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Abstract

Purpose – This study aims to assess the effect of updating the Phase I data – to enhance the parameters’
estimates – on the control charts’ detection power designed to monitor social networks.
Design/methodology/approach – A dynamic version of the degree corrected stochastic block model
(DCSBM) is used to model the network. Both the Shewhart and exponentially weighted moving average
(EWMA) control charts are used to monitor the model parameters. A performance comparison is conducted for
each chart when designed using both fixed and moving windows of networks.
Findings – Our results show that continuously updating the parameters’ estimates during the monitoring phase
delays the Shewhart chart’s detection of networks’ anomalies; as compared to the fixed window approach. While
the EWMA chart performance is either indifferent or worse, based on the updating technique, as compared to the
fixed window approach. Generally, the EWMA chart performs uniformly better than the Shewhart chart for
all shift sizes. We recommend the use of the EWMA chart when monitoring networks modeled with the DCSBM,
with sufficiently small to moderate fixed window size to estimate the unknown model parameters.
Originality/value – This study shows that the excessive recommendations in literature regarding the
continuous updating of Phase I data during the monitoring phase to enhance the control chart performance
cannot generally be extended to social network monitoring; especially when using the DCSBM. That is to say,
the effect of continuously updating the parameters’ estimates highly depends on the nature of the process being
monitored.

Keywords DCSBM, Fixed window, Moving window, Social network, SPC

Paper type Research paper

1. Introduction
Statistical process control (SPC) is a set of statistical techniques used to achieve process
stability through reducing its variability to the extent possible. Control charts are one of the
most important and common SPC tools. Their main objective is to monitor processes with the
aim to detect changes in the process parameter(s) (e.g. mean, variance, number of defects, etc.)
resulting from special causes of variation. Control charts are usually implemented through
two phases; Phase I and Phase II. In the case of unknown process parameters, the Phase I
analysis is implemented in order to reliably estimate the unknown control chart limits used to
monitor the process in Phase II (themonitoring phase). SPC techniques are commonly applied
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inmanufacturing and service industries. Recent applications of the SPC techniques have been
discovered; among which is the social network analysis.

Social network analysis (SNA) implies monitoring a pattern of communications between a
groupof actors over time to identify anddetect unusual levels of interactions among them.There
exists a number of important applications of social networks; e.g. online social systems, security
monitoring, advertisement targeting, financial transactions, terrorist networks and e-mail
networks (Savage et al., 2014). For example, SNA can be used to track, analyze and assess
terrorist (dark) networks; by which it can shed the light on their structures of recruitment and
evaluate the roles played by their individuals. Also, in the marketing field, SNA can be used to
assess the extent by which a certain marketing campaign succeeded; through monitoring the
clients’ interactions on the promoted products on the company’s website. In the literature,
various statistical methods have been proposed for monitoring social networks with the aim of
detecting significant changes in a networks’ structure. Among these methods are the scan
statistic methods (Priebe et al., 2005; Marchette, 2012; Zhao et al., 2018b) and the modeling
method; e.g. the degree corrected stochastic block model (Karrer and Newman, 2011; Yan et al.,
2014;Wilson et al., 2019), the log-linear model (Wasserman and Pattison, 1996; Miller et al., 2013)
and the logistic regression model (Wasserman and Pattison, 1996; Azarnoush et al., 2016).
Recently, SPC tools have been used as additional statistical methods for monitoring social
networks. Zhao et al. (2018b) illustrated that a structural change in the network can be detected
through using somebaseline data (namelywindowof data) to identify the typical behavior of the
network’s individuals (nodes). If the network nodes’ behavior deviated from this typical
behavior, then it is considered “anomalous”. Savage et al. (2014) defined social network
anomalies to be the changes that happen in the network structure as a consequence of the
deviations in the pattern of communications between some or all the nodes in the network. It is
worth mentioning that social networks are non-stationary by nature; which means that the
pattern of communications changes constantly over the time (Woodall et al., 2017). Thus, the aim
of social network monitoring is to detect significant and influential changes.

A variety of models have been proposed to describe social networks; ranging from the
simplest models (such as Erd€os-R�enyi’s (1959) model) that just represent the connection
probability between the nodes to the most complex models depicting the properties of
realistic networks such as degree heterogeneity and community structure. The degree
corrected stochastic block model (DCSBM), introduced by Karrer and Newman (2011), is one
of the models designed for network surveillance. It basically models the community structure
in networks with degree heterogeneity. Wilson et al. (2019) integrated an SPC technique with
a parametric random graphmodel to monitor dynamic networks in order to detect significant
structural anomalies. They applied the Shewhart control chart to monitor the parameters of a
dynamic version of the DCSBM. They depended on a fixed-time and fixed-size window of
data (networks) to estimate reliable Shewhart control limits. Different studies in the literature
have shown that continuously updating the control limits’ estimates during the on-line
monitoring of the process improves the chart’s performance in detecting out-of-control
conditions. To our knowledge, no comparative studies between fixing and updating the
control limits have been conducted on social network monitoring.

Motivated by the recommendations of Wilson et al. (2019), this study basically aims to
extend their work through the use of the moving window approaches in estimating the
Shewhart limits rather than the fixed window approach. Two types of the moving window
approach are considered; the fixed-sized moving window and the variable-sized moving
window. A fixed-sized moving window implies that, with each newly drawn observation, the
window is updated by excluding the oldest observation and including the newest one; under
the condition that the latter is not an anomaly. A variable-sized moving window starts with a
small-sized window and then gradually increases by the inclusion of in-control Phase II
observations until it reaches a certain pre-determined size, then the oldest observation is

REPS
6,4

312



excluded and the most recent one is included. Also, it is of interest to extend Wilson et al.’s
(2019) study bymonitoring the DCSBMparameters using the exponentiallyweightedmoving
average (EWMA) control chart with both fixed andmovingwindow types. The EWMAchart
is well-known to be more efficient in detecting small magnitudes of shifts as compared to the
Shewhart chart. For each control chart, Shewhart and EWMA, a performance comparison is
conducted when using fixed window, fixed-sized moving window and variable-sized moving
window in estimating the chart control limits.

The remainder of the paper is organized as follows. Section 2 provides a review on the
DCSBM. Section 3 illustrates the procedure of using quality control charts in monitoring
the DCSBM parameters. Section 4 presents a performance comparison between the fixed and
the different moving window approaches when used in monitoring the DCSBM parameters.
Finally, Section 5 highlights the concluding remarks and the study recommendations.

2. The degree corrected stochastic block model
Relationshipswithin a social network, defined asG5 (V,E), can bemodeled as a graphwith a
set of nodes (V) representing, e.g. people, e-mails, universities, etc., and a set of edges (E)
representing the links or connections between these nodes. The number of the nodes in the
network is referred to as the network order, while the number of edges between the network
nodes is referred to as the network size (see, for example, Hoppe and Reinelt, 2010; Landherr
et al., 2010;Woodall et al., 2017;Wilson et al., 2019). Suppose having a network that consists of
n nodes at time points t5 1, 2, 3, . . ., then the information about the edges in this network at
each time point can be presented in form of a matrix. This matrix is called Adjacency Matrix
At 5 [aij] of order n 3 n, where i 5 1, 2, . . ., n, and j 5 1, 2, . . ., n. Each matrix entry (aij)
represents the communication level between the ith node and jth node such that i ≠ j. Hence,
the main diagonal elements ofAt are all zeros. In literature, different statistical models have
been used for monitoring social networks in order to detect significant changes in networks’
structures. This study is interested in the DCSBM which is considered to be an extension for
the stochastic block model (SBM) applied by Fienberg and Wasserman (1981), Holland et al.
(1983), Snijders and Nowicki (1997) and Bickel and Chen (2009).

In practice, networks are often divided into groups or communities. A community is
usually defined as a set of nodes with more connections inside the set than outside. This
implies that the number of edges between the nodes in the same community is larger than the
number of edges between the nodes in different communities. The SBM is one of the model-
based methods introduced to represent the community structure in networks. However, the
SBM has some restrictions reflected in its assumptions. For example, it assumes that all the
nodes within the same community are stochastically equivalent. This means that the model
ignores the variation in the nodes’ degrees within a community. Thus, the probability of an
edge between two nodes is a function in the nodes’membership onlywhich is often unsuitable
for most real networks (see, for example, Zhao et al., 2012; Yan et al., 2014). A node’s degree is
one of the most well-known centrality measures in social network analysis that reflects the
role of the node in the network. It is defined as the number of communications (edges) inwhich
the node of interest takes part with other nodes. It measures the tendency of the node to
communicate with the remainder of the network by determining the number of nodes that
could be reached by the node of interest directly. The ith node degree is calculated as follows;

dðiÞ ¼
Xn

j¼1

aij; i ¼ 1; 2; . . . ; n; (1)

where aij is the ijth element of the adjacency matrix At defined previously.
Karrer and Newman (2011) presented an improved version of the SBM that is called the
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heterogeneity within communities that allows variation in the nodes’ degree within the same
community. The DCSBM is a probability distribution Pð$Þ ¼ Pð$jθ;π;PÞ that is
characterized by three main parameters; which are: (1) the degree parameters vector

θT ¼ ðθ1; θ2; . . . ; θnÞ of order 13 n representing the propensity of the ith node to connect,
i5 1, 2, . . ., n; (2) the containment probabilities vector πT ¼ ðπ1; π2; . . . ; πkÞ of order 13 k
representing the probability of a node to belong to community r, where r 5 1, 2, . . ., k, andPk
r¼1

πr ¼ 1, and (3) the symmetric connectivity matrixP5 [Pr;s] of order k 3k, where r, s5 1,

2, . . ., k, representing the propensity of connection between nodes in the communities.
When generating a random graph with n nodes and k communities under the DCSBM,

the nodes are usually assigned randomly to communities with labels cT ¼ ðc1; c2; ::; cnÞ,
where ci ∼Multinomial ð1; π Þ; such that i ¼ 1; 2; . . . ; n; and πT ¼ ðπ1; π2; . . . ; πkÞ.
However, the community labels are sometimes determined deterministically and not generated
randomly asmentioned above.Wilson et al. (2019) assumed that the community labels are fixed,
which is also assumed in this study. In addition, the number of the edges (wi;jjθ; c;PÞ;where i,
j5 1, 2, . . ., n, is generated from thePoisson distributionwithmeanEðwi;jjθ; c;PÞ ¼ θi θj Pci ;cj,
where Pci ;cj presents the propensity of connection between nodes in the communities to which
nodes i and j belong. Following Wilson et al. (2019), the maximum log-likelihood estimators
(MLEs) for the DCSBM parameters are given by

bθi ¼ dðiÞ
n−1r

P
w:cw¼ci

dðwÞ
bpr;s ¼ mr;s

nrns
(2)

where
P

w:cw¼ci

dðwÞ is the sum of the degree measures for all nodes that belong to the community to

which the node of interest (i.e. ith node) belongs, nr and ns represent the number of nodes in
community r and community s, respectively, and mr;s represents the total weight of edges
between community r and s.As shown, theMLEs for all theDCSBM’s parameters have a closed-
form expression.

The identification of this model requires a constraint which is
P
i:ci¼r

θi ¼nr which means

that the sum of θi for all nodes within the same community is equal to the total number of
nodes in it. For further details, the reader is referred to Yan et al. (2014) andWilson et al. (2019).

3. Monitoring the DCSBM using quality control charts
As previously illustrated, the main objective of network surveillance is to detect any influential
change in the communication level between the network nodes. Identifying changes in the
communication pattern requires inferring the normal structure of interactions across a sequence
of networks, such that any shift from this norm at any time point is considered an anomaly.

One approach to detect anomalies is to monitor social networks using control charts. With
control charts, a statistic St should be determined to represent some summary of the network
structure. This statistic St could represent, for example, any of the common global centrality
network metrics (e.g. closeness, betweenness, degree, links per node, . . . etc.), or some
likelihood ratio statistic associated with a parameter of a parametric model describing the
network. Once St is specified, it is calculated for each network within a window of data which
serves as a baseline data of size m. Then, using these m statistics ðStÞ, the Phase II control
limits are estimated. Variations between these control limits define the typical behavior
between the nodes in the network. For t > m, the on-line monitoring phase starts such that St
is calculated for each new network and somehow compared with the estimated control limits.
If it exceeds the limits, then a possible structural change in the network has occurred.
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Wilson et al. (2019) studied the effectiveness of the DCSBM inmonitoring the randomgraphs
through a strategy that merges the probabilistic model for modeling the dynamic networks and
control charts. They utilized this strategy to analyze and monitor the behavior of individuals in
networks through time. They used the Shewhart control chart to monitor the estimated
parameters of the DCSBM defined in Equation (2) to identify the anomalies that occur in the
network structure. In this study, their steps are followed in monitoring the DCSBM parameters
using both the Shewhart and EWMA charts. Their approach can be described as follows:

(1) Suppose having a group of networks Gt over the time t 5 1, 2, . . ., m, . . ., such that
Gt5 ([n],wi;j; i; j¼ 1; 2; . . . ; n), where n is the number of nodes in each network, andwij

presents the number of edges between node (i) and node (j). Each network consists of k
communities.

(2) At each time point (t), the MLEs for θ and P are calculated as defined in Equation (2);
each representing the monitored statistic St. Note that each parameter is monitored
separately.

(3) The first m networks are then used to design the desired control chart; representing
the Phase I data set. That is, the control limits are estimated using them statistics (St)
calculated from the baseline networks Gt ∈ fG1; . . . ;Gmg representing different
snapshots of the network, each of n nodes, through the time points t ¼ 1; 2; ::::;m. In
this study, the control limits are designed using the mean and standard deviation of
the m statistics (St); namely bμS and bσS, respectively.

(4) The estimated control limits are then used in monitoring the networks starting from
time t > m. At each time point t > m, the statistic St (representing each one of the
MLEs) is calculated for each new networkGt and plotted on its corresponding control
chart. If the chart statistic exceeds one of the control limits, then there is a possible
structural change in the network.

As previously mentioned, both the Shewhart and EWMA charts are used to monitor the
maximumlikelihoodestimatorsof theDCSBMparametersdefined inEquation (2). In thenext two
subsections, the two control charts designed to monitor the DCSBM parameters are presented.

3.1 The Shewhart control chart
Statistical control charts concept was first introduced by Shewhart (1924). For monitoring the
DCSBM parameters, the plotted chart statistic at time t is St. The chart signals when St
exceeds the estimated control limits given by;bμS ±LhbσS ; (3)

where Lh is a chart design parameter whose value is chosen to satisfy a specific value for the
in-control average run length (ARL). The run length is defined as the number of plotted chart
statistics until the chart gives a signal.

Shewhart charts are considered the simplest type of control charts in terms of its
computations and interpretation. However, they are only effective in detecting large
magnitudes of shifts in process parameters. This is because they depend only on the current
statistic to sentence the process.

3.2 The EWMA control chart
The EWMA control chart was proposed by Roberts (1959). The EWMA chart assigns
weights for both the recent and the previous observations. Accordingly, the chart effectively
detects small and moderate magnitude shifts in process parameters. The EWMA chart
statistic is defined as;
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Zt ¼ λ St þ ð1� λÞZt−1; 0 < λ≤ 1; t ¼ 1; 2; 3; . . . ; (4)

where Zt is the current EWMA statistic at time t, Zt−1 is the previous EWMA statistic at time
(t�1), St is the current sample statistic at time t and λ is a chart design parameter – referred to
as a smoothing parameter – representing theweights assigned to the observations. The value
Z0 is often set to the target value of the process parameter of interest. The estimated
asymptotic control limits of the EWMA chart are given by;

bμS ±Le

ffiffiffiffiffiffiffiffiffiffiffi
λ

2� λ

r bσS ; (5)

where Le is another chart design parameter that is chosen to produce a desired value for the
in-control ARL. If one is interested in detecting small shifts in the process parameters, small
weights (λ) are given to the recent observations.

4. Performance assessment
In this simulation study, it is of interest to monitor undirected weighted networks. An
undirected network implies that each entry aij in the adjacency matrix At presents the
communication level between nodes (i) and (j) regardless of who initiated the communication.
In this case, the matrix At is symmetric. A weighted network implies that the entry aij
presents weights for the level of communications between the nodes such as the number of
contacts for each pair (i, j) of nodes; in which case aij is modeled by a Poisson distribution.

Furthermore, the networks’ community structure is assumed to be previously
determined, and the initial form of the matrix P is set the same as in Wilson et al.’s (2019)
study; in which

P ¼
�
0:2 0:1
0:1 0:2

�
:

That is, the values on the main diagonal of P are twice those on the off-diagonal. This is
because, it is expected that the nodes within the same community are more likely to
communicate with each other than those from different communities. Also, each network is
assumed to have n 5 100 nodes and k 5 2 equally-sized communities.

The uniform distribution is used to generate θi, i ¼ 1; 2; . . . ; n; with parameters (1�δci,
1þδci ); such that δci¼r ¼ 0:5; r ¼ 1; 2; . . . ; kbased on the ith node membership. The uniform
distribution is chosen for simplicity. Wilson et al. (2019) pointed out that any non-negative
random variable with finite mean and variance could be used. For example, Zhao et al. (2018a)
used the Pareto distribution to generate θi to represent degree heterogeneity with skewed
degree distributions. Then, these values are scaled to satisfy the constraint,

P
i:ci¼r

θi ¼ nr,

which is necessary for the model identification.
It is important to note that the statisticbθi defined in Equation (2) is calculated for each node

i ¼ 1; 2; . . . ; n, but it is practically impossible to build a single control chart for each bθ:
Accordingly, Wilson et al. (2019) suggested monitoring the pooled estimate of the standard

deviation of the estimates bθi. Hence, when the chart is designed to monitor the connection
variability between all nodes in the network, the pooled estimate of the standard deviation ofbθ is calculated based on sd1 and sd2 where;

sdr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nr � 1

X
i:Ci

¼r

ðθ_i � 1Þ2
vuut ; r ¼ 1; 2: (6)
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In this study, both the fixed window and the fixed-sizedmovingwindow approaches are used
with two possible window sizes; m 5 500 or m 5 1,000 networks. As for the variable-sized
moving window, it starts with two possible initial window sizes; m 5 100 or m 5 400
networks, in which they gradually increase to reach m 5 500 and m 5 1,000 networks,
respectively. Using 5,000 simulation runs, the steady-state average of average run length
(AARL) metric is calculated. The steady-state ARL is defined to be the average number of
samples until a signal is given after the process condition has reached a steady-state (i.e.
process is running for a long period in an in-control condition). The values of the shift sizes
ðε and τÞare same as that used inWilson et al.’s (2019) study. Table 1 provides a description
for the out-of-control scenarios considered in the simulation study. The first column
enumerates the scenario’s reference number. The second column illustrates the change
introduced to the model parameter(s). The third column entitles the control chart expected to
detect the corresponding parameter(s) change. It is worth to note that Wilson et al. (2019) ran
all the control charts listed in the third column in each and every out-of-control scenario. In
this simulation study, the same criteria are followed and the same conclusion is obtained.
That is, as long as the control chart is not designed to monitor the parameter of interest, it
does not signal prior to the chart designed for monitoring it. Accordingly, the results
presentation is restricted on the performance of the chart designed for monitoring the
specified parameter.

In the simulation settings, the Shewhart and the EWMA chart design parameters (Lh) and
(λ;Le), respectively, are determined such that they produce a nominal in-control ARL value of
about 370. Tables 2 and 3 provide the values of these design parameters obtained using 5,000
simulation runs.

Tables 4–8 present the AARL values of the Shewhart and EWMA charts designed using
the fixed window, fixed-sized moving window and variable-sized moving window
approaches for each of the out-of-control scenarios (1–5) illustrated in Table 1.

Case Description Control chart

1 Local change in the mean interaction within the
first community (i.e. P*

11 ¼ P11þ ε)
P11

2 Global changes in the mean interaction within and
between the communities (i.e. P*

ij ¼ Pijþ ε)
P11;P12;P22

3 Local change in the connection variability within
the first community (i.e. δ*1 ¼ δ1þ τ)

“S” which is a pooled estimate of the standard
deviation of bθ based on sd1 and sd2 defined in
Equation (6)

4 Global change in the connection variability
between all nodes in the network (i.e. δ*r ¼ δrþ τ)

“S” which is a pooled estimate of the standard
deviation of bθ based on sd1 and sd2 defined in
Equation (6)

5 Merge of communities; i.e. all nodes are equally
likely to communicate

P11;P12;P22

Window type Fixed Fixed-sized moving
Variable-sized

moving
Window size (m) 500 1,000 500 1,000 500 1,000

Control chart
P11 2.975 2.989 3.030 3.015 3.030 3.020
P12 2.975 2.989 3.020 3.015 3.035 3.010
P22 2.975 3.002 3.020 3.015 3.030 3.010
S 2.975 3.002 3.020 3.015 3.035 3.015

Table 1.
A description for the

out-of-control
scenarios considered in
this simulation study

Table 2.
The design parameter
values of the Shewhart
control chart (Lh) that
produce an in-control

ARL value of 370 when
monitoring the DCSBM

parameters
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Generally, the simulation results show that global changes introduced either in the mean
interaction or in the connection variability among the nodes (Tables 5 and 7) can be detected
more quickly than local changes (Tables 4 and 6) using the control charts, as expected. In all
cases, large changes can also be detected more quickly than small or moderate changes.

As shown, in all of the out-of-control scenarios considered, the Shewhart control chart
performs significantly better when its control limits are estimated using a fixed window of
networks than when estimated using any of the moving window approaches (fixed or
variable). When a window of sizem5 500 is used, the Shewhart chart designed with a fixed
window of networks requires at least half the number of networks required if it is designed
with any of the moving window approaches to detect an anomalous behavior in the network.
When m increases to 1,000, the differences in the chart performance between the three
approaches almost diminish. Moreover, the use of the fixed window approach incorporates a
significantly lower variability in the ARL values among different practitioners than that of
the moving window approaches. See, for example, Figures 1 and 2 where the ARL
distribution of both the Shewhart P11-chart and S-chart for simulation cases (2) and (3),
respectively, is highly skewed to the right with awide spread of values in themovingwindow
approaches comparing with that of the fixed window. Additionally, in case of using the fixed
window approach, it is not required to increase the window size to estimate the control limits,
as the out-of-control AARL for bothm5 500 andm5 1,000 are very close in values. On the
other hand, if the fixed-sized or the variable-sized moving window approaches are used, it is
recommended to enlarge the window size.

As for the EWMA chart, the simulation results indicate that its performance is indifferent
whether the fixed window or the fixed-sized moving window of networks is used in estimating
its control limits. This is because both approaches provide almost the same out-of-control
AARL values. However, if the variable-sized moving window is used, the EWMA chart is
delayed in detecting the out-of-control conditions comparing to the fixed window and fixed-
sized moving window approaches, especially for small to moderate window sizes. As an
example, Figures 3 and 4 present the out-of-control ARL distribution for both the EWMA P11-
chart and S-chart for simulation cases (2) and (3), respectively. As shown, the distribution of the
ARL values and its spreading is almost identical whether the fixed window approach or the
fixed-sizedmovingwindow approach is used. However, the ARL distribution that corresponds
to the variable-sized moving window has higher values and more variability. Moreover, it is
noticed that increasing thewindowsize (m) has no remarkable effect aswell on the performance
of the EWMA chart; only if it was not designed using the variable-sized moving window. This
is true for all cases except Case (3), in which at small shift size (e.g. ε ¼ 0:05) and moderate λ
(e.g. λ ¼ 0:2), the fixedwindowapproach is better than both of themovingwindow approaches.
Generally, the EWMA chart performance significantly surpasses that of the Shewhart chart.

In literature, it is usually recommended and more preferable to continuously update the
Phase I data during the monitoring process to have a better estimation for the control chart

Window type Fixed Fixed-sized moving Variable-sized moving
Window size (m) 500 1,000 500 1,000 500 1,000
Smoothing
parameter ðλÞ 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

Control chart
P11 2.52 2.85 2.51 2.85 2.408 2.85 2.449 2.85 2.35 2.84 2.42 2.84
P12 2.52 2.85 2.51 2.85 2.408 2.85 2.45 2.85 2.35 2.85 2.43 2.85
P22 2.52 2.85 2.51 2.85 2.408 2.85 2.45 2.85 2.35 2.85 2.44 2.85
S 2.52 2.85 2.51 2.85 2.408 2.85 2.45 2.85 2.35 2.84 2.42 2.85

Table 3.
The design parameters
values of the EWMA
control chart (Le, λ) that
produce an in-control
ARL value of 370 when
monitoring the DCSBM
parameters
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limits, and consequently an efficient Phase II chart performance (see, for example, Xia et al.,
2013; De Ketelaere et al., 2015; Azarnoush et al., 2016). Yet, the results on monitoring the
parameters of the DCSBM that models social networks show the complete opposite. One of
the explanations for this is that the social networks are non-stationary by nature, and hence
the criteria of the moving windowwould let the nodes’ behavior close to the current behavior.
Accordingly, the control chart would delay in differentiating between the anomalous
situation and the typical situation. In addition, this delay in detecting anomalous cases results
in including some contaminated samples (undetected out-of-control samples) in the
continuously updated Phase I data set, and hence affecting the estimates reliability and
accordingly the chart performance, especially for small shifts. A further explanation for the
deteriorated performance of the variable moving window case in comparison with that of the
fixed window approaches might be due to the use of smaller initial window sizes.

To summarize, the findings show multiple advantages for the use of the EWMA chart
over the Shewhart chart when monitoring the DCSBM parameters. Accordingly, it is highly
recommended the use of the EWMAchart with small smoothing parameter to detect any shift

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Variable-sized Moving Window

Fixed-sized Moving Window

Fixed Window

0 50 100150200250300350400450500550600650700750800850900950
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Figure 1.
Out-of-control
distribution of the
conditional ARL of the
Shewhart P11-chart
when m 5 500, and
e 5 0.01 – simulation
case (2). The boxplots
show the 5th, 10th,
25th, 50th, 75th, 90th
and 95th percentiles of
the conditional ARL
distribution

Figure 2.
Out-of-control
distribution of the
conditional ARL of the
Shewhart S-chart when
m5 500, and e5 0.05 –
simulation case (3). The
boxplots show the 5th,
10th, 25th, 50th, 75th,
90th and 95th
percentiles of the
conditional ARL
distribution
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size in the DCSBM parameters. To overcome complexity in application, it is also
recommended to design the EWMA chart using the fixed window approach. This is
because it is simpler and provides almost the same or even better EWMA out-of-control
performance than the moving window approaches. Additionally, only small- to moderate-
sized window of networks would be sufficient to estimate the EWMA limits. Thus, the
practitioner would not wait long till he/she starts monitoring a network.

It is worth tomention that if it is of interest to enlarge thewindow size in order to assess the
performance of the methodology under convenient conditions as recommended by Wilson
et al. (2019), then it is recommended to design the EWMA chart using a variable-sized moving
window. This is because it provides almost the same out-of-control performance as the fixed
window approach in such a case. In addition, the practitioner would not wait long before
starting monitoring a network as it starts with smaller initial window size of networks (e.g.
m 5 400) and then gradually increase to reach the pre-determined size (e.g. m 5 1,000)
networks instead of using a large fixed window size (e.g. m 5 1,000) networks. By that, the
practitioner would not be under the risk of including undetected contaminated observations
in the Phase I data.
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Figure 3.
Out-of-control

distribution of the
conditional ARL of the
EWMA P11-chart when
m5 500, λ5 0.05, and
e 5 0.01 – simulation
case (2). The boxplots
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distribution

Figure 4.
Out-of-control
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5. Conclusion
Wilson et al. (2019) evaluated the DCSBM using a strategy that combines a parametric model
for modeling the random graphs and one of the statistical process monitoring tools. In their
study, theymonitored the DCSBMparameters using the Shewhart control chart while relying
on fixed-sized windows of networks to estimate its control limits. In literature, a usual
recommendation is to continuously update the process parameters’ estimates with the recent
behavior (observations) of the monitored process. This would guarantee a more efficient
control chart performance.

Motivated by these recommendations, it is of interest to extend the work of Wilson et al.
(2019) by conducting a performance comparison on the DCSBM strategy when evaluated
using a fixed window, fixed-sized moving window and variable-sized moving window
approaches; under different scenarios of changes in the network structure. Furthermore, the
Shewhart and EWMA charts are also selected as the SPC tools used in monitoring the
DCSBM parameters.

The simulation results show that enhancing the chart detection power for out-of-control
conditionsby continuouslyupdating the parameters’ estimates cannot begenerally extended to
social network monitoring. Monitoring the DCSBM parameters showed that the fixed window
approach provides better out-of-control performance to the Shewhart chart than the moving
window approaches, with sufficiently small to moderate window size. On the other hand, the
EWMA chart performance is almost indifferent whether the fixed window or fixed-sized
moving window approach is used, but highly deteriorates when the variable-sized moving
window approach is used. One of the explanations is that social networks behavior is different
from other industrial/manufactory processes; as the former is non-stationary by nature.

We recommendusing theEWMAchart over the Shewhart chartwhilemonitoring networks
modeled with DCSBM for detecting any expected shift size. Also, we recommend the use of the
fixed window approach, for simplicity reasons, with a small to moderate window size or the
variable-sized moving window approach, for statistical reasons, with a large window size. In
future work, it would be useful to evaluate this framework that combines a parametric model
for modeling the random graphs and one of the statistical process monitoring tools under more
different realistic models and different types of control charts.
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