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Abstract
Purpose – This paper presents economic and economic–statistical designs of the adaptive exponentially
weighted moving average (AEWMA) control chart for monitoring the process mean. It also aims to compare
the effect of estimated process parameters on the economic performance of three charts, which are Shewhart,
exponentially weighted moving average andAEWMA control charts with economic–statistical design.
Design/methodology/approach – The optimal parameters of the control charts are obtained by
applying the Lorenzen and Vance’s (1986) cost function. Comparisons between the economic–statistical and
economic designs of the AEWMA control chart in terms of expected cost and statistical measures are
performed. Also, comparisons are made between the economic performance of the three competing charts in
terms of the average expected cost and standard deviation of expected cost.
Findings – This paper concludes that taking into account the economic factors and statistical properties in
designing the AEWMA control chart leads to a slight increase in cost but in return the improvement in the
statistical performance is substantial. In addition, under the estimated parameters case, the comparisons
reveal that from the economic point of view the AEWMA chart is the most efficient chart when detecting
shifts of different sizes.
Originality/value – The importance of the study stems from designing the AEWMA chart from both
economic and statistical points of view because it has not been tackled before. In addition, this paper
contributes to the literature by studying the effect of the estimated parameters on the performance of control
charts with economic–statistical design.

Keywords Statistical process control, Economic–statistical design, Estimation effect,
EWMA control chart

Paper type Research paper

1. Introduction
The control chart technique is considered one of the important tools in statistical quality
control. A main objective of control charting is to detect any deterioration in quality so that
the corrective action can be taken before producing a large quantity of nonconforming items.
The concept of the control chart was initially introduced in 1924 by Walter A. Shewhart.
Shewhart control charts are more efficient in detecting large shifts in process parameters, as
they depend only on the information in the last sample observation. On the other hand, these
charts are ineffective in detecting small parameter shifts. For this reason (Roberts, 1959)
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introduced the exponentially weighted moving average (EWMA) control chart which is an
excellent alternative to the Shewhart control chart when we are interested in detecting small
shifts more quickly. However, this chart cannot be designed to detect small and large shifts
simultaneously. Thus, a new class of control charts has been presented in which the chart’s
design parameters can be changed in an adaptive way. These charts are called adaptive
control charts and it has been shown that these control charts are more efficient than the
fixed design parameters control charts in detecting different magnitudes of shifts.
The adaptive exponentially weighted moving average (AEWMA) control chart is one of
these charts. It was introduced by Capizzi and Masarotto (2003) for monitoring the process
mean. Based on the size of the difference between the current observation and the previous
chart statistic, the AEWMA chart adapt the weight of the previous observations in order to
detect efficiently shifts of different sizes.

To design a control chart, three parameters should be determined, which are the sample
size n, the sampling interval between samples h, and the control limits. Usually, these
parameters are selected according to statistical criteria only such as the average number of
samples taken until a signal is given which called the average run length (ARL). However,
the design of a control chart should reflect economic consequences, such as the costs of
sampling, the costs of correcting the assignable cause, and the costs of production of non-
conforming units. These costs are reflected by the design of the control chart from an
economic viewpoint. Statistical design of control charts, on the other hand, does not take
the economic dimensions into account explicitly. For this reason (Duncan, 1956) presented
the economic design of the Shewhart X - chart, in which the chart’s parameters are
determined based onminimizing the expected cost function.

The economic design of different control charts has been considered by many authors.
(Montgomery, 1980; Ho and Case, 1994) gave reviews of the literature of economic designs of
various control charts. In 1986, a method for economically designing of control charts are
presented by Lorenzen and Vance. This method determines the optimal design parameters
which minimize the expected cost per hour for the quality cycle. It can be applied to all types
of control charts. Based on (Lorenzen and Vance’s, 1986) cost function, (Torng et al., 1994)
were considered the economic design of the EWMA control chart. Also, economic designs of
some adaptive control charts had been presented in several articles, such as (De Magalhães
et al., 2001; Park et al., 2004; Chou et al., 2008).

Some researchers have concluded that the economic design of a control chart usually
leads to poor statistical performance. For example, (Woodall, 1986) noted that in most of
economically designed control charts the Type I error probability, which is usually referred
to as the probability of a false alarm in the literature, is much higher than that of statistically
designed control charts. As a result, practitioners may lose confidence in the performance of
the control chart design. Therefore, (Saniga, 1989) introduced an economic–statistical design
approach. According to this approach, the expected cost function is minimized subject to
some statistical constraint to determine the control chart’s parameters.

The speed of detection of a shift in the process parameter determines the efficiency of the
control chart, which can be measured in terms of the ARL. Thus, the choice of the statistical
constraint depends on designing the control chart to have a large in-control ARL value
before the chart signals when the process is in control and to have small out-of-control ARL
value when a shift in one or more of the process’ parameters is present. In Montgomery et al.
(1995), presented the economic–statistical design of the EWMA control chart. They used a
program developed by Torng et al. (1995) to solve the optimization problem. Furthermore,
the economic–statistical designs of other control charts were studied in the literature,
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(Prabhu et al., 1997; De Magalhães et al., 2002; Lu et al., 2013; Seif et al., 2015; Costa and
Fichera, 2017; Lee and Khoo, 2018).

In general, there are two phases of control charting with two different objectives; Phase I
and Phase II. In Phase I, when the process parameters are unknown, they are estimated
based onm in-control samples each of size n. On the other hand, the main objective of Phase
II is monitoring the process to quickly detect shifts in the process parameters.

Many researchers have studied the effect of the estimated parameters on the performance
of control charts with pure statistical design (Quesenberry, 1993; Jones et al., 2001;
Saleh et al., 2013). All these papers depended only on the average of ARL (AARL) metric.
However, using different Phase I data in estimating the unknown parameters leads to
variability in the ARL between the practitioners. Thus, (Jones and Steiner, 2012) discussed
the importance of using the standard deviation of ARL (SDARL) as a metric in investigating
the performance of control charts with estimated parameters to reflect the variability
between the practitioners. Since then, several authors used the SDARL metric to study the
effect of the estimation on the statistical performance of control charts (Zhang et al., 2013;
Lee et al., 2013; Aly et al., 2014; Saleh et al., 2015)].

In the unknown parameters case, the cost of the economic–statistically design chart is
also a random variable due to using different data by the practitioners. Therefore, to study
the consequences of parameter estimation on the economic performance of these charts, one
should consider both the average and standard deviation of the cost distribution. In our
paper we investigate the economic performance of three charts when parameters are
estimated in terms of the average and standard deviation of the expected cost, as well as
some percentiles for the cost distribution. These are the Shewhart, EWMA, and AEWMA
control charts with economic–statistical design. As mentioned before, only the economic–
statistical designs of Shewhart and EWMA charts are presented in literature. Thus, we
develop the economic–statistical design of the third chart, i.e. the AEWMA chart. Then we
compare the economic performance of the three charts in terms of expected cost distribution
parameters.

The rest of this paper is organized as follows. In Section 2, a brief description of the
competing charts is given. Then, in Section 3, we present the economic–statistical design of
the competing charts, in addition to a numerical example to illustrate the use of the new
design of the AEWMA chart. Comparisons between the economic performance in the
unknown parameters case for the Shewhart, EWMA and AEWMA charts are presented in
Section 4. Finally, conclusions are given in Section 5.

2. Competing charts
In this section, the three competing charts used in this paper, which are Shewhart, EWMA,
and AEWMA charts are presented. Let X be the quality characteristic of interest which is
assumed to follow the normal distribution with mean m and standard deviation s . To set up
a control chart, samples are drawn at certain time interval, say every h hours, then sample
statistics are calculated and plotted on the control chart. When the calculated sample
statistic encroaches the upper control limit (UCL) or the lower control limit (LCL), the chart
signals and the process is considered out-of-control.

2.1 Shewhart chart
Let X be a sample average which is the sample statistic plotted in the chart. Then the UCL
and LCL of the Shewhart control chart are mX � LsX , where mX and sX are the
expectation and standard deviation of X , respectively, and L represents the distance of the
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control limits from the center line, expressed in standard deviation units. The value of L is
determined in order to attain a certain in-control ARL.

As mentioned before, the main disadvantage of a Shewhart control chart is that it
depends only on the information derives from the last sample observation about the process
and eliminates any other information derives from the previous observations. This feature
makes the Shewhart control chart more efficient in detecting large shifts in process
parameters, but not as good in detecting small process shifts.

2.2 Exponentially weighted moving average chart
The chart statistic Zi for the EWMA chart at the ith sampling instant is given by:

Zi ¼ lX i þ 1� lð ÞZi�1; i ¼ 1; 2; 3 . . . . . . :;

where Z0 ¼ m 0 and l is a suitable constant such that 0 < l # 1 and usually called
smoothing or weighting parameter which determines the extent to which previous samples
affect the current value of the chart statistic. According to this chart, to detect small shifts,
small values of l should be used. Note that Shewhart chart can be viewed as a special case
from the EWMA chart by setting l = 1. The asymptotic control limits
mX 6LsX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l = 2� lð Þp

are usually used in practice. Therefore, when Zi is outside these
limits, the process is considered to be out of control.

Although the EWMA control chart can be designed to detect either small or large shifts, it
cannot detect both shifts simultaneously (Lucas and Saccucci, 1990). In addition, (Yashchin, 1987)
studied the “inertia problem” for the EWMA chart. This problem happens when the chart statistic
is near UCL or LCL and a sudden change takes place in the other direction. In such case, the
difference between the statistic and the real current level of the process can be very large. Thus,
reaching the opposite control limit in order to give a signal will take a very long time. (Woodall and
Mahmoud, 2005) proved that the EWMA chart can build up a large amount of inertia particularly
for the small values of the smoothing parameter.

2.3 Adaptive exponentially weighted moving average chart
This chart can be viewed as a smooth combination of the previous two charts. Based on the
difference size between the current observation and the previous chart statistic, this chart
can adapt the weight of the previous observations. Therefore, it has the ability to detect in
balance small and large shifts and in the same time it does not largely affected by the inertia
problem. The statistic used in this chart is as follows:

Yi ¼ Yi�1 þ U eið Þ; i ¼ 1; 2 . . . . . . ;

where Y0 ¼ m 0; Yi is the i
th chart statistic, ei (known as ’’error’’) is the difference between

the current observation X i and the previous statisticYi–1 (i.e. ei ¼ X i � Yi�1), andU(ei) is a
score function.

If ei= 0, the AEWMA chart statistic can be rewritten as follows:

Yi ¼ 1� U eið Þ
ei

� �
Yi�1 þ

U eið Þ
ei

X i;

where U(ei) is a score function which is monotonically increasing in ei, U(ei) is an odd
function, i.e U(ei) = – U(–ei), and U(ei) � l ei when the absolute value of ei is small.
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These modifications have been introduced to obtain a chart statistic that behaves
like an EWMA chart when the absolute value of ei is large and like a Shewhart chart
otherwise.

For the sake of simplicity, (Capizzi and Masarotto, 2003) suggested the following
function, which called Huber’s score function and satisfies the aforementioned
conditions:

U eið Þ ¼
ei þ 1� lð Þk if ei < �k
l ei if jeij# k
ei � 1� lð Þk if ei > k;

8<
:

where l and k are suitable constants such that 0 < l # 1 and k � 0 and considered as
two of the chart’s design parameters. Most of the previous studies of AEWMA chart
performance considered this score function, such as (Capizzi and Masarotto, 2003;
Woodall and Mahmoud, 2005). It is worth to mention that this function is used also in
the present paper.

Whenever Yi is outside the control limits mX 6LsX , the process is considered to be
out of control, where L is a suitable constant chosen to satisfy a specified in-control
ARL performance.

3. Economic and economic–statistical design of the control charts
This section is divided into two parts; in the first part of this section we introduce
the economic and economic–statistical design of control charts in general. In the
second part we introduce an economic–statistical design of the AEWMA control
chart used for monitoring the process mean since it has not been introduced in
previous studies.

3.1 Economic and economic–statistical design of control charts
The economic–statistical design of the control chart is defined as a design in which
the cost function is minimized subject to statistical constraint. (Lorenzen and Vance,
1986) derived a unified expected cost function that can be applied to all types of
control charts, regardless of the chart statistic used. It is assumed that the samples
are independent and that the process starts in a state of statistical control with mean
m = m0 and the occurrence of an assignable cause in the process mean is a mean shift
from m 0 to m0 6 d s , where d is a positive constant. It is assumed also that there is
only one assignable cause when a change occurs. The in-control time for the process
follows an exponential distribution with a mean of 1

u where u > 0 is called the process
failure rate. The process is allowed to continue during the search and/or during repair
of the process.

Due to the complex form of the cost function introduced by Lorenzen and Vance (1986),
many approximate methods have been presented in order to simplify it. In this paper, the
approximation given by Chung (1990) is used to compute the optimal design parameters of
the control chart. According to the approximation of Chung (1990), the expected cost per
hour (EC) takes the following formula:

EC ¼ ECPC*
.

ECT*
; (1)

where:
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ECPC* ¼ C0

u
þ C1 nE þ h ARL1 � 0:5ð Þ þ g 1T1 þ g 2T2

� �þ
1
u h

� 1
2

� �
Y

ARL0
þW

þ
aþ bnð Þ 1

u
þ nE þ h ARL1 � 0:5ð Þ þ g 1T1 þ g 2T2

� �

h
;

ECT* ¼ 1
u
þ 1� g 1ð Þ

1
u h

� 1
2

� �
T0

ARL0
þ nE þ h ARL1 � 0:5ð Þ þ T1 þ T2;

where
u = process failure rate which determines the expected time to the out-of-control shift
E = time to sample and chart one item
ARL0 = average run length while process is in control
ARL1 = average run length while process is out of control
T0 = expected search timewhen the signal is a false alarm
T1 = expected time to discover the assignable cause
T2 = expected time to repair the process when assignable cause is discovered
C0 = cost per hour due to nonconformities produced while the process is in control
C1 = cost per hour due to nonconformities produced while the process is out of control
Y = cost per a false alarm
W = cost to locate and repair the assignable cause
a = fixed cost per sample
b = cost per unit sampled

g 1 ¼
1 if production continues during searches;

0 if production ceases during searches;

8<
:

g 2 ¼
1 if production continues during repair;

0 if production ceases during repair;

8<
:

One of the economic design parameters of a control chart start is the sampling interval h. To
get an explicit formula for h, first equation (1) is differentiated with respect to h, and then
equated to zero; i.e. @ EC

@h ¼ 0. The reader is referred to Yeong et al. (2012) for details of the
derivation of h. The result of this differentiation yields

h ¼ �r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r1r3

p
2r1

; (2)

where:

r1 ¼ ARL1 � 0:5ð ÞB
2uARL0

;
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B ¼ u Y þ c1T0 1� g 1ð Þ½ � � 2ARL0fc0 þ u ARL1 � 0:5ð Þaþ ARL1 � 0:5ð ÞbnþW½ �þ
c1 �1þ u nE þ g 1T1 þ g 2Tð Þ þ u nE þ T1 þ T2ð Þ� �g;

r2¼ � 2 ARL1 � 0:5ð Þ Y þ c1T0 1� g 1ð Þ þ ARL0 aþ bnð Þ 1þ u nE þ g 1T1 þ g 2T2ð Þð Þ� �
uARL0

;

r3 ¼ � 1
2u 2ARL0

2Y þ 2c1T0 1� g 1ð Þ � aT0u � 2 ARL1 � 0:5ð ÞaT0u
�

�2c1 nE þ g 1T1 þ g 2T2ð ÞT0u � bnT0u � 2 ARL1 � 0:5ð ÞbnT0u � 2T0Wu

þ 2Yu nE þ T1 þ T2ð Þ þ aT0g 1u þ 2 ARL1 � 0:5ð ÞaT0g 1u

þ 2c1 nE þ g 1T1 þ g 2T2ð ÞT0g 1u þ bnT0g 1u þ 2 ARL1 � 0:5ð ÞbnT0g 1u þ 2WT0g 1u

� a nE þ g 1T1 þ g 2T2ð ÞT0u
2 � bn nE þ g 1T1 þ g 2T2ð ÞT0u

2

þ a nE þ g 1T1 þ g 2T2ð ÞT0u
2g 1 þ bn nE þ g 1T1 þ g 2T2ð ÞT0u

2g 1

þ 2 ARL1 � 0:5ð Þ aþ bnð Þ 1þ nE þ g 1T1 þ g 2T2ð Þuð Þ 1þ nE þ T1 þ T2ð Þuð Þ�:

Let d be the set of design parameters of the control chart. The traditional model for the
economic–statistical design of the Shewhart and EWMA charts is defined as:

Minimize EC dð Þ
Subject to ARL0 � B0

ARL1#B1;

where EC (d) is the cost function associated with the parameters vector d and B0 and B1 are
the desired bounds for the in-control and the out-of-control ARLs, respectively. Using this
model, the chart parameters that satisfy the desired performance for the Shewhart and
EWMA charts can be determined. In the case of Shewhart chart the vector d contains the
sample size (n), control limit width (L), and sampling interval (h). However, in the case of
EWMA chart, the design contains these parameters as well as the smoothing parameter (k).
It should be noted that the optimal design parameters of the economic design of the control
chart can be determined by omitting the statistical constraints in the above model.

For example, if the cost parameters in (Torng et al., 1995) (u = 0.01, E = 0.05, T0=0, T1 =
2,T2=0, C0=10, C1 = 100, Y = 50,W = 25, a = 0.5, b = 0.1, g 1= g 2=1, m 0=0, and s 0=1) and
the statistical constraints (B0=500, B1=65, and d = 0.1) are used in designing the EWMA
chart, then the optimal design parameters of the chart are n = 10, k = 0.0233, and L = 2.3413.
However, using the same cost parameters and the statistical constraints (B0=500, B1=1.5,
and d = 1) in designing the Shewhart chart leads to optimal design parameters of n = 15 and
L = 3.0903. Notice that the Shewhart chart is usually design to perform optimally for
relatively large shifts while the EWMA chart is usually designed to perform optimally for
relatively small shifts.

3.2 An economic–statistical design of the adaptive exponentially weighted moving average
chart control chart used for monitoring the process mean
In designing the AEWMA chart, two different shift sizes can be considered rather than
only one shift size as in the case of Shewhart and EWMA charts. Thus the above
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economic–statistical design model which used for Shewhart and EWMA charts needed
to be modified when applied to the AEWMA chart. In the case of the economic–
statistical design of the AEWMA chart, the optimal design parameters are the sample
size (n), smoothing parameter (k), control limit width (L), sampling interval (h) and
reference parameter (k) which minimize EC in equation (1) subject to statistical
constraints on the in-control ARL value.

To determine the optimal design parameters of the AEWMA control chart with
reasonable performance for both small and large shifts, we propose a two-stage optimization
approach similar to that suggested by Capizzi and Masarotto (2003). So, we proceed as
follows:

� Choose a desired lower bound for the in-control ARL0, B0, and two values of the
mean shift (a small shift d1 and a large shift d2).

� Find the parameter vector d* which is the solution of the following problem:

MinimizeEC d*ð Þ
Subject to ARL0 � B0;

ARL2#B2;

0< k# 1, h> 0, k� 0, and n is integer,where EC(d*) is the cost function associated with the
parameters vector d* when a shift of size d2 is considered. Note that ARL2 is the out-of-
control ARL corresponding to a shift size of d2 and B2 is the desired upper bound for ARL2.

� Choose a small positive constant r, where 0< r <1, and then find the optimal
parameters vector d which is the solution of the following problem:

MinimizeEC d*ð Þ
Subject to ARL0 � B0;

ARL1#B1;
EC dð Þ# 1þ rð ÞEC d*ð Þ;

0 < k # 1, h > 0, k � 0, and n is integer,where EC(d) and EC`(d) are the cost functions
associated with the parameters vector d when shifts of sizes d1 and d2 are considered,
respectively. Note that ARL1 is the out-of-control ARL at shift of size d1 and B1 is the desired
upper bound for ARL1. Clearly, the optimal design parameters of the economic design of the
AEWMA control chart are obtained by omitting the statistical constraints in the previous
procedure.

In this section a numerical example is used to illustrate the use of the economic–
statistical design of the AEWMA control chart and to evaluate the proposed model and its
solution. The cost parameters in this example are based on (Torng et al., 1995) mentioned in
Section 3.1, while the statistical constraints used are (B0 = 500, B1 = 65, B2 = 1.5, d1 = 0.1 and
d2 =1). The ARL values are obtained by using a Markov chain approach as described in
(Capizzi andMasarotto, 2003).

The solution procedure is carried out by using the NLPNMS subroutine in SASVR
statistical software. This subroutine is based on the Nelder-Mead optimization method and
Powell’s Constrained Optimization BY Linear Approximations (COBLYA) method. For
more details about the NLPNMS subroutine, see the SAS/IML 9.2 User’s Guide (SAS
Institute Inc, 2008, p. 803).
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In the optimization process, to find the optimal design parameters n, k, L, h and k, the
sample size is treated as a continuous variable, and the proposed procedure is applied to find
the optimal value of n. Then, the nearest smaller and larger integers to the previously
obtained sample size are determined. For each case, the problem is re-optimized to identify
the optimal design parameters k, L, h and k, and then the design parameters which satisfy
the minimum expected cost are chosen.

By applying the optimization procedure, the optimal design parameters and the expected
cost are given in Tables 1 and 2 for the economic–statistical and economic designs,
respectively.

In order to compare between the economic design of the AEWMA chart (ED/AEWMA)
and the economic–statistical design of the AEWMA chart (ESD/AEWMA) from the
economic point of view, the percentage increase (PI) in the expected cost resulting from
adding the statistical constraint is used, where PI takes the following formula:

PI ¼ CESD=AEWMA � CED=AEWMA

CED=AEWMA
� 100

From Tables 1 and 2, the PI value achieved by the economic–statistical design of the
AEWMA chart for example, at the shift combinations d1 = 0.1 and d2 = 1 is 17.48%. Thus, it
can be concluded that adding the statistical constraint leads to a small increase in the
expected cost. However as shown in Tables 1 and 2 there is a substantial improvement in
the statistical performance. Notice that, for example, at the shift combinations d1 = 0.1 and
d2 = 1 the ARL0 of the economic design is only 18.534 compared to an ARL0 of 501.530 for
the economic–statistical design.

Tables 3 and 4 show the optimal design parameters of the AEWMA chart when different
combinations of shifts than that in Tables 1 and 2 are considered for the economic–
statistical and economic designs, respectively. The same input parameters used in Tables 1
and 2 are considered to produce the results in both tables. From these tables we can

Table 1.
Optimal design
parameters, optimal
cost, and ARL values
of the AEWMA
control chart for the
economic-statistical
model (r = 0.05)

d 1 d 2 n h l L k ARL0 ARL1 ARL2 C

0.1 1 14 0.2572 0.0308 0.3104 3.6056 501.530 44.141 1.907 28.946

Table 2.
Optimal design
parameters, optimal
cost, and ARL values
of the AEWMA
control chart for the
economic model (r =
0.05)

d 1 d 2 n h l L k ARL0 ARL1 ARL2 C

0.1 1 12 0.7242 0.2956 0.7065 4.275 18.537 11.743 1.143 24.654
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generally conclude that AEWMA charts designed to detect larger values of d1 produce
lower expected cost than those designed to detect smaller values of d1. In addition, it can be
observed that the expected cost of the economic–statistical design is higher than that of the
economic design under different shifts. The maximum PI value of the economic–statistical
design of the AEWMA chart is 16.42% and it occurs at the shift combinations d1 = 0.1 and
d2 = 1.5. While the minimum PI value is 4.29% and it occurs at the shift combinations d1 =
0.3 and d2 = 1.5. In general, larger shift values of d1 or d2 lead to wider control limits, less
frequent samplings, larger reference parameter values k, and larger value of the smoothing
parameter k for both economic and economic–statistical designs.

4. Performance comparisons under the unknown parameters case
As mentioned before, when the process parameters (m and s ) are estimated, the expected
cost EC is a random variable. In such case, the evaluation of the economic performance of a
chart should be evaluated through the probability distribution of EC; particularly through
the average of the EC (AEC) and the standard deviation of EC (SDEC). When the in-control
parameters are unknown, the estimation of the in-control process mean is done using the

overall sample mean m̂ ¼ X ¼
Xm

i¼1

Xn

j¼1
xij

mn , where xij represents the j
th observation taken

from the ith Phase I sample, i = 1, 2, 3, . . ., m. While the estimation of the process standard

deviation is done using ŝ ¼ Spooled
c4 vþ1ð Þ, where Spooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
Si2

m

r
, Si is the standard deviation

corresponding to ith Phase I sample, C4(.) is a tabulated constant (Montgomery, 2009) and
� = m(n – 1). According to Jones et al. (2001) and Saleh et al. (2013), this estimator is
considered the most efficient unbiased estimator for the EWMA chart as well as the
AEWMA chart.

In this section, the design parameters used for the AEWMA are n = 14, k = 0.0308, L =
0.31023, and k = 3.6056, which are the optimal design parameters at pair of shifts (d1=0.1
and d2 = 1). For the EWMA chart, the design parameters n = 10, k = 0.0233, and L = 2.3407

Table 4.
Optimal design of the

AEWMA control
chart under different

combinations of
shifts for the

economic model

d 1 d 2 n h l L k ARL0 ARL1 ARL2 EC

0.2 1 13 0.7275 0.1383 0.4983 3.249 39.796 7.924 1.388 21.004
0.3 1 16 1.0269 0.2816 0.8500 3.953 44.562 4.342 1.164 18.984
0.1 1.5 9 0.5157 0.0470 0.1943 2.712 28.460 16.456 1.042 24.694
0.2 1.5 13 0.6683 0.1321 0.5108 3.337 49.678 8.590 1.023 21.024
0.3 1.5 13 0.8535 0.2333 0.7725 4.366 52.983 5.229 1.018 19.016

Table 3.
Optimal design of the

AEWMA control
chart under different

combinations of
shifts for the

economic-statistical
model

d 1 d 2 n h l L k B0 B1 B2 ARL0 ARL1 ARL2 EC

0.2 1 13 0.3919 0.0844 0.5845 3.714 500 22 1.5 501.634 16.879 2.022 22.538
0.3 1 12 0.5020 0.1454 0.8126 4.406 500 12 1.5 500.708 9.627 2.138 19.835
0.1 1.5 10 0.2058 0.0236 0.2568 4.336 500 65 1.2 502.986 54.717 1.570 28.748
0.2 1.5 12 0.3706 0.0769 0.5492 4.755 500 22 1.2 501.615 17.817 1.415 22.507
0.3 1.5 12 0.5022 0.1415 0.7990 4.805 500 12 1.2 500.429 9.623 1.393 19.833
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are used, which are optimal for the shift of size d = 0.1. However, n = 15 and L = 3.09024 are
the optimal parameters of the Shewhart X at shift of size d = 1. Notice that the value of L for
each chart is slightly different from that given in Section 3 in order to produce exactly an in-
control ARL of 500. In our study, the comparison between the competing charts is based on
a standardized shift (d�) of size (0.5, 1, 2, 3, 4, or 5) and different values ofm, ranging from 20
to 1100.

Tables 5–7 show the values of the AEC and SDEC corresponding to different shifts at
different values of m for the three competing charts; Shewhart, EWMA, and AEWMA
charts, respectively. The last row represents the values of expected cost in the known
parameters case. In these tables, the values are obtained using simulation with 20,000
replications.

As shown in these tables, as m increases, the values of the AEC measure decrease and
converge the costs in case of known parameters. This can be observed for the three charts.
Moreover, it can be noted that at the shifts of size less than or equal 2, the EWMA chart has
the best performance in the sense of having lowest AEC values, followed by the AEWMA
chart and then the Shewhart X chart. On the other hand, by comparing the economic
performance of the three considered charts at the shifts of size greater than or equal 3, it is
found that Shewhart chart is better in terms of the AEC measure followed by the AEWMA
chart and then the EWMA chart.

Furthermore, by considering the SDEC measure, it can be observed that at the size shift
less than or equal 3, the EWMA chart has SDEC values less than that of the AEWMA chart.
While the Shewhart chart has the lowest SDEC values at large values of the shift. Therefore,
it can be concluded that the AEWMA chart provides a balance between the economic
performance at small and large shifts. Thus, from the economic point of view, the most
efficient chart to detect different shift sizes is the AEWMA chart.

Moreover, a histogram for the simulated values of the expected cost is used to study to
what extent them affecting the distribution of the EC for the AEWMA chart. For example,
from Figure 1, we can see that the distribution of the expected cost is clearly skewed to the
right when 20 samples are used to estimate the parameters at a shift of size 0.5. This
observation is confirmed in Table 8, since the expected cost value would be between 24.170

Figure 1.
EC distribution for
the AEWMA control
chart atm= 20
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and 39.062 and between 24.053 and 48.166 for 80% and 90% of the practitioners,
respectively, atm = 20. In addition, the minimum value of expected cost is 23.564, while the
maximum is 80.781.

More information is provided by the visual diagnostic presented in Figures 1–4. These
figures show that the higherm, the lower skewness of the expected cost distribution. This is
also confirmed in Table 8, where the expected cost value would be between 25.512 and
26.886 and between 25.375 and 27.140 for 80% and 90% of the practitioners, respectively,
usingm = 1100. In addition, the minimum value of expected cost increased to 24.755, while
the maximum decreased to 29.647. It is worth to mention that this analysis was done using

Figure 3.
EC distribution for

the AEWMA control
chart atm= 500
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EC distribution for

the AEWMA control
chart atm= 100
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various shift sizes for the three considered charts. The results are not shown here. However,
the general conclusions obtained from the previous example considered are also supported
through these results.

5. Conclusions
This paper proposes a procedure to obtain the optimal design parameters of the
economic and economic–statistical designs of the AEWMA control chart for
controlling process mean. In order to illustrate the applicability of this procedure
and to show how the optimal design parameters of the AEWMA chart can be
obtained, a numerical example is introduced. Comparisons between the optimal
economic–statistical and the optimal economic designs in terms of cost and
statistical performance are made. Theses comparisons reveal that adding the
statistical constrains leads to a slight increase in the expected cost. However, the
improvement in the statistical performance is substantial in return.

Moreover, in this paper, comparisons are made between the economic performance of the
AEWMA, EWMA and Shewhart charts in terms of the AEC and standard deviation of
expected cost. In general, it is evident from these comparisons that a balanced performance
can be obtained from the AEWMA chart at small and large shifts. Thus, from the economic
point of view the AEWMA chart is the most efficient chart when we are interested in
detecting shifts of different sizes.
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