (VAff) + exp (1) + exp (rAth ) 7

Agent-based
framework

99




REPS
52

100

exp (rAff )

wy = , : a7)

1+ exp (1)) + exp (rAff ) + exp(rv7) + exp (rAth )
W — exp (rv?e) 8

1+ exp(rvf¢) + exp (rAff ) + exp(17) + exp (rAth )

, exp(rAZ

w? = o(r4) , (19)

1+ exp(rvf€) + exp (rAff ) + exp(17) + exp (7Aff )

and:

w) =1—w —w? —w? —u?. (20)

Trading strategy weights are proportional to strategy attractiveness. Parameter 7 in
equations (16)-(19) is called the intensity of choice, and it measures the agent’s sensitivity to
select the trading strategy with higher fitness measure.

3. Simulation results and analyses

3.1 Calibration and simulation design

In this section, the model is validated by investigating the extent to which it is able to
replicate the stylized facts observed empirically. The values of model parameters are chosen
such that the model can mimic the dynamics of real financial markets. For the detailed
declaration of the idea behind choosing specific values of the parameters, the reader can
refer to Westerhoff and Dieci (2006).

The proposed artificial financial market is implemented using NetLogo platform
(Unsupported source type (ElectronicSource) for source Wilensky, 1999). At initialization, all
parameters of the model are equal to the values defined in Table I. The performance of 1,000
simulation runs is investigated. Each run contains 5,000 daily observations. In the following,
the evolutionary dynamics of the proposed model are discovered.

3.2 Stylized facts replication

Before engaging in a comprehensive Monte Carlo simulation, it is important first to observe
a representative simulation run. Figures 1-8 depict the behavior of this specific run. Figure 1
illustrates the evolution of log-prices for the two markets. Note that the prices oscillate
around their fundamental values. The average market distortion can be computed as

dist = % S°L |dist;|, which exhibits a value of 11.49 per cent for dist and a value of 8.54 per

cent for dist . The two price series are random walk and display bubbles and crashes. These
results are in good agreement with the stylized facts observed empirically.

Figure 2 displays returns of the two markets. It can be observed that extreme returns
reach up to = 20 and = 10 per cent for Market X and Z, respectively. Following Guillaume
et al (1997), volatility can be calculated as the average absolute returns (vol)

vol = %ZL LI74]. The computed average volatilities are 1.35 and 1.07 per cent for vol* and
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Parameter Value Description of parameter framework
a 1 Price settlement parameter
b 0.05 Extrapolating parameter
c 0.05 Reverting parameter
m 0.975 Memory parameter
r 300 Intensity of choice parameter
A 25 Loss aversion parameter 101
tax’™ 0 Tax rate of Market X
tax” 0 Tax rate of Market Z
o-ff 0.01 Standard deviation of the random factors affecting the price settlement
process in Market X
o’ 0.01 Standard deviation of the random factors affecting the price settlement
process in Market Z
a’g 0.05 Standard deviation of the additional random orders of technical Table L.
trading orders submitted to Market X Parameters for the
o-% 0.05 Standard deviation of the additional random orders of technical . .
. . simulation of the two
trading orders submitted to Market Z . . .
ol 0.01 Standard deviation of the additional random orders of fundamental interacting financial
trading orders submitted to Market X markets under loss-
O'%y 0.01 Standard deviation of the additional random orders of fundamental aversion behavioral
trading orders submitted to Market Z bias
1.7
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vol?, respectively, indicating excess volatility feature (Shiller, 1981). Also, Figure 2 shows
another stylized fact of asset markets, which is volatility clustering.

Figure 3 depicts the weights of the five trading strategies. The first panel in Figure 3
displays the average weights, which are computed as 20, 25.6, 19.2, 20.4 and 14.8 per cent for
w¥, w, w?, w” and w”, respectively. Note the higher volatility in Market X than that in
Market Z, which can be explained by the higher participation of chartists in Market X than
that in Market Z. Additionally, these results show that 34.8 (46) per cent of the agents follow
technical (fundamental) trading. The effect of loss-aversion behavioral bias can be explored
by running a simulation using the same random seeds and the parameter setting illustrated
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Figure 2.
Returns of the two
markets

Figure 3.
Weights of trading
strategies
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Notes: The first (second) panel shows the weights of the five trading
strategies when 4 = 2.5(4 = 1). The panels illustrate, from top to bottom,
chartists in market X (black), fundamentalists in market X (white), no
trading (grey), fundamentalists in market Z (white), and chartists in market
Z (black)

in Table I except for A = 1. Differences in the dynamics are merely due to loss-aversion
behavior. The second panel in Figure 3 depicts the average weights, which are computed as
229,17.2,175,18.7 and 23.6 per cent for w, wff ,wY, w‘f and w?, respectively. Henceforth,
46.5 (35.9) per cent of the agents follow technical (fundamental) trading. Accordingly, loss
aversion causes agents to prefer fundamental trading over technical trading. The increased



shares of chartists come at the cost of increased market volatilities, which are computed as
1.38 and 1.11 per cent for vol* and vol, respectively.

However, the results of 1,000 simulation runs using different random seeds and the
parameter setting displayed in Table I reveal that the mean of average weights is estimated
as 17 per cent for w¢, 23 per cent for wf(f , 20 per cent for !, 23 per cent for thf and 17 per
cent for w?. Thereafter, 34 per cent of the agents follow technical trading. Moreover, 46 per
cent of the agents preferred fundamental trading. As the two markets are assumed to be
symmetric, chartists and fundamentalists are equally participated in both markets.
Subsequently, no market is preferred over the other. In addition, the reduction in technical
trading can be due to the loss-aversion behavior.

Another significant stylized fact is power-law tails, with a tail index somewhere in the
region 2-5. The exponent « of the Pareto distribution for the tails can be expressed by the
following inverse cubic law:

Prob(|ry| > x) ~x~%, 21

with a, ~ 3 (Lux and Marchesi, 1999; Lux, 2009; Haas and Bigorsch, 2011). To check the
power-law tails, the Hill index tail estimate is calculated for the smallest and largest 10 per
cent of the observations. Figure 4 illustrates the Hill index tails estimation process (Hill,
1975; Huisman et al, 2001). Regression on the smallest (largest) 10 per cent of the
observations yields a value of 2.85 % 0.049 (2.40 + 0.048) for Market X and a value of
4.09 = 0.079 (3.51 = 0.072) for Market Z. These results are in good accordance with the
inverse cubic law of (21).

Another astonishing stylized fact to be investigated is the absence of autocorrelation in
raw returns. Figure 5 represents autocorrelations for the first 100 lags of raw returns for
both markets. The dashed lines present 95 per cent confidence bands according to the

s | ‘ ‘ ‘ | 15 4
d 0 200, 300 400 500 0 0 200 30 400 s
g k
Notes: The panels at top (bottom) depict estimated Hill tail-index for market X(Z). The
panels show the estimates of the smallest 10 per cent observations (on the left-hand sides)
and the largest 10 per cent observations (on the right-hand sides)
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Figure 5.
Autocorrelation in
raw returns of the
two markets

Figure 6.
Autocorrelation in
absolute returns of
the two markets

assumption of a white noise process. The raw returns for the two markets show
autocorrelation coefficients, which are not significant over 100 lags. This implies the
randomness of asset prices.

To study the predictability of asset volatility, autocorrelation in absolute returns is
studied. The two panels in Figure 6 depict autocorrelations for the first 100 lags of absolute
returns for the two markets. The dashed lines present 95 per cent confidence bands
according to the assumption of a white noise process. The panels show that absolute returns
are significantly autocorrelated for up to 100 (30) lags in Market X (7). Thus, volatility can be
partially predicted (with no significant prediction of the direction of price movements).

Another important fact of the financial markets is self-similarity as recognized by
Mandelbrot (1983). To investigate self-similarity, detrended fluctuation analysis (DFA) is
performed following Peng et al. (1994). Linear relationship on a log-log scale between the
average fluctuation, F,, and the time scale, #, shows scaling structure of asset returns.
Figure 7 depicts the estimation of the scaling exponent, H,, for raw returns of Markets X and
Z. A value of H = 0.5 indicates a white-noise process, a value of 0.5 < H < 1 corresponds to
long-range power-law autocorrelations and a value of 0 < H < 0.5 indicates that large and
small oscillations of the time series are very likely to alternate. The scaling exponent H,
yields a value of 0.50 £ 0.029 for Market X and a value of 0.52 + 0.005 for Market Z.
Consequently, estimated values of the scaling exponent show white-noise processes.

Figure 8 presents the estimation of the scaling exponent, /1,|, for absolute asset returns.
The scaling exponent H,| yields a value of 0.89 = 0.090 for Market X and a value of

Lag

Ay

Lag

Lag
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Note: The slope of the line relating log (F(n)) to log () is the estimated

scaling exponent, n = {23,...,21°}

0.73 £0.068 for Market Z. Estimated values of the scaling exponent indicate long-range

power-law autocorrelations in absolute returns.

Thereafter, the simulation run illustrated in Figures 1-8 imitates the behavior observed in
real financial markets remarkably well. In what follows, the robustness of these results is
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Figure 7.
Estimation of self-
similarity parameter
for raw returns of the
assets

Figure 8.
Estimation of self-
similarity parameter
for absolute returns
of the two return
series
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Table II.
Descriptive statistics
for asset returns of
the two markets

investigated by performing a thorough Monte Carlo analysis. The analysis relies on 1,000
simulation runs, each comprising 5,000 observations. All simulation runs are executed with
the parameter setting offered in Table I using different seeds of the random variables.

Table II reports estimates of the mean and median of the mean, maximum, minimum,
standard deviation, skewness and kurtosis for the two markets. Estimates of the mean and
the median of the kurtosis for the two return series are all greater than 3, indicating
leptokurtosis.

Table Il illustrates estimates of the mean and the median of the Hill tail index estimators
ay, for k € {25, 5, 10} {25, 5, 10} per cent of the smallest (left tail) and largest (right tail)
returns for the two assets. For example, considering the smallest (largest) 5 per cent of
observations of 7%, estimate of the tail index displays a value of 3.63 (3.09) for the median.
The results show that the average Hill tail index estimates of the largest and smallest 10 per
cent observations are in good agreement with the universal cubic law (see (21)).

Table IV displays estimates of the mean and the median of autocorrelation in raw

returns, ACf, for lags ¢ € {1,2,3} €, and autocorrelation in absolute returns, ACfr‘, forlags /e

Market Mean/median Mean Minimum Maximum SD Skewness Kurt

3.35%1076
—562%107°
149%10°°
3.09%1076

X Mean
Median

Z Mean
Median

—0.11
—0.11
—0.11
—0.11

0.11
0.11
0.11
0.11

0.02
0.02
0.02
0.02

0.00
0.01
0.00
0.00

3.89
3.64
3.84
3.55

Notes: The table reports the estimates of the mean and the median of the mean, maximum, minimum,
standard deviation, skewness and kurtosis; computations are based on 1,000 time series, each containing
5,000 observations

Table III.

The Hill tail index
estimator) &y, for the
left and right tails

Left-tail exponent Right-tail exponent

Asset Mean/median Q5% asy, Q109 959 asy, Qo

~ Mean
Median

I Mean
Median

3.55
3.56
3.57
3.60

3.60
3.63
3.62
3.63

3.50
3.35
351
3.39

2.79
2.79
2.79
2.78

318
3.09
3.19
3.13

3.37
321
3.39
3.25

Notes: The table reports the estimates of the mean and the median of the Hill tail index estimators) ay, for
k € {25, 5, 10} per cent of the smallest (left-tail) and largest (right-tail) returns of the two markets;
computations are based on 1,000 time series, each containing 5,000 observations

Table IV.
Autocorrelations for
raw and absolute
returns of both
markets

100
AC,
0.07
0.02
0.02
0.02

50
ACTr‘
0.13
0.09
0.08
0.08

20
ACy,
0.22
0.17
0.17
0.17

Asset Mean/median AC! AC? AC? ACj,

~ Mean
Median

7 Mean
Median

0.09
0.03
0.03
0.03

0.07
0.01
0.01
0.01

0.07
0.01
0.01
0.01

0.32
0.28
0.27
0.28

Notes: The table displays the estimates of the mean and the median of the autocorrelation in raw returns,
ACf, for lags ¢ € {1,2,3}, and the autocorrelation in absolute returns, ACM,for lags ¢ € {1,20,50,100};
computations are based on 1,000 time series, each containing 5,000 observations




{1, 20, 50,100}. Estimates of the median of autocorrelation coefficients ACf indicate that
price changes are mainly uncorrelated. For instance, the estimate of the median of

autocorrelation coefficients AC! reveals a value of 0.03 for ¥ and a value of 0.03 for /. This
is in line with most real financial markets, where asset price evolves according to a random

walk. Estimate of the median of autocorrelation coefficients AC‘lr‘ reveals a value of 0.28 for

X and a value of 0.28 for 7%, indicating persistence in volatility.

Finally, the robustness of the scaling behavior and fractal structure is needed to be
checked. Table V displays the estimates of the mean and the median for the scaling
exponent of raw returns, f7,, and the scaling exponent of absolute returns, H|,|. Estimate of
the median of H, reveals a value of 0.50 for 7* and a value of 0.49 for 2. These figures
indicate a small degree for predicting asset returns. Furthermore, estimate of the median of
H,, reveals a value of 0.79 for 7~ and a value of 0.78 for 7%. These values display long-range
power-law autocorrelations in absolute returns.

Summing up, the model replicates the stylized facts of real financial markets remarkably
well. Thereafter, the model can serve as a testbed to examine the effect of levying
transaction taxes on the agents’ switching behavior. For this purpose, two scenarios are to
be investigated. First, the impact of imposing taxes in one market only. Second, the impact
of imposing taxes in the two markets. The results of these scenarios are illustrated in the
following section.

4. The dynamics with transaction taxes

4.1 Transaction taxes in one market

To explore the impact of imposing transaction taxes in one market only, a transaction tax of
0.25 per cent is imposed in one market, e.g. Market X (as the two markets are assumed to be
symmetric, the results would not be changed if Market Z is selected). Figure 9 displays a
simulation run using the same random seeds for the simulation presented in Figures 1-8.
The simulation is executed based on the parameter setting presented in Table I, except for
tax’™ = 0.0025. Thereafter, differences in the dynamics are merely due to taxation. Figure 9
can be compared directly with Figures 1, 2 and the first panel in Figure 3. The first two
panels in Figure 9 show evolution of the log prices. Price bubbles and market crashes can be
observed. Moreover, prices oscillate around their fundamentals. The third and fourth panels
in Figure 9 show asset returns. The return series exhibit excess volatility and clustered
volatility as observed in real financial markets. The last panel in Figure 9 illustrates the
weights of the five trading strategies. No trading strategy dominates the others.
Surprisingly, the average weights are computed as 20, 25.6, 19.2, 20.4 and 14.8 per cent for
wﬁ“, wy”, w?, wy and wf”, respectively. Additionally, the computed average volatilities are
1.35 and 1.07 per cent for vol* and voF, respectively, and the computed average market
distortions are 11.49 and 854 per cent for dist* and dist?, respectively. These are the same

/f v

Measures of central tendency H, Hy, H, Hy,
Mean 0.50 0.78 0.50 0.78
Median 0.50 0.79 0.49 0.78

Notes: Estimates of the mean and the median of the scaling exponent of raw returns, H,, and the scaling
exponent of absolute returns, H|,; computations are based on 1,000 time series, each containing 5,000
observations
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Table V.

Scaling exponent for
raw and absolute
returns of the two
markets
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Figure 9.

The impact of
imposing a
transaction tax of
0.25 per cent in
market X on both
markets’ log prices,
asset returns and
weights of trading
strategies
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Notes: The first two panels show evolution of log prices in markets X and Z, respectively.

The third and fourth panels display asset returns of markets X and Z, respectively. The last panel
illustrates, from top to bottom, chartists in market X (black), fundamentalists in market X (white),
no trading (grey), fundamentalists in market Z (white), and chartists in market Z (black)



figures obtained from the simulation run presented in Figures 1-8. Thereafter, levying taxes
in one market does not affect market dynamics in both markets.

To check the robustness of these results, a comprehensive Monte Carlo analysis is applied.
The analysis relies on 1,000 simulation runs for each tax rate, which is increased from 0.05 to
0.5 in 20 steps. Each simulation is comprised of 5,000 observations. All simulation runs are
executed based on the parameter setting offered in Table I using different seeds of the random
variables. Figure 10 depicts the results of the Monte Carlo simulation for the first scenario.
Figure 10 displays the average volatility for both markets, average price distortion for both
markets and average weights of the five trading strategies. The first panel in Figure 10 depicts
that volatility of both markets fluctuate around 1.18 per cent. Which tax rate would stabilize
the markets? There is no specific tax rate that would decrease volatility in both markets at the
same period. However, there is no tax rate that cause drastic increase in market volatility. The
same result is observed from the second panel in Figure 10. No significant deviation in market

L
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Notes: The panels (from the top) show market volatility,
price distortion, and the weights of each trading strategy.

Tax rate is increased from 0.05 to 0.5 per cent in 20 steps.
Computations are based on 1000 time series, each containing
5000 observations
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Figure 10.

The impact of
imposing taxes in
market X on the
dynamics of the two
markets
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distortion can be noticed. The last panel in Figure 10 indicate the weights of trading strategies,
which are around 46, 34 and 20 per cent for fundamentalists, chartists and inactive traders,
respectively, in both markets. In addition, chartists and fundamentalists are almost equally
participated in both markets. Thereby, imposing transaction taxes in one market may not
affect market stability or price distortion. Moreover, there is no strong evidence that traders
would prefer trading in the market without transaction taxes. The traders also prefer
fundamental trading over technical trading. However, this is the same result obtained from the
model without introducing transaction taxes.

4.2 Transaction taxes in both markets
To explore the impact of imposing transaction taxes in the two markets, a transaction tax of
0.25 per cent is imposed in both markets. Figure 11 displays a simulation run based on the
same random seeds of the simulation run depicted in Figures 1-8 using the parameter setting
presented in Table I, except for fax’™ = 0.0025 and tax? = 0.0025. Thereby, differences in the
dynamics are only due to taxation. Figure 11 can be compared directly with Figures 1, 2 and
the first panel in Figure 3. The first two panels in Figure 11 depict log-price evolution. The
prices oscillate around their fundamentals and resemble the behavior of asset prices
observed empirically. The third and fourth panels in Figure 11 illustrate asset returns,
which exhibit excess volatility and volatility clustering as observed in real financial
markets. The last panel in Figure 11 illustrates the weights of the five trading strategies.
Amaszgly, the average weights are computed as 20, 25.6, 19.2, 204 and 14.8 per cent for
t , Y, wt , and w?*, respectively. Additionally, the computed average volatilities are
1 35 and 1.07 per cent for voF* and voF, respectively. The computed average market
distortions are 11.49 and 8.54 per cent for dist* and dist?, respectively. These are the same
figures obtained from the simulation run presented in Figures 1-9. Thereafter, levying taxes
in the two interacting markets does not affect market dynamics in both markets.

The robustness of these results is checked by applying a thorough Monte Carlo analysis.
The analysis relies on 1,000 simulation runs for each tax rate, which is increased from 0.05
to 0.5 in 20 steps. Each simulation is comprised of 5,000 observations. All simulation runs
are executed based on the parameter setting offered in Table I using different random seeds.
Figure 12 depicts the results of the Monte Carlo simulation for the second scenario. Figure 12
shows average volatility for both markets, average price distortion for both markets and
average weights of the five trading strategies. The first panel in Figure 12 depicts that
volatility of both markets fluctuate around 1.18 per cent. In addition, different values of tax
rates have slight effect on market volatilities in either direction. The same result is obtained
for price distortions. No significant deviation in market distortion can be noticed from the
second panel in Figure 12. As indicated by the last panel in Figure 12, the weights of trading
strategies are around 46, 34 and 20 per cent for fundamentalists, chartists and inactive
traders, respectively, in both markets. Furthermore, chartists and fundamentalists are
almost equally participated in the two markets. Thus, imposing transaction taxes in two
interacting markets may not cause instability or price distortion in both markets. Moreover,
the traders prefer fundamental trading over technical trading. Nevertheless, this is the same
result obtained in the artificial markets with zero taxes and with a levy in one market only.

It should be noted that the key difference between the proposed model and the model provided
by Westerhoff and Dieci (2006) is the loss-aversion behavioral bias. Westerhoff and Dieci (2006)
find that imposing Tobin taxes in one market will result in stabilizing this market at the cost of
the other market’s stability. Additionally, levying Tobin taxes in the two markets decreases
volatility and distortion in both markets. The above authors report the average weight of 38, 45
and 17 per cent for fundamentalists, chartists and inactive traders, respectively. Note that the
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Notes: The first two panels show evolution of log prices in markets X and Z, respectively.
The third and fourth panels display asset returns of markets X and Z, respectively. The last
panel illustrates, from top to bottom, chartists in market X (black), fundamentalists in
market X (white), no trading (grey), fundamentalists in market Z (white), and chartists in
market Z (black)
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Figure 11.

The impact of levying
a transaction tax of
0.25 per cent in
markets X and Zon
both markets’ log
prices, asset returns
and the weights of
trading strategies
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Figure 12.

The impact of
imposing taxes in
markets Xand Zon
the dynamics of the
two markets
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Notes: The panels (from the top) show market volatility,
price distortion, and the weights of each trading strategy.

Tax rates are increased from 0.05 to 0.5 per cent in 20 steps.
Computations are based on 1000 time series, each containing
5000 observations

main assumptions and parameter values followed in this research are similar to those of
Westerhoff and Dieci (2006), except for the loss-aversion behavior. Thereby, the difference in
results can mainly be attributed to loss-aversion behavior, which stabilizes the market by
managing the speculative behavior. Additionally, governments could levy small transaction
taxes to generate extra revenues without worrying about market stability.

5. Conclusions
In this paper, a behavioral agent-based model is proposed to provide a suitable testbed for

policy makers. The proposed framework models the interaction between two different
financial markets; Market X and Market Z. There are two types of agents populating the
artificial markets; traders and market makers. Each time step, traders decide on one of the

trading strategies:



¢ technical trading in Market X;

» fundamental trading in Market .X;

¢ technical trading in Market Z;

» fundamental trading in Market Z; or
» abstain from trading.

The weight of each trading strategy is determined according to past and current
performance of this strategy. As chartists are loss-averse, losses loom larger than equivalent
gains. The discrete-choice model is followed to compute the weights of trading strategies.
Market makers update asset prices according to the net submitted orders. A log-linear price
impact function is followed to settle asset prices. The proposed model can replicate stylized
facts observed empirically such as bubbles and crashes, excess volatility, volatility
clustering, absence of autocorrelation in raw returns, persistence in volatility, power-law
tails and fractal structures. Thereby, the model can be used as a test-bed to investigate the
effect of applying regulatory policies. Furthermore, loss-aversion behavioral bias affects
agent switching behavior among trading strategies, which consequently enhances market
stability. This can be explained as follows. The increase in price distortion causes the
chartists to become aggressive. The increasing switching behavior to technical strategy will
increase market volatility. As the distortion approaches its maximum value, traders
perceive fundamental analysis as the most appealing strategy to follow. The increasing
switch to the fundamental analysis will drag asset prices to their fundamentals and reduce
market volatility and price distortion. Tobin transaction tax is introduced and its impact on
market dynamics is explored. For this purpose, two scenarios are considered:

(1) levying a transaction tax in one market only; and
(2) levying transaction taxes in the two markets.

The results show that imposing transaction taxes in either scenario would affect weights of
trading strategies, distortion or volatility. As loss aversion manages the speculative
behavior, imposing transaction taxes in markets populated with loss-averse chartists may
not affect market stability and price distortions. Thereafter, imposing small transaction
taxes would generate revenues and may not affect market dynamics. The results are in good
agreement with Tobin’s suggestions.
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