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Abstract
Purpose – This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the
prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts
produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing
based on direct metal laser sintering (DMLS).
Design/methodology/approach – PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed
fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up
the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and
compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.
Findings – Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile
and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however,
PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.
Originality/value – This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature
survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions
using advanced statistical tools to derive the proximity of the investigated processing routes.

Keywords Powder injection molding, Material extrusion, Powder bed fusion, Environmentally benign binder, Advanced statistics,
Surface roughness, Strength, Ductility

Paper type Research paper

1. Introduction

The techniques and process parameters of powder injection
molding (PIM) and the corresponding additive manufacturing
(AM) approaches should result in products of similar quality.
However, for both technologies, there are still inherent
compromises in the compositions of the materials, product
design, process parameters and resulting properties, such as
sintered density, residual stresses and mechanical integrity
(Bengisu, 2001; Chen et al., 2019; German, 2011; Guo et al.,
2017; Hinojos et al., 2016; Nötzel et al., 2018; Wu et al., 2014).
The possibility of merging high-volume PIM and individual-to-
medium-volume AM opens and broadens innovative
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applications where specific needs benefit from sharing the
common features of both processes (Nötzel et al., 2018).
Material extrusion (MEX)-based AM techniques enable

efficient production without the need for a mold or tooling
(Ebel, 2019; Vyas et al., 2017), thereby balancing the
advantages of AM rapid prototyping and PIM high volumes.
There is a minimum powder loading, which must be achieved
for a part to be sinterable, but at the same time, high-loaded
filaments are brittle and impossible to spool (Kukla et al.,
2016). The strength limitations of the filaments originate from
the viscosity and surface tension of the material, which directly
impact the layer-to-layer sintering/bond formation of MEX
parts (Fallon et al., 2019; Mackay, 2018; Young et al., 2018,
2019). This is further complicated by the existence of the
theoretical maximum viscosities of melts that can be produced
with MEX (Fallon et al., 2019) as well as through PIM
(Mukund et al., 2015).
Successful examples of developed filaments were reported

for copper in acrylonitrile-butadiene-styrene copolymer
(Sa’ude et al., 2013), for iron powder in polyamide (Masood
and Song, 2004) and for alumina in low density polyethylene/
paraffin-based binders (Nötzel et al., 2018). The feasibility of
using feedstocks filled with 47Vol.% of zirconia powder
processed by fused deposition modeling (FDM), a type of
MEX technique, was investigated (Cano et al., 2019;
Gonzalez-Gutierrez et al., 2018). The 55Vol.% feedstocks for
mullite, fused silica and titanium dioxide ceramic powders were
prepared (Onagoruwa et al., 2001). The same loading was
achieved using a binder system developed byKukla et al. (2016,
2017) for 316L, Ti6Al4V, NdFeB and SrFe powders. Some
MEX techniques allow for higher powder loading if a paste is
used instead of solid filaments, as proposed by Lu et al. (2008)
for 60Vol.% alumina feedstocks.
Typically, it is easier to use the plunger or screw approaches

with granules, which are not limited in powder concentration as
filaments (Singh et al., 2021). In the case of the screw-based
approach, the disadvantage is the maximum extrusion flow rate
given by the need for a certain dwell time in a heated printing
head dedicated tomelting similar to a filament-based approach.
Meanwhile, the plunger-based approaches tend to be less
precise in the start/stop stages of the printing, and there are also
issues connected to the flow control due to feedstock
compressibility (Miclette et al., 2022; Côt�e et al., 2023).
However, there are attempts to develop a filament-based

approach to reach sufficient loading percentages, whereas
keeping the filament flexible enough to unspool without
breaking. In this respect, atomic diffusion AM (ADAM) should
be highlighted, as it represents the FDM technique, which uses
a standard FDM filament made of metal powders mixed with
thermoplastic polymers serving as a binder for highly filled
compounds (Galati andMinetola, 2019).
Similarly, feedstocks for PIM have been developed largely on

empirical attempts, with limited studies devoted to the
quantification of the interactions among particular feedstock
components (Bleyan et al., 2015a; Bleyan et al., 2015b;
Hausnerova et al., 2016). In this study, a recently developed
(Bleyan et al., 2015a; Bleyan, Svoboda, et al., 2015b)
environmentally benign binder was used, which allows
processing at lower temperatures than commercially available
polyolefin-based binders.

Themechanical and surface properties of AM and PIM parts
are governed by different process parameters. The surface
properties of some AM parts have rarely been compared with
those of conventional processing routes. Ruppert et al. (2017)
obtained a mean surface roughness of 23mm (Ra) via electron
beam melting (EBM), whereas direct metal laser sintering
(DMLS), which is a type of powder bed fusion technique
(PBF), revealed an Ra value of 10mm for titanium implants.
Costa Valente et al. (2021) compared the surface roughness
obtained by another PBF technique, selective laser melting
(SLM) and standard machining for Ti6Al4V dental implants
and showed that SLM samples had lower wettability and
rougher surfaces. Weißmann et al. (2018) tested EBM and
SLM on Ti6Al4V and reported a significant impact of surface
roughness (higher for EBM) on cellular viability. Vaithilingam
et al. (2016) studied the cytotoxicity of SLM with and without
mechanical polishing of Ti6Al4V and found almost no
dissolution of metal ions into the cell medium for both surfaces.
Padr�os et al. (2020) compared DMLS with casting (low-wax)
and computer aided design/computer aided manufacturing
milling of chrome–cobalt alloy dental prosthesis restorations
and obtained the highest Vickers hardness and roughest surface
for theDMLS samples.
The EBM and DMLS methods were also compared by

Soyama and Takeo (2020), who attributed the differences
between the roughness of Ti6Al4V alloymanufactured samples
to the differences in their mean particle size; Rz was 1.5 times
larger than that of the diameter of the used particles for both the
DMLS and EBM specimens. It was found (Shunmugavel et al.,
2017) that this alloy (Ti6Al4V) processed through SLM
provided lower surface roughness after machining than a
standard wrought stock; however, it was less ductile and
required higher cutting forces. It was also shown (Beaucamp
et al., 2015) that the unacceptable surface of Ti6Al4V
manufactured with EBM and SLS samples can be smoothed to
less than 10nm (Ra) with shape-adaptive grinding.
Surface roughness also affects the oxidation rate of samples

during their lifespan, as pointed out by Sanviemvongsak et al.
(2018) for the IN718 alloy, where as-built EBM samples with
raw surfaces show higher oxidation kinetics than SLM samples
and the wrought alloy because of their higher surface area.
Metallographic, crystallographic and topographic analyses of
DMLS, EBM and wrought Ti6Al4V samples (Acquesta and
Monetta, 2020) carried out on as-produced AM specimens,
together with potentiodynamic polarization tests, revealed
significantly different microstructures and electrochemical
behaviors when compared to the traditionally produced
specimen; however, the differences substantially diminished
aftermechanical polishing.
Our research aims to compare the mechanical properties of

sintered 17-4PH steel items with respect to surfaces created
through DMLS, MEX (specifically ADAM technique) and
PIM of the recently developed feedstock based on polyethylene
glycol and acrawax binders. Selection of the AM methods
follows the intention to demonstrate the similarities/differences
between AM (MEX) similar to PIM and AM (DMLS)
different from PIM, highlighting the presence of the unique
processing features on the surfaces. In addition, DMLS
powders were also used for the preparation of samples with
PIM to intercept the influence of particle size and size
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distribution of powder on the rheological, final mechanical and
surface properties of PIM.

2. Materials and methods

Stainless steel 17-4PH (Sandvik Osprey Ltd., D50 ¼ 31.8mm)
was used to produce DMLS samples on an EOS M290 (EOS
GmbH, Germany) using 400W Yb-fiber laser. The layer
thickness was 0.05mm, maximum build dimensions were 250
� 250 �325mm. Samples were sintered in a flat position. The
samples designated as DMLSBlasted were treated with
sandblasting. MEX samples were manufactured using a Metal
X system (Markforged, theUSA) withMarkforgedWASH-1 as
a debinding system. The infill was 100% using a 145°/–45°
infill angle. The layer thickness was 0.15mm, and the nozzle
diameter was 0.4mm.
PIM samples (designated PIMPIM) were prepared from the

feedstock containing stainless steel 17-4PH PIM-grade powder
(Sandvik Osprey Ltd., D50 ¼ 8.2mm). Additionally, 17-4PH
steel powder (D50 ¼ 31.8mm) used for DMLS samples was
also used to prepare PIM feedstocks (abbreviated PIMDMLS) to
compare the effect of particle size and size distribution on this
manufacturing approach. Particle size distributions were
evaluated with a laser diffraction particle size analyzer (Malvern
Mastersizer 3000, Malvern Panalytical Ltd, Malvern, the UK),
as shown in Figure 1.
A recently developed binder (Hausnerova and Novak, 2020)

containing PEG4000/PEG6000/AW/PW/SA (29.5/29.5/28/
12/1) Wt.% was selected to compound 60Vol.% feedstocks on
a counter-rotating twin-screw extruder (Plasti-corder PL 2000,
Brabender GmbH & Co, Duisburg, Germany). Two-round
extrusion was performed with temperature profiles of 90/75/
70°C and 65/60/55°C for PIMDMLS and PIMPIM, respectively.
The rheological properties of the feedstocks relevant for PIM as

well as MEX were determined using a capillary rheometer
(Göettfert 50, GÖTTFERT Werkstoff-Prüfmaschinen GmbH,
Buchen, Germany) with a capillary length-to-diameter (L/D) ratio
of 20/0.5 and 20/1 at the apparent shear rate range of 35–4,000s�1

and corresponding processing temperatures. Rheological
measurements (Figure 2) illustrate the complex dilatant and
pseudoplastic behavior of the PIM feedstocks. The optimum
feedstock viscosity for injection molding has been empirically
determined to be up to 103Pa.s at shear rates between 102 and 105

s�1 (Dihoru et al., 2000). Therefore, the PIMDMLS feedstock
showed viscosity at the upper limit of the optimal value for a certain
range of shear rates. The changes in flow from a pseudoplastic to a
dilatant indicate that particles could not form layers and slide over
each other as shown, e.g. by Hausnerova (2011). During
rheological tests on a 20/0.5 capillary, a binder separation
accompanied by an accumulation of powder particles on the walls
was observed for the PIMDMLS feedstock. A larger capillary
diameter (20/1) was also tested, but the significant pressure
instabilities at higher shear rates led to exclusion of the obtained
values. For the MEX filament, a significant degradation of the
material was observed during testing at 220°C (the temperature
recommended by the filament supplier). However, a relatively low
viscosity with a favorable pseudoplastic cause was obtained when
the temperaturewas lowered to 200°C.
Following injection molding was performed on a PIM

machine (Allrounder 370S, Arburg, ARBURG GmbH 1 Co
KG, Lössburg, Germany). Themolding conditions are listed in
Table 1, the testing specimens were type A according to EN
ISO2740:2009(E).
Thermal debinding and sintering of PIMDMLS, PIMPIM and

MEX were performed in a sintering furnace (CLASIC CZ s r.
o., Revnice, Czech Republic) under the conditions, as shown in
Table 2 and Figure 3. Micrographs of compounds were
obtained using a scanning electron microscope (SEM; VEGA
II LMU, Tescan Ltd., Czech Republic). An operating voltage
of 30 kVwas used.
The density after sintering was obtained using the

Archimedes method on the samples (five for each series) made
from a grip section of the bars for the tensile tests. MEX,
PIMPIM, PIMDMLS, DMLS and DMLSBlasted revealed values
of 7.3360.20, 7.236 0.04, 7.1160.05, 7.836 0.02 and
7.8560.02 g/cm3, respectively. The values of DMLS and
DMLSBlasted are higher than 7.8 g/cm3 of standardly machined
17–4PH steel according to the data sheet [1], which is in
accordance with Gu et al. (2013). Relative densities of samples
are then 94.0, 92.7, 91.1, 100.4 and 100.6% for MEX,
PIMPIM, PIMDMLS, DMLS and DMLSBlasted, respectively, of
the traditionally made 17–4 PH steel. The powder loading of
the MEX samples was calculated under the assumption that
VSint ¼ VS/dr, where VSint and VS represent the volumes of the
sintered sample and the fully dense 17–4PH steel, respectively,
and dr is the relative density of the sintered sample.The full volume
of the sample was derived from the enlargement rate (opposite to
the shrinkage rate). The green samples from the MEX feedstock
were approximately 1.16 times larger than the sintered samples in
a linear direction, which resulted in the volume of the green sample
V0 being 1.56 times larger than VSint, which is 1.06 times larger
thanVS. Then, the calculated powder loadingwas 60.5Vol.%.
The strain at break, tensile strength and yield strength (YS)

were evaluated using a tensile testing machine (ZWICK
Materialprüfung, 1456, ZwickRoell GmbH & Co.KG, Ulm,
Germany) according to the ASTM standard method E8M-00.
The gauge length was 40mm, crosshead speed was 0.7mm/min.
Strain at break was taken as a maximum elongation detected

Figure 1 Particle size distributions of PIM and DMLS powders
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during measurement at the point of breaking including both
elastic and plastic parts of the strain. Five samples were
measured for each of the series.
A 3D scanner (TALYSURF CLI 500, Taylor Hobson,

Leicester, the UK) was used for surface scanning. Standard
surface roughness parameters, including the arithmetic mean
deviation from the centerline of the profile (Ra), profile
maximum height (Rz) and profile average distance of
microscopic unevenness (RSm) were measured. As these
characteristic parameters are tied with both random and
systematic errors, they were carefully treated with the principal
components method and cluster analysis to increase the
reliability of the data obtained. The sampling rate was 20Hz in
the maximum interface measurement mode. The measured

area was 4� 4mm (according to ISO, 4288) with 25mm
spacing, providing a resolution of 161 traces for each
measurement.
The data were treated with advanced statistical tools –

method of principal components (PCA) and cluster analysis
(CA) – Ward method. CA in general serves to categorize units
into groups (clusters) based on their similarity. Ward method
specifically is a type of variance method, which generates
clusters via minimization of a cluster heterogeneity (and not
based on an optimization of distances between them). It uses
the sum-of-squares criterion to produce the groups, which
minimize the dispersion within a group at each binary fusion,
and therefore, it tends to create relatively small clusters
(Murtagh and Legendre, 2014).
PCA is a multivariate statistical method that combines

information from several variables observed on the same
subjects into fewer variables. These variables are then called
PCA. They can have a positive or negative influence indicated
by a plus or minus sign. The first component describes the
largest part of the variance of original data, the second
component describes the largest part of variance not included
in the first component and so on, with themaximum number of

Table 1 Optimized injection molding parameters

Parameter Value

Temperature – nozzle (°C) 75
Temperature – zone 1 (°C) 95
Temperature – zone 2 (°C) 85
Temperature – zone 3 (°C) 80
Temperature – zone 4 (°C) 75
Temperature – zone 5 (°C) 20
Screw stroke (mm) 60
Cooling time (s) 30
Injection pressure (bar) 1,000
Hold pressure/time 1 (bar/s) 800/5
Hold pressure/time 2 (bar/s) 150/2

Source: Table by authors

Figure 2 Apparent viscosity as a function of apparent shear rate of feedstocks intended for injection molding based on PIM and DMLS powders and
filaments processed via MEX

Table 2 Mechanical properties of DMLS, ADAM and PIM samples

Method
Ultimate tensile
strength (MPa) Yield strength (MPa)

Strain at break
(%)

PIMDMLS 7506 47 6406 56 2.16 0.3
PIMPIM 9806 14 8006 14 3.36 1.6
DMLS 11406 15 5106 17 196 0.9
DMLSBlasted 11406 6.7 5106 11 186 2.2
ADAM 8806 8.0 7306 11 4.56 0.3

Source: Table by authors

Figure 3 Sintering profiles for MEX and PIM samples
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components equal to the number of the variables investigated.
The first two components can be transformed into scatterplots,
which allow for an intuitive interpretation of the main features
present in the complex multivariate data set through the
graphical display (Greenacre et al., 2022).
The combination of these twomethods allows to quantify the

similarity and intercept surfaces with similar parameters with a
particular probability.

3. Results and discussion

The mechanical properties of the samples produced using the
investigated processing routes are summarized in Table 2.
The ultimate tensile strength (UTS) and ductility (strain at
break) of the DMLS samples were the highest. PIM samples
based on PIM-quality (PIMPIM) powders resulted in the
second-highest UTS and the highest YS, regardless of
blistering occurring after sintering on flat parts of the testing
samples. The shrinkage of PIMPIM samples was
approximately 14%, which agreed with the reported
approximately 15% value for martensitic stainless steels
(Blaine et al., 2003). Blistering on certain places of the
PIMPIM samples persisted even with the longer debinding
time allowed in a water bath (10 h instead of 7 h) and with the
use of a nitrogen atmosphere during thermal debinding.
This was likely not an issue for PIMDMLS samples because of

the larger size of the particles, which can be debound faster
(Sotomayor et al., 2010). However, the PIMDMLS samples in a
nitrogen atmosphere exhibited a high degree of nitridation and
shrunk only by approximately 8% of their original size. After
the change to the hydrogen atmosphere, the shrinkage
increased up to 12%, indicating still unacceptably high
porosity, which caused the lower mechanical properties
(Table 2). Therefore, a hydrogen atmosphere was used in all
experiments.
Overall, the UTS of all samples except for PIMDMLS

exceeded the value reported in the literature (German, 2018)
(UTS of 820MPa before heat treatment). Both the MEX and
PIMPIM parts had significantly higher YS than those created by
the DMLS technique. It should be mentioned that the
performance of the sintered parts can be substantially improved
with heat treatment as shown, e.g. by Pellegrini et al. (2023).
As can be seen in Table 3 and Figure 4, PIMPIM has the

smoothest surface. The typical drawbacks of PIM compounds as
powder/binder separation (Sanetrnik et al., 2018, 2019) were not
observed in the samples after injection molding. Its mean RSm
value of 16.75mm indicates that the surface reproduces the size of
the individual particles (90%ofwhich had a size of 16mmand less).

Sandblasting of DMLS reduced the standard deviation of the Ra
parameter from0.32mmto0.18mm.
The RSm parameter shows the frequency of the amplitudes,

that is, how often the dip in the surface is detected. Both PIM
samples exhibited lower RSm values, indicating a higher
frequency of dips. This shows the dependence of the surface
quality of the PIM-created samples on the size and type of
powder. It also likely indicates a greater degree of fusing when
the same powder is used in DMLS, as DMLS andDMLSBlasted
samples have greater RSm values than PIMDMLS. This is

Table 3 Surface parameters (mean values) of DMLS, ADAM and PIM
samples

Method Ra (mm) Rz (mm) RSm (mm) Rz/RSm

PIMDMLS 2.446 0.19 14.086 1.40 17.996 1.16 0.78
PIMPIM 1.736 0.11 9.686 0.98 16.756 0.97 0.58
DMLS 2.066 0.32 10.976 1.86 22.936 2.53 0.48
DMLSBlasted 1.986 0.18 10.326 1.10 21.706 1.47 0.48
ADAM 3.046 0.18 16.676 1.34 24.266 1.58 0.69

Source: Table by authors

Figure 4 Histograms of Ra, Rz and RSm surface parameters for tested
samples
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supported by an Ra of 1.73mm for PIMPIM. The surface
parameters of MEX were similar to those obtained recently by
Lavecchia et al. (2023), where Ra in a direction parallel to the
deposition of the filament reaches 1.5mm, and 4.7mm if
scanned orthogonally to the deposition.
It is assumed that for debinding- and sintering-based

methods such as PIM and MEX, the surface roughness is
governed by the size of the particles as they are not fused to the
same degree as during laser sintering, resulting in substantially
higher ductility of the DMLS samples. The gradual
densification and resulting changes in microstructure are well
documented in the literature, e.g. in Blaine et al. (2003). Thus,
higher surface porosity can be expected for both PIM andMEX
sintered samples. Thus, the surface scanner would then be less
likely to detect dips for DMLS samples, as reflected by the
higher Rz/RSm ratio, showing a possible correlation between
this ratio and ductility.
The development of sintering bonds can be estimated using a

sintering model (Pokluda et al., 1997), which shows the
importance of the initial particle size and sintering time without
considering the effect of the mold surface itself. The sizes of the
particles used can be revealed from the SEM images of the
feedstocks, as shown in Figure 5. Based on this model, the time
required for sintering larger particles was longer.
However, in this study, the sintering time (final dwell time)

was kept the same, and therefore, the degree of fusion between
larger powder particles should be lower. In this case, RSm
should increase, whereas both Ra and Rz decrease. In
particular, Rz/RSm ratio should approach 1 if the particles are
not properly fused. This applies to finer PIMPIM particles

compared to coarser PIMDMLS but does not explain the cause
of theMEX samples.
Generally, the differences in the surface properties are

attributed not only to the particle size of the powders but
also to the feedstock compositions and process parameters
used (Hausnerova et al., 2018). The powder loading in the
MEX samples, which is one of the most relevant factors, is
similar to the loading used in PIM feedstocks; therefore, it
is assumed that this is not the case here. The relative
density of the sintered samples was also higher for MEX
than for PIM. Therefore, this discrepancy may be
attributed to the processing methods used. The 3D maps of
the surfaces of the PIMPIM, DMLS and MEX samples are
shown in Figure 6, depicting the differences in the surface
structure provided by each method. PIMPIM samples have
individual peaks, DMLS parts show typical significant pits
on the surface and MEX results in noticeable tracks, which
are remnants of the interface between the particular
filament layers. Presented 3D surface maps intercept both
the roughness and the waviness of the surface parts.
However, with fast Fourier transformation applied, the
waviness part is removed, and thus the possibility of
distortion of the numerical values of the Ra parameter
resulting from the surface waviness is eliminated.
To quantify the surface similarities created through different

manufacturing routes, the Ra parameter was further statistically
analyzed using the PCA and CAWardmethod. The loading plot
obtained through the test A method (Figure 7) suggests the
similarity between PIMDMLS and DMLS, which have negative
first components, and among PIMPIM, MEX and DMLSBlasted
deviating from these two.
The similarity level (Figure 8) between PIMPIM and MEX

was approximately 58% according to CA, and between DMLS
and PIMDMLS it reached 53%, whereas DMLSBlasted was
similar to PIMPIM and MEX at approximately 45%. The
similarity between the two cluster groups (PIMPIM, MEX and
DMLSBlasted versus PIMDMLS andDMLS) was only 32%.
Overall, a degree of similarity of less than 60% is rather low.

As expected, the DMLSBlasted samples appeared to be unique
in all statistical examinations. Nevertheless, through this
investigation, together with observations from histograms and
box plots (Figure 9), PIMPIM provided the smoothest surface
to the final sintered samples.

Figure 5 SEM of MEX, PIMDMLS and PIMPIM feedstocks (BSE mode at
1,000�magnification)

Figure 6 3D surface maps of PIMPIM, DMLS and MEX sintered parts
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4. Conclusion

The surface properties and mechanical performance of powder
manufacturing techniques based on sintering (DMLS),
debinding and sintering (PIM and MEX) were investigated in
this study. During DMLS, the powder fully melts and fuses
layer by layer, whereas, during PIM and MEX, they are
sintered slightly below the melting temperatures. The surfaces
of the samples created using PIM technology were smooth
without the necessity of finishing operations. Statistical analysis
based on the principal component method and cluster analysis
showed close to 60% similarity between surfaces created via
PIMPIM and MEX. The sintered parts produced using MEX
and PIMPIM also had similar relative densities. However, the
MEX samples showed the worst absolute values for the Ra and
Rz surface parameters. The samples created with the DMLS
powders were rather different, regardless of the method used.
Finally, PIMparts made from eco-friendly PEG and AW-based
feedstock may successfully compete with the DMLS samples,
which showed the highest mechanical strength.

Note

1 www.upmet.com/sites/default/files/datasheets/17-4-ph.pdf
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