Accident insurance, 68	non-parametric estimation,
ADF test, 331, 332	148-150
Administrative data, 285–300	parametric estimation, 150-151
ex-ante assessments, 288	results, 157-164, 169-174
ex-post assessments, 288-292	Antibiotic consumption, 314–315
health care services, assessment	Artefactual field experiments, 4
of, 286–288	Assortative matching, 181
hospital efficiency measurement,	Atomistic fallacy, 296
methods of, 292–294	Attribute non-attendance (ANA),
relative efficiency assessment,	93–96
methods of, 294–297	Average treatment effect (ATE),
Adopted children, effect of health	2, 61
endowment at birth of,	,
183	Bayesian information criterion
Adverse selection, 23–25, 34, 47,	(BIC), 90, 368
48, 51	Bayesian methods, 89, 314, 318
Affordable Care Act, 65	Behavioral data linking, 5
Agency for Healthcare Research	Behavioral econometrics, 3, 8
and Quality (AHRQ),	applications to health,
290, 292, 293	14–15
Agglomeration, 318–320	choice under risk, 11
Aikaike information criterion	econometrics, 12–14
(AIC), 90, 368	experimental design and tests, 12
Ambulatory Care Sensitive	general framework, 10
Conditions (ACSC),	identification problem, 10
312, 319 Anchoring vignettes, 145–166,	individual discounting, 11–12
169–174	Behavioral experiments in health,
data, 151–157	3–6
objective measures of	Behavioral insights teams, 2
mobility, 153–154	Belief elicitation, 27–28
self-reported mobility,	Benefit package, 27
152–153	Body mass index (BMI), 108,
socio-demographic variables,	313–314
154–155	Bootstrapping, 121
study design, 155–157	Bureau of Labor Statistics (BLS), 68
50daj de51511, 155 157	Dareau of Euror Statistics (BES), 00

Canadian Institute for Health	Corrected ordinary least squares
information (CIHI), 290,	(COLS), 292
293, 299	Cost-effectiveness analysis (CEA),
Canadian Patient Experiences	6, 119-141
Survey, 292	case study, 130-140
Caps on contingency fees, 242	incremental cost-effectiveness
Caps on damages, 242	ratio, 120-122
Causal effects, 57	incremental net benefit,
Certainty equivalent (CE)	122-123
method, 8	net benefit regression
Certificate of merit, 242	framework, 124–141
Child's health endowment at birth,	seemingly unrelated regression,
parental investments to,	critique of, 126–127
175–193, 197–199	Cost-utility analysis (CUA), 6
conceptual framework, 178-179	Cox Proportional Hazard (PH)
data and sample selection,	model, 208–211
184-185	Cross-country comparison
econometric strategy, 179-183	anchoring vignettes, 151–164,
estimation results, 186–193	169–174
Chilling effect, 109	healthcare expenditures,
Choice architecture, 2	327–344, 349–358
Choice under risk, 11	Cross-sectional dependence of
Clinical governance, 290	healthcare expenditures,
Cobb Douglas production	331–334, 341–343
function, 293	*
Column-by-column approach,	Cross-sectionally augmented
364-365	distributed lag (CS-DL),
Commission for Health	334 G W 111 (CW) 260 260
Improvement (CHI), 290	Cross-Validation (CV), 368–369
Common Correlated Effects	Cultural assimilation, 107–109
(CCE), 312, 315, 334	D . 1
Common Correlated Effects Mean	Database of State Tort Law
Group (CCE MG)	Reforms (DSTLR),
estimator, 316	249—251
Common Correlated Effects	Data envelopment analysis (DEA)
Pooled (CCEP)	292
estimation, 315–316	Defensive medicine
Compound hierarchical ordered	empirical analysis, 244-247
probit model. See	liability pressure and, 253-254
Hierarchical ordered	negative, 236–237
probit (HOPIT) model	positive, 236
Conditional autoregressive (CAR)	Delta method, 122
model, 360, 362	Demand of health care services,
Contagious presenteeism, 67	immigration and,
Conventional lab experiments, 4	110-111

Diagnosis-related groups (DRG),	English Care Quality Commission,
263-267, 274-275, 278,	292
289, 291, 299	Enterprise liability, 237
Difference-in-Difference-in-	Episode splitting, 209
Difference (DDD), 59, 65	Equality-constrained latent class
Disability insurance (DI), 69–70	(EC-LC) model, 94, 95
Discrete choice methods, in health	Equation-by-equation estimation,
economics, 85–96	134-136
attribute non-attendance, 93-96	Ethiopia
multinomial logit and mixed	subjective expectations of
logit models, 86-91	medical expenditures and
scale heterogeneity, 91–92	insurance, 23–52
willingness to pay space, in	Évaluation des pratiques (EPP),
estimation of, 92–93	290
Domain-Specific Risk-Taking scale	Ex-ante assessments, 288
(DOSPERT), 7	Expectation-Maximisation (EM)
Drug expenditure, insurance	algorithm, 90, 370, 371
coverage on, 202	Expectations, of medical
Drug innovation, 203, 205	expenditures and
Duration models, 201–228	insurance, 23–52
	Expected Utility Theory (EUT),
Ecological fallacy, 296	8-9
Econometric strategy	Expenditure externality hypothesis
parental investments to child's	317
health endowment at	Experimental design, 12
birth, 179–183	Experimental tests, 12
Effectiveness, 289	Experimenter demand effects, 4
Efficiency, 289	Ex-post assessments, 288–292
hospital, 292–294	Extended Bayesian Information
relative, 294–297	Criterion (EBIC), 368
Emergency department (ED) visits,	Extended Cox Model, 209
geographical accessibility	
to, 318	Face validity, 35–42
Empirical models of hospital	Failure of R&D process,
competition, 267–271	204-210
Endogeneity	estimation strategy, 208–209
of child health, 176, 177, 179,	hazard function, 205–208
180, 188, 192, 193	time-varying characteristics and
hospital's quality competition,	effects, 209–210
267–271	Father's birth endowment, 181
immigration and health, 113	FMOLS (Fully Modified OLS)
Endogenous attribute attendance	estimation, 339–341
(EAA) model, 94–95	Forecast expenditure, 24
mixed, 95–96	Framed field experiments, 4

Gamble tradeoff (GTO) method, 8	in spatial econometrics,
Gamma Pseudo Maximum	362-363
Likelihood (GPML), 26,	Great Migration, 106
42, 44	,
Gauss-Hermite quadrature, 370,	Hansen-Sargan test, 178
371	Hausman's test, 311
Gaussian graphical models, 360,	Haute Autorité de Santé (HAS),
361-362	290
Generalised Linear Model (GLM),	Hawthorne effects, 4
26, 42, 311	Hazard function, of R&D process,
Generalised-multinomial logit	205–208
model (G-MNL), 91, 92	Health, defined, 61
Generalized Cross-Validation, 368	Healthcare Costs and Utilization
Generalized Method of Moments	Project (HCUP), 290
(GMM), 127–129,	Healthcare expenditures (HCE),
140-141, 306, 321	cross-country modeling
relationship with SUR and	of, 315–318, 327–344,
OLS, 129–130	349–358
German Socioeconomic Panel	data and variables, 334–335
(SOEP), 111, 112	panel ARDL modeling studies,
Gesundheitsberichterstattung des	327–329, 331, 335–339,
Bundes (GBE), 290	349–351 349–351
Gibbs sampling, 371	study methodology, 331–334
Granger causality test, 340	technology effects on, 329–330
Graphical discrete choice models,	unit root tests, 335–339
370-371	Healthcare services, assessment of,
Graphical LASSO (GLASSO),	286–288
321, 360, 366, 367, 372	Health insurance. <i>See</i> Insurance
Graphical modeling, for large	Health of migrants, 101–114
network inference,	Health outcomes, 285–300
359-373	Health resources, allocation of,
applications of, 371–373	315–318
discrete random variables	Health selectivity, 107
graphical discrete choice	Healthy immigrant effect, 103, 110
models, 370–371	Heart attack survival rate and
Ising graphical model,	expenditure, 313
369–370	Herfindahl-Hirschman Index
estimation, 363–369	
column-by-column approach,	(HHI), 268–271, 319
364–365	Heteroskedasticity-autocorrelation consistent (HAC)
model selection, 367–369	
penalized log-likelihood	estimator, 313
approach, 365–367	Hierarchical ordered probit
Gaussian graphical models,	(HOPIT) model,
361-362	146–148, 154, 157, 165

cross-country comparison, 158,	Immunisation decisions, 183
163, 164, 169–170	Incentive-compatible (IC) tests, 8
health equation, 151	Income elasticity, 329, 335, 339
reporting behavior, 150–151,	Incremental cost-effectiveness ratio
156	(ICER), 120–122, 123
HIV prevalence, 314	Incremental net benefit (INB),
Hospital competition on quality,	122-123, 140-141
263-279, 318-320	Individual discounting, 11–12
DRG tariffs and, 274-275	Information technology, 330
empirical models of, 267–271	Inpatient hospital admissions,
non-profit hospitals, 275-278	312-313
spatial approach to, 271–273	Institutional accreditation, 287
Hospital discharge chart (HDC),	Instrumental variables (IV), 60,
286	176, 178, 180, 183, 242,
Hospital efficiency measurement,	248, 269, 277, 306, 311
methods of, 292-294	Insurance
Hospital mergers, 273–274	accident, 68
	coverage
Identification problem, 10	on drug expenditure, 202
Immigration and health, 101–114	for immigrants, 109
administrative records, 104-105	disability, 69–70
cultural assimilation and	health, subjective expectations
language skills, 107–109	of, 23-52
demand of health care services,	long-term care, 70–71
110-111	sick leave, 66–67
health insurance coverage, 109	statutory pension, 71–72
health of those left behind, 113	unemployment, 71
health selectivity, 107	Insurance market choices, 7
healthy immigrant effect, 103,	Intent-to-treat (ITT), 60
110	Interactive fixed effects estimator
immigration policy, 107	(IFE), 334
natural and quasi-natural	Intergenerational mobility, 178,
experiments, 105–107	181
selection and regression toward	Intrahousehold resource
the mean, modeling, 104	allocation, 178
supply of health care services,	Irrelevant alternatives (IIA)
112	property, 88, 89
visa status, 107	Ising graphical model, 369–370
working conditions and	ISO-9000 certification, 288
work-related risks,	- 4
111-112	John Henry effects, 5
Immigration and Refugee	Joint and several liability (JSL)
Protection Act of 2002,	rule, 242, 249, 250
107	Joint Commission on
Immigration policy, 107	Accreditation of

Healthcare Organizations	existing evidence and
(JCAHO), 287	limitations, 242–252
Joint Commission on	future research, 255–257
Accreditation of	liability pressure, 252–255
Hospitals, 287	theoretical expectations,
	238-240
Key performance indicators (KPI),	Likert scale, 7
289	Lind, James, 3
Kolmogorov-Smirnov (KS) test,	Local Average Treatment Effect
155-156	(LATE), 59, 61, 72
Kulback-Leibler divergence, 368	Long-term care insurance, 70–71
Lab-field experiments, 5	Market structure, impact on price
Labor market, immigration effect	reaction function,
on, 111	318-319
Language skills, 107–109	Markov chain Monte Carlo
Large network inference, graphical	algorithm, 366
modeling techniques for,	Maximum Likelihood Estimation
359-373	(MLE), 8, 306, 311, 321
applications of, 371–373	Mean group (MG) estimator,
discrete random variables	332-333
graphical discrete choice	Medicaid, 64–66, 109
models, 370–371	Medical expenditure, 23–52
Ising graphical model,	Medical malpractice, 235–257
369-370	empirical analysis, 240-241,
estimation, 363–369	244—247
column-by-column approach,	existing evidence and
364-365	limitations, 242–252
model selection, 367–369	future research, 255–257
penalized log-likelihood	liability pressure, 252–255
approach, 365–367	theoretical expectations,
Gaussian graphical models,	238-240
361-362	Medicare, 65, 274
in spatial econometrics,	Part B program, 106
362-363	Medicare Current Beneficiary
Latent class (LC) model, 89, 90	Survey, 70
Least Absolute Shrinkage and	Mental health expenditures,
Selection Operator	316-317
(LASSO), 321, 360, 364,	Mental health outcomes, 314
365, 372	Metropolis-Hastings algorithm,
Liability and medical decisions,	371
236-241, 249, 251, 255	Microeconometrics, 59, 60
empirical analysis, 240-241,	"Minimum Standards for
244—247	Hospitals" program 287

MIXED EAA (MEAA) model,	Objective nearth measures, 62–63
95-96	Occupational Safety and Health
Mixed logit (MXT) model,	Administration (OSHA),
88-91, 92	68
Mixed proportional hazard	OECD countries, healthcare
(MPH) model, 207–208,	expenditures in,
209	327-344, 349-358
Monte Carlo integration,	Offset effects, 65
370, 371	Ontario Hospital Association, 290
Moral hazard, 24, 46, 57	Ordinary Least Squares (OLS)
Mortality of deprivation, 313	estimation, 125, 126, 144,
Mother's labour supply, effect of	186–190, 192, 193, 272,
child health at birth on,	292, 309, 313
176, 178, 180–181	FMOLS (Fully Modified OLS)
Multicollinearity, 86	estimation, 339
Multinomial logit (MNT) model,	relationship with SUR and
86–88	GMM, 129–130
generalised, 91, 92	Oregon Health Insurance
hospital's quality competition,	Experiment, 64–65
268	ORYX program, 290
Multiple price list (MPL) method,	Out-of-pocket (OOP) payments,
8, 9	46, 47
	Outpatient expenditure, 28
National Health Interview Survey,	Outpatient hospital admissions,
107-109	312-313
National Health Service (NHS), 2,	Overuse of treatments, 237, 238,
110, 290	240-241
Natural field experiments, 4, 5	
Neighbourhood, effect on health,	Pain and suffering (P&S), 242,
313-314	249-251
Net benefit regression framework	Panel ARDL modeling, 327–329,
(NBRF)	331, 349–351
to cost-effectiveness analysis,	long-and short-run estimation
124-141	of healthcare expenditure
criticisms of, 125-126	with, 335-339, 352-357
New Chemical Entities (NCEs),	Panel cointegration tests, 339,
202	341-354, 358
Newton-Raphson algorithm, 370	Parametric estimation
No fault system, 237	anchoring vignettes, 150-151
Non-parametric estimation	Parental investments to child's
anchoring vignettes,	health endowment at
148–150	birth, 175–193, 197–199
R&D hazard function, 207	conceptual framework, 178–179
Non-profit hospitals, quality of,	data and sample selection,
275–278	184–185

econometric strategy, 179-183	equation-by-equation
estimation results, 186–193	estimation, 134–136
Partial Likelihood method, 209,	estimation strategies, 132-134
210	simultaneous equations
Patents, 329–330	estimation, 137–138
Patient satisfaction, 289–290	Prospective payment systems
Peer review, 290	(PPS), 291, 299
Penalized log-likelihood approach,	Public Health England, 2
365-367	Public health expenditures, 316,
computational costs of, 367	317
Personal Responsibility and Work	
Opportunity	Quality Adjusted Life Years
Reconciliation Act of	(QALY), 6
1996, 109	Quality-related life measures, 63
Pharmaceutical R&D, 201–228	Quasi difference-in-difference
determinants of, 214-225	(DiD) model, 269–270
failure, 204–210	Quasi-experimental design, 147
estimation strategy, 208–209	Quasi-maximum likelihood
hazard function, 205–208	estimator (QMLE), 334
time-varying characteristics	QUIC algorithm, 367
and effects, 209–210	,
measures of innovation,	RAND Health Insurance
223-225	Experiment (RAND
nature of, 203-204	HIE), 63–64
productivity, 202	Randomized controlled trials
successful transition to next	(RCTs), 1–6
stage, 210-225	bias in, 5
control, 212–213	types of, $4-5$
estimation strategy, 212	Random utility models, 87
Phillips-Perron (PP) test, 331, 332,	Reduced-form methods, 59–61,
335	69, 71
Piano nazionale esiti (PNE), 291	Regional malpractice liability
Pooled mean group (PMG)	funds, 237
estimator, 333	Regression analysis, 306
Predictive value of expectations,	Regression Discontinuity (RD), 59
42-46	Regression Kink (RK), 59
Pretrial screening, 242	Rehabilitation, 66–67
Probability equivalent (PE)	Relative efficiency assessment,
method, 8	methods of, 294-297
Program in Assertive Community	Reporting heterogeneity, 146-148,
Treatment, 130–140	156, 165
background of data, 131-132	Research and development (R&D)
background of study, 130-131	expenditure, 330
characterizing uncertainty,	in pharmaceutical industry,
138-140	201-228

control, 212-213	Sick leave insurance, 66–67
determinants of, 214-222	Simultaneous equations
estimation strategy, 212	estimation, 137–138
failure, 204–210	Smoothly clipped absolute
measures of innovation,	deviation (SCAD)
223-225	penalty, 366, 368
nature of, 203-204	Social insurance, 57–73
productivity, 202	accident insurance (workers
successful transition to next	compensation), 68
stage, 210–225	disability insurance, 69–70
Response consistency, 147	health econometric evidence
Revealed preference (RP) data, 86	empirical methods, 59-61
Reverse causality, 273	objective health measures,
Risk adjustment, 290, 295, 298	62-63
Risk aversion, 47	quality-related life measures,
Risk preferences, 6–7	63
Risk-taking measurement, 7–9	subjective self-reported health
CADAD 11 207 215	measures, 62
SARAR model, 306, 315	long-term care insurance, 70–71
SARMA (spatial lag and moving	Oregon health insurance
average model) model,	experiment, 64-65
317	RAND Health Insurance
SAR-Seemingly Unrelated	Experiment (RAND
Regression (SUR) model, 312, 317, 320	HIE), $63-64$
Scale-based self-assessed approach,	sick leave insurance and
7–8	rehabilitation, 66–67
Scale heterogeneity, 91–92	statutory pension insurance,
Scale of reference bias, 62	71-72
Schedules damages, 252	unemployment insurance, 71
Seemingly unrelated regression	Social Security Administration,
(SUR)	106
critique in cost-effectiveness	Social Services Performance
analysis, 126–127	Rating (SSPR), 317
relationship with GMM and	Socio-Economic Panel Study
OLŜ, 129–130	(SOEP), 63, 70
Self-reported mobility (SRM),	Spatial approach to hospital
empirical assessment of,	competition, 271–273
145–166, 169–174	Spatial autoregressive model, 360
SEM-GMM model, 313	Spatial dependence, 305–307, 311,
Semi-parametric models	314, 316–318
R&D hazard function, 207-208	Spatial Durbin lag model, 306,
SEM-SUR panel model, 312	317, 320
SF-12, 298	Spatial econometrics, graphical
SF-36, 298	models in, 362–363

Spatial error model (SEM), 306,	face validity and formation of
310, 314, 316	expectations
Spatial health econometrics (SHE),	household-specific mean,
305–322	predictors of, 35–41
health care expenditures,	revisions to expectations,
315–318	41–42
health needs, 314	forecasts and realizations,
health outcomes, risk factors	comparison of
and health needs,	expected and realized
312–315	expenditures, correlation
health resources, allocation of,	between, 34–35
315–318	forecast medical expenditure
hospital competition and	distributions, moments
agglomeration, 318–320	of, 32–34
risk factors, 313	medical expenditure data,
spatial models, 309–312	28-29
spatial weights, 307–309	predictive value of expectations,
Spatial lag autoregressive model	42-46
(SAR), 306, 310–314,	sampling design, 26–27
316, 319, 362	validity of
Spatial lag operator, 309	distribution of responses,
Spatial models, 309–312	31-32
Spatial panel data model,	illogical responses, 30–31
310–311, 316	response rates, 29–30
Spatial weight matrix, 307, 308	Subjective self-reported health
Spatial weights, 307–309	measures, 62
Standard Gamble (SG) method, 6	Supply of health care services,
Standard Gamble (3G) method, 6 Standardization, 295	immigration and, 112
State dependent reporting bias, 62	Survey of Health, Ageing and
Status of limitations, 242	Retirement in Europe
	(SHARE), 145, 148, 151,
Statutory pension insurance, 71–72	153, 154, 165
Stochastic dominance, 156,	Synthetic Control Group Method
158–160, 170–174	(SCGM), 59, 60
Stochastic frontier approach	T 100 00 11 0T 1
	Tariffs, effect on quality, 274–275
(SFA), 292, 293 Structural methods, 60, 61, 67, 70	Taylor approximation, 122
	Technology, effects on healthcare
Subjective probability, of medical	expenditures, 329–330
expenditures and	Temporary Disability Insurance, 67
insurance, 23–52	TIGER, 369
belief elicitation, 27–28	Time preferences, 6–7
expectations influence on	measurement of, 9–10
insurance decision,	Time Trade Off (TTO) method, 6
46 - 50	Tort reforms, 242, 243, 248

Trade-off approach, 8
Transportation costs, 265, 266
Treatment selection, medical
liability effects on, 241
Truncated Normal distribution,
371
Truven Health Analytics, 290
Two-stage least square estimation
(2SLS), 186–193

Ufficio federale per la sanità
pubblica (UFSP), 290
Underuse of treatments, 237, 238,
240–241
Unemployment insurance (UI), 71
UNI-EN-ISO-9000 certification,
288
United Kingdom (UK)
Cabinet Office, 3
Nudge Unit, 2
Department of Health, 2

Labor Force Survey, 112

United States (US)
Earned Income Credit, 59
Health and Retirement
Survey, 8
Social Security Notch, 59
Unit root tests, 335–339

Vignette equivalence, 147 Virtual experiments, 5 Visa status, 107 VISION-2000 version, 288

Westerlund ECM test, for panel cointegration, 341–343
Willingness to pay (WTP), 87–88 space, in estimation of, 91–93
Workers compensation (WC), 68
Workhorse models, 86–91
Working conditions, immigration effect on, 111–112
Work-related risks, immigration effect on, 111–112