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ABSTRACT

From the standpoint of a policy maker who has access to a number of expert forecasts, the uncertainty of a combined or ensemble forecast should be interpreted as that of a typical forecaster randomly drawn from the pool. This uncertainty formula should incorporate forecaster discord, as justified by (i) disagreement as a component of combined forecast uncertainty, (ii) the model averaging literature, and (iii) central banks’ communication of uncertainty via fan charts. Using new statistics to test for the homogeneity of idiosyncratic errors under the joint limits with both T and n approaching infinity simultaneously, the authors find that some previously used measures can significantly underestimate the conceptually correct benchmark forecast uncertainty.
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1. INTRODUCTION

Consider the problem of a macro policy maker who often has to aggregate a number of expert forecasts for the purpose of a uniform policy making. A general solution was provided by Bates and Granger (1969) who have inspired extensive research on forecast combination, as evidenced by two comprehensive surveys in Clemen (1989) and Timmermann (2006), and many additional papers since 2006.1 The solution based on minimizing the mean squared error of the combined forecasts calls for a performance-based weighted average of individual forecasts with precision of the combined forecast that is readily shown to be better than any of the constituent elements under reasonable conditions.2 Thus, Wei and Yang (2012) characterize this approach as “combination for improvement.” However, many studies have found that a simple average is often as good as the Bates-Granger estimator, possibly due to large estimation error of the weights, the variances of individual forecast errors being the same or their pairwise correlations being the same; see, for example, Bunn (1985), Clemen and Winkler (1986), Gupta and Wilton (1987), Palm and Zellner (1992), and Smith and Wallis (2009), among many others. Under the standard factor decomposition of a panel of forecasts, where the cross correlations of forecast errors can be attributed to a common aggregate shock, the precision of this equally weighted average is simply a function of the variance of this common shock that nets out the uncertainty associated with idiosyncratic errors. This precision formula should be enriched with disagreement, as motivated by a variety of theoretical, empirical, and policy factors.

As Timmermann (2006, p. 141) has noted, heightened discord among forecasters, ceteris paribus, may be indicative of higher uncertainty in the combined forecast from the standpoint of a policy maker. Thus, the precision formula for the average (or “consensus”) forecast should reflect disagreement among experts as part of forecast uncertainty, which is desirable in many situations. On the other hand, the use of disagreement as a sole proxy for forecast uncertainty continues to be debated in other contexts.

Another justification for incorporating disagreement as part of aggregate uncertainty comes from the rich literature on model averaging pioneered by Leamer (1978). Draper (1995) and Buckland, Burnham, and Augustin (1997) present cogent explications of the result using Bayesian and Frequentist approaches respectively. See Hansen (2008) and Amisano and Geweke (2017) for more recent advances.

A third consideration for using a theoretically sound uncertainty measure of the consensus forecast comes from the recent advances in the presentation and communication strategies by a number of central banks, pioneered by Bank of England’s fan charts to report forecast uncertainty. For the credibility of forecasts in the long run, it is essential that the reported confidence bands for forecasts be properly calibrated. In the United States, from November 2007, all federal open market committee (FOMC) members are required to provide their judgments as to whether the uncertainty attached to their projections is greater than, smaller than, or broadly similar to typical levels of forecast uncertainty in the past. In order to aid each FOMC member to report their personal uncertainty estimates, Reifschneider and Tulip (2019) have provided a measure for gauging the average magnitude of historical uncertainty using information on past forecast errors from a number of private and government forecasters. These benchmark estimates for a number of target variables are reported in the minutes of each FOMC meeting and are used by the public to interpret the responses of the FOMC participants. We show how this measure incorporates the disagreement amongst forecasters as a component of forecast uncertainty, but particular formula used may underestimate the true historical uncertainty if the individual forecast errors are heterogeneous. Given that these historical benchmark numbers are fed into the highest level of national decision making, a careful examination of a number of alternative uncertainty measures relevant for a policy maker cannot be overemphasized.

In this chapter, we establish the asymptotic limits for these alternative measures of uncertainty with both the time series (T) and cross section (n) dimensions approaching infinity simultaneously, and develop tests to check if the uncertainty measures are statistically different and whether the forecasters are exchangeable. We build on Issler and Lima (2009), who have shown the optimality of the (bias-corrected) simple average forecast using panel data sequential asymptotics. Our tests identify the differences in the idiosyncratic error variances, in addition to the differences in the means, and thus shed new light on the heterogeneity of expectation formation processes.3 A Monte Carlo study confirms that the test performs well in our context. We use individual forecasts from the Survey of Professional Forecasters (SPF) and the Michigan Survey of Consumers (MSC) to show that the uncertainty measure conventionally attached to a consensus forecast using the Bates-Granger approach and the Reifschneider and Tulip (2019) [hereafter RT] benchmark measure can underestimate the true uncertainty under certain circumstances. Similar to Rossi and Sekhposyan (2015) and Jo and Sekkel (2019), our measure is based on subjective forecasts of market participants and reflects their perceived uncertainty. In contrast to these two papers, but like RT, we include both common and idiosyncratic uncertainty in the measurement and provide the typical levels of uncertainty seen on average over history. Our test also confirms these results at the 1% level for multiple forecast horizons.

The plan of the chapter is as follows. Section 2 derives the relationship between disagreement and overall forecast uncertainty. Section 3 compares different measures of historical uncertainty and develops a new test for forecaster homogeneity. In Section 4, we use SPF data on real gross domestic product (GDP) and inflation forecasts by experts and the MSC data on price expectations made by households to highlight the differences in the alternative uncertainty measures, and implement our test for forecaster homogeneity. Pesaran (1987) established the value of using survey data in measuring uncertainty and testing for rationality. Finally, Section 5 summarizes the results and presents some concluding remarks. Proofs of theorems and corollaries in Section 3 are relegated to the unpublished mathematical appendix in Lahiri, Peng, and Sheng (2020).




2. UNCERTAINTY AND DISAGREEMENT

Let Yt be the random variable of interest, Fith be the forecast of Yt made by individual i at time t – h. Then individual i’s forecast error, eith, can be defined as

[image: image]

where At is the actual realization of Yt. Following a long tradition, for example, Davies and Lahiri (1995) and Gaglianone and Lima (2012), we write eith as the sum of an individual bias, μit, a common component, λth and idiosyncratic errors, εith:

[image: image]

where μith is nonrandom and time-varying, λth represents the cumulative weighted effect of all independent shocks that occurred from h-period ahead to the end of target year t. Thus, even if forecasters make “perfect” forecasts, the forecast error may still be nonzero due to shocks (λth), which are, by nature, unpredictable. Forecasters, however, do not make “perfect” forecasts even in the absence of unanticipated shocks. This “lack of perfection” is due to other factors (e.g., differences in information processing, loss functions, interpretation, judgment, and forecasting models) specific to a given individual at a given point in time and is represented by the idiosyncratic error, εith.

In order to establish the relationship between different measures of uncertainty and derive their asymptotic limits, we make the following simplifying assumptions:

Assumption 1 (Bias)

μit is nonstochastic for all i and all t with [image: image]
 for some α ≥ 2.

Assumption 2 (Common Shocks)

[image: image]
 with θ0 = 1,  |θk|< ∞ for k = 1, …, h − 1, where ζthk, occurred from k-period ahead to the end of target year t, are economic shocks that are uncorrelated across k, and stationary ergodic over t such that E(ζthk) = 0, [image: image]
 and [image: image]
 with 0 < φλh < ∞ as T → ∞

Assumption 3 (Idiosyncratic Shocks)

εith is independent identically distributed over t, and independent potentially non-identically distributed across i with Eεith = 0, [image: image]
 such that [image: image]
 In addition, ωεih = ωεjh whenever [image: image]


Assumption 4 (Relations)

λth is independent of εish for all i, t, and s.

Remark 1. Assumption 1 allows for time-varying nonrandom bias, which is more general than the time-invariant assumption made in the literature (e.g., Issler and Lima, 2009) and hence potentially has a wider range of applications. The condition [image: image]
 for some α ≥ 2 helps to ensure that individual bias is negligible in the asymptotic limits involving various ex post measures of forecast uncertainty. The eventually vanishing bias condition is in line with the spillover effect that the bias gets smaller as more forecasters learn from each other, and consistent with the empirical evidence that forecasters’ biases diminish over time as they gain experience, cf. Pesaran (1987) and Lahiri and Sheng (2008).4 Assumption 2 implies that λth is a stationary ergodic moving average process of order at most h – 1 with Eλth = 0, [image: image]
 for some δ > 0, and [image: image]
 as T → ∞. Thus, this condition is almost identical to the assumption in Issler and Lima (2009) except for the higher moment condition, which, together with the higher moment assumption of εith, is required to establish the asymptotic limits in Theorem 1. Assumption 3 is standard in errors component or factor analysis. It can be readily extended, at the expense of some technical complication, to allow for both some weak time dependence and cross-sectional dependence of groupwise block form brought by some residual group-wide influences.5 The requirement, ωεih = ωεjh whenever [image: image]
 though slightly restrictive, still allows for a wide range of probability distributions such as normal, t, and uniform distributions with zero mean. The independence of λth and εish in Assumption 4 is common in errors component or factor models.

Taken together, Assumptions 1–4 imply that the individual forecast error is not only an asymptotic stationary and ergodic process for any given horizon h, but also has a factor structure interpretation. Given a panel of forecasts, Lahiri and Sheng (2010) decompose the average squared individual forecast errors as

[image: image]

where [image: image]
 The simple average [image: image]
 can be viewed as the volatility associated with a representative forecaster, selected randomly from among all forecasters, for example, Giordani and Söderlind (2003), Lahiri and Sheng (2010), and Ozturk and Sheng (2018). This decomposition of the uncertainty of a typical forecaster is consistent with the vast literature on the capital asset pricing model that decomposes the return volatility of a typical stock into market volatility and firm-specific volatility; see, for example, Campbell, Lettau, Malkiel, and Xu (2001).

By taking time average on both sides of equation (3), we get an empirical measure of historical forecast uncertainty based on past errors such that

[image: image]

Equation (4) states that the squared measure can be decomposed into two components: uncertainty that is common to all forecasters and uncertainty that arises from heterogeneity of individual forecasters. The first component is the empirical variance of the average that is conventionally taken as the uncertainty of the consensus forecast; see, for example, Patton and Timmermann (2011) and Clements (2014). The second component is the disagreement among forecasters. Similar decomposition of uncertainty is also obtained by Draper (1995) in assessing model uncertainty via Bayesian approach. Geweke and Amisano (2014) presented a parallel decomposition of predictive variance from Bayesian model averaging in terms of intrinsic and extrinsic variances.

By virtue of Assumptions 1–4, the population analog of equation (4) is given by

[image: image]

It is now obvious from equation (5) that the squared uncertainty of a typical forecaster arises from the variance of the aggregate shock common to all forecasters and from the heterogeneity of individual forecasters that contains both the average idiosyncratic variance and the average of the variance of individual biases. What is not readily recognized in the literature is that apart from the disagreement coming from time-varying systematic biases [image: image]
 the average of individual variances also contains a disagreement component coming from [image: image]
 In the context of the empirical examples on real GDP and inflation forecasts that we report in Section 4, a model uncertainty audit reveals that the variance explained by the systematic bias component is tiny compared to the other two components in equation (5). A similar result on the transitory nature of the individual bias terms is also reported by Reifschneider and Tulip (2019).




3. MEASURES OF HISTORICAL UNCERTAINTY AND TESTS FOR FORECASTER HOMOGENEITY


3.1. Measures of Forecast Uncertainty and their Asymptotic Properties

A common practice in the uncertainty literature is to quantify uncertainty in terms of standard deviation. In line with this tradition, taking the square root of the average of the individual variances observed over the sample period in equation (4) gives the historical uncertainty faced by a policy maker while using a typical forecaster.

Definition (Forecast combination uncertainty)

The historical uncertainty of a combined forecast from n experts is given by

[image: image]

The historical uncertainty measure, RMSELPS in equation (6), in which the uncertainties add in quadrature is consistent with the standard error propagation formula used for calculating uncertainties among experimental scientists in engineering, physics, chemistry, and biology, cf. Draper (1995).

On the other hand, the conventional choice as suggested by Bates and Granger (1969) is the root mean squared error (RMSE) of the average forecast

[image: image]

With the stated objective of using forecast errors made by a panel of forecasters to generate a benchmark estimate of historical forecast uncertainty, Reifschneider and Tulip (2019) propose the following measure

[image: image]

They explicitly recognized that the empirical uncertainty faced by a typical forecaster is the average of the estimated individual uncertainty. Along this line, Jurado, Ludvigson, and Ng (2015) proposed an ex post analog of aggregate uncertainty measure. However, as Boero, Smith, and Wallis (2008) pointed out, aggregating individual standard deviations , rather than individual variances, as a measure of collective uncertainty would violate the identify in equation (4). Obviously, RMSERT is distinct from RMSELPS, and by construction, incorporates partially the disagreement as a component of uncertainty as shown in the following theorem and corollary.

Theorem 1. Suppose Assumptions 1–4 hold. Then as (n, T → ∞),

(i) [image: image]


(ii) [image: image]
 where [image: image]


(iii) [image: image]


An immediate consequence of Theorem 1 is Corollary 1.

Corollary 1. Suppose Assumptions 1–4 hold. Then as (n, T → ∞),

(i) RMSEAF → p σλh.

(ii) [image: image]


(iii) [image: image]


Remark 2. RMSEAF tends to ignore the uncertainty associated with the idiosyncratic shocks, especially when n is large since [image: image]
 with [image: image]
 By contrast, for RMSELPS, we have [image: image]
 as (n, T → ∞). Finally, it is trivial to see that RMSELPS and RMSEAF yield identical asymptotic limit if and only if [image: image]


Remark 3. Corollary 1 implies, in light of Jensen’s inequality, RMSERT ≤ RMSELPS in the limit. RMSERT, though allows for some disagreement among forecasters, underestimates the historical uncertainty especially in the presence of unequal idiosyncratic error variances. The amount of underestimation in the limit, obtained via applying second-order Taylor’s expansion to [image: image]
 is given by

[image: image]

where [image: image]
 Thus, RMSELPS and RMSERT are equal in the limit if and only if [image: image]
 is a positive constant.

Remark 4. Interestingly, RMSERT, as a measure of the typical level of historical uncertainty, is potentially more volatile than RMSELPS because of ϕ ≥ 1 by virtue of Cauchy-Schwarz inequality.




3.2. Tests for Forecaster Homogeneity and Their Asymptotic Distribution

It is evident from Remark 3 that testing for the equality of RMSELPS and RMSERT in the limit is equivalent to testing for [image: image]
 that is, [image: image]
 for almost all i with n approaching infinity. But to examine whether RMSERT and RMSELPS give statistically different measures of uncertainty in the context of a particular data set, it is necessary to restrict the null hypothesis to [image: image]
 for all i.6 To derive the test, we first obtain various bias-corrected estimators by letting [image: image]
 and defining

[image: image]


and [image: image]
 The resulting test is presented in the following theorem.

Theorem 2. Suppose Assumptions 1–4 hold. Then under the null hypothesis that [image: image]
 for all i,

[image: image]

as (n, T → ∞) and [image: image]
 where [image: image]


Theorem 2 has established the joint limit distribution of the statistic for testing the null hypothesis that [image: image]
 for all i. By construction, λth plays no role in the test since it is completely removed in the process of computing consistent estimates for εith. Along with λth, all between- and within-forecaster correlations are also removed. Moreover, the impact of the nonstochastic bias μit is asymptotically negligible as implied by assumption. Thus, our test is essentially an unconditional test for homogeneity of idiosyncratic variances in large panel data framework. A rejection of the null hypothesis based on Theorem 2 can be interpreted as a signal of the need for using unequal weights in computing the measures of uncertainty. Future research is warranted in exploring an optimally weighted (over i) version of RMSELPS, which might be lower than the RMSELPS based on a simple average.

Remark 5. The statistical literature for testing equality of variances is huge. The most widely used procedure among these is an F test proposed by Levene (1960) in the form of the classic ANOVA method applied to the absolute differences between each observation and the mean of its group. Brown and Forsythe (1974) suggested using median instead of the mean, and this version of the Levene test has been found to have excellent power properties even under asymmetric distributions, see Gastwirth, Gel, and Miao (2009). However, as Iachine, Peterson, and Kyvik (2010) have pointed out this family of tests assume independence of observations, and hence are not suitable in our context where forecast errors are sticky and correlated across forecasters due to common shocks.

An alternative approach assumes that the individual variance [image: image]
 can be approximated by a function of covariates. Testing for homoscedasticity then reduces to a joint testing for zero coefficients using Lagrange Multiplier tests, see Baltagi, Bresson, and Pirotte (2006) and Baltagi, Jung, and Song (2010). These tests require a prior knowledge of what might be causing the heteroskedasticity, and have statistical power provided [image: image]
 can be well explained by a few proxies. Since we have very little information on the characteristics of professional forecasters and how they make forecasts, this approach is not feasible in our case.

Remark 6. It is clear from expression (9) that we are in essence testing the following null hypothesis

[image: image]

That is, we are testing the significance of the scaled difference between the asymptotic limits of RMSELPS and RMSERT.

Remark 7. The restriction that [image: image]
 as (n, T → ∞) controls for the approximation errors in panel estimation and prevents them to have a non-trivial effect on the limit distribution. Moreover, from the proof of Theorem 2 in the Online Appendix, we see the presence of two bias terms of magnitude order Op(n−1/2) – one positive and one negative, and two positive bias terms of order Op(n−3/2).

Remark 8. Under the null hypothesis, the term [image: image]
 roughly follows a [image: image]
 distribution for large T and large n, leading to potential size distortions and slow convergence to standard normality due to its large positive skewness (close to [image: image]
).

To address the bias and skewness issues pointed out in Remarks 7 and 8, we define [image: image]
 where [image: image]
 and [image: image]
 and modify the test statistic proposed in Theorem 2. The result is then summarized in the following theorem.

Theorem 3. Suppose Assumptions 1–4 hold. Then under the null hypothesis that [image: image]
 for all i,

[image: image]


as (n, T → ∞) and [image: image]


Remark 9. The statistic in Theorem 3 reduces the asymptotic bias by subtracting the estimated means for the four bias terms discussed in Remark 7 and by scaling with the factor [image: image]
 A similar approach was adopted by Pesaran and Yamagata (2008) in their test of slope homogeneity in large random coefficient panel data models, see also Hsiao and Pesaran (2008). In addition, it addresses the issues of positive skewness and slow convergence by adopting the popular Wilson-Hilferty cube root transformation; see Chen and Deo (2004) for a general discussion on power transformation to tackling skewness and slow convergence problems.




3.3. Monte Carlo Simulation

To assess the performance of our tests, we conduct Monte Carlo simulations. We consider all combinations of T = 20, 60, 120 and n = 20, 60, 120. Data are generated according to eith = λth + εith.7 Since λth plays no role in the test, for simplicity, it is generated as a moving average process of order one such that λth = ξth − 0.5ξ(t − 1)h, with [image: image]
 εith are randomly generated from either a normal distribution [image: image]
 or a uniform distribution [image: image]
 To assess the size of our tests, we let [image: image]
 for all i and set [image: image]
 and 1.25, respectively. To evaluate the power, we first set the value for the average of idiosyncratic variances [image: image]
 and then let 100r percentage of idiosyncratic variances differ from [image: image]
 with half of them greater and the other half smaller than [image: image]
 The magnitude of the difference is measured by 100p percentage. Our simulation design allows us to explore the effect of changes in r and p on the performance of the test statistics, as large values of r and/or p introduce increasing heterogeneity of idiosyncratic variances. In our simulation study, we consider all combinations of r = 0.3, 0.5, 0.7 and p = 0.3, 0.5, 0.7. For brevity, we report the results for [image: image]
 only, since other values of [image: image]
 (namely, 0.25 and 1.25) yield very similar power. All results are obtained from 5,000 replications.

Since the results for the original test in Theorem 2 are slightly inferior to those for the bias and skewness corrected test [image: image]
 in Theorem 3, and for the sake of brevity, we report only the simulation results for the latter. Table 1 summarizes the size of the test. When the idiosyncratic errors are assumed to be normally distributed, the [image: image]
 test yields good empirical size, though slightly oversized when n = 20. With a uniform distribution for the error terms, the test exhibits size distortions, especially for n = 20, but the size distortion becomes less as n increases to 60. Turning to the power, Table 2 shows that the [image: image]
 test becomes more powerful when either r or p increases. Recall that r indicates the fraction of heterogeneous idiosyncratic variances in the panel and p captures the deviation of the individual variances from the average of idiosyncratic variances on the whole. Taken together, r measures the relative amount of evidence against the null (or “patterns”), and p measures the overall amount of evidence against the null (or “strength”). Moreover, the power tends to increase when T and/or n increase for given values of r and p, which justifies our proposed test for the use in large panels. Finally, the [image: image]
 test performs better under a uniform distribution than a normal distribution for the idiosyncratic error terms.

Table 1.    Size of [image: image]
 Test.

[image: image]

Notes: Rejection rates of [image: image]
 test under [image: image]
 for all i at the 5% nominal level based on two-sided N(0, 1) test and 5,000 replications. We consider all combinations of T = 20, 60, 120 and n = 20, 60, 120. Data are generated according to eit = λt + εit. λt is generated as a moving average process of order one such that λt = ξt − 0.5ξt − 1, with [image: image]
 εit are randomly generated from either a normal distribution [image: image]
 under DGP 1, or a uniform distribution [image: image]
 under DGP 2. To assess the size of our tests, we let [image: image]
 for all i and set [image: image]
 and 1.25, respectively.






4. EMPIRICAL ILLUSTRATIONS: UNDERESTIMATION OF UNCERTAINTY IN US GDP AND INFLATION FORECASTS

In this section, we present estimates of historical uncertainty in inflation and output growth forecasts using RMSELPS, and compare it to RMSEAF and RMSERT. The use of various types of survey data in measuring forecast uncertainty is well elaborated in Pesaran and Weale (2006).

Table 2.    Power of [image: image]
 Test.

[image: image]

Notes: See Table 1. Under DGP I, [image: image]
 under DGP II, [image: image]
 where [image: image]
 r measures the percentage of [image: image]
 that differ from [image: image]
 p measures the magnitude of the deviation of [image: image]
 from [image: image]
 on the whole.


4.1. Survey of Professional Forecasters

The first data set used in this study to examine the alternative uncertainty estimates comes from the US SPF over 1991Q1 to 2017Q4. We focus on forecasts of GDP price deflator and real GDP growth, with horizon varying from one to five quarters. In order to calculate the forecast errors, we used the first-announced actual values in real time from the Real Time Data Set for Macroeconomists (RTDSM) provided by the Federal Reserve Bank of Philadelphia. The forecast data set fits our need well because it covers 90–100 forecasters over 108 quarters. The SPF is a quality-assured and widely used quarterly survey on macroeconomic forecasts in the United States. The American Statistical Association (ASA) and the National Bureau of Economic Research (NBER) initiated the survey in 1968Q4. Due to a rapidly declining participation rate in the late 1980s, the Federal Reserve Bank of Philadelphia took over the survey in 1990 with a new infusion of forecasters. Thus, in order to minimize the missing data problem, our sample starts from 1991Q1; even then nearly 70% of the potentially observable forecasts are unavailable, cf. Engelberg, Manski, and Williams (2011).

The missing values pose a potential challenge for empirically implementing our test statistics since many of the asymptotic inequalities that we established are not necessarily valid in the context of incomplete panels. Following a lead from Genre, Kenny, Meyler, and Timmermann (2013), we impute the missing values, but allow for uncertainty in inference due to missing data by multiple imputations (MIs). Using Markov chain Monte Carlo (MCMC) techniques, a predictive distribution of missing data conditional on observed forecasts is simulated leading to the creation of MIs, see Little and Rubin (2002). Our model of imputation for each variable and for each horizon is specified as a linear mixed-effects model

[image: image]

where e.th is the average forecast error for period t made by the participating forecasters, eih. is the average forecast error by forecaster i during the periods for which he/she forecasted, and the overall mean of forecast errors is eh.. · ϵith is the error in the imputation equation. It is presumed that parts of eith are missing that we need to impute. Whereas β is specified as a fixed effect with expected value 1, γi(eih. − eh..) is treated as random effects allowing for time-invariant individual biases. Note that in Genre et al. (2013), the second term in (10) is a function of recent average deviation of forecasts made by a forecaster from the mean forecasts.8 However, as discussed in Lahiri, Peng, and Zhao (2017), due to excessive missing observations in SPF data, we took individual means instead. Since our aim is to fill in the missing values retrospectively for calculating the ex post RMSEs, we did not have to impute recursively in real time, even though our scheme in principle can allow for this. After each imputation, we replaced the right-hand-side variables based on the imputed data set, and the missing observations were imputed again. In this way, the three variables in equation (10) will be pairwise consistent. This is a sensible imputation scheme in our context since the original time series of mean forecasts will be preserved, and the structure of correlations in the forecast errors between and within individuals will be largely maintained. What is most noteworthy is that the mean squared forecast errors based on the original incomplete panels and the imputed data sets were very close.9

Tables 3 and 4 report various statistics for inflation and output growth forecasts, respectively, using multiple imputed data. Two points are worth noting. First, the RMSEs associated with output are uniformly higher compared to inflation due to a differential incidence of common shocks. Both the idiosyncratic and common shocks are more variable for GDP growth forecasts than those for inflation, and the latter for GDP is comparatively very high. This phenomenon, which makes real GDP growth a difficult variable to predict, has been documented by Lahiri and Sheng (2008) using a heterogeneous learning model. More importantly, as expected, for all five horizons and for both GDP growth and inflation, RMSERT is less than RMSELPS, but the differences between these two measures are very small. Yet, these differences are statistically significant for almost all cases. To understand the latter finding, note that we are testing the significance of the scaled difference between the asymptotic limits of RMSELPS and RMSERT, as noted in Remark 6. Indeed, the scaled differences range from 0.09 to 0.13 for inflation and from 0.12 to 0.36 for output growth forecasts, resulting in a rejection of the null hypothesis that the scaled difference (i.e., the variance of idiosyncratic variances) is zero by both the original and bias-corrected test statistics ([image: image]
 and [image: image]
). The power of the tests comes from the fact that they hone into the individual forecast variances after netting out the more formidable variability of the common shocks in constructing the statistics.

Table 3.    Measures of Historical Uncertainty in SPF Inflation Forecasts.

[image: image]

Notes: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider and Tulip (2019)’s uncertainty measure in equation (8) and RMSELPS is our suggested uncertainty measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELPS, the original test statistic [image: image]
 is defined in Theorem 2, and [image: image]
 is the bias and skewness corrected test statistic as defined in Theorem 3. The actual inflation rate for 1991–2017 is taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The inflation forecasts are taken from the SPF from 1991:Q1 until 2017:Q3. *** and ** indicate significance at the 1% and 5% level, respectively.

Table 4.    Measures of Historical Uncertainty in SPF Output Growth Forecasts.

[image: image]

Notes: See Table 3. The actual output growth rate for 1991–2017 is taken from the first quarterly release of Federal Reserve Bank of Philadelphia “real-time” data set. The output growth forecasts used in this study are taken from the SPF from 1991:Q1 until 2017:Q3. *** indicates significance at the 1% level.

Note that the RMSE figures that are reported by Reifschneider and Tulip (2019) and those in this chapter are not directly comparable. RT used the simple averages of the individual projections in SPF, Blue Chip and FOMC panels, together with Greenbook, Congressional Budget Office (CBO) and the Administration forecasts giving n = 6 in their calculation. Specifically, their measure is expressed as [image: image]
 where [image: image]
 is the mean forecast for the group m, for the target year t and h-period ahead to the end of the target year. By averaging across individual projections, most of idiosyncratic differences and disagreement in FOMC, SPF and Blue Chip forecasts have inadvertently been washed away. They found very little heterogeneity in these six forecasts. On the other hand, their simultaneous use of Greenbook, CBO, Administration, consensus FOMC, SPF, and Blue Chip forecasts meant that RT had to meticulously sort out important differences in the comparability of these six forecasts due to data coverage, timing of forecasts, reporting basis for projections, and forecast conditionality. Despite all these differences, these two sets of uncertainty estimates are very close in the context of SPF data set. At least a part of the explanation for this similarity is due to the use of dataset from professional forecasters. For non-professionals, such as surveys of households, where the idiosyncratic errors are expected to be more heteroskedastic, we may see a substantial difference between RT and LPS uncertainty measures. Indeed, if the cross-sectional variance of idiosyncratic error variances, defined as [image: image]
 were to increase from 0.0004 to 0.004 at 1-quarter ahead inflation forecast, RMSERT would decrease from 0.209 in Table 5 to 0.163, resulting in an underestimation of the correct benchmark uncertainty by 23%. Clements and Galvao (2017) compare RT measure against two ex ante uncertainty measures from survey forecasts and find that for both inflation and output growth at within-year horizon, RT uncertainty underestimates ex ante uncertainty measures.10

Table 5.    Measures of Historical Uncertainty in MSC Inflation Forecasts from 104 Cohorts.

[image: image]

Notes: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider and Tulip (2019)’s uncertainty measure in equation (8) and RMSELPS is our suggested uncertainty measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELPS, the original test statistic [image: image]
 is defined in Theorem 2, and [image: image]
 is the bias and skewness corrected test statistic as defined in Theorem 3. The inflation forecasts of households are taken from University of MSC forecast of price changes over the next 12 months. The actual inflation rate is calculated as the annual percentage change in the Consumer Price Index for All Urban Consumers. The pseudo-balanced panel includes 104 forecasters by dividing the survey participants into 104 cohorts by their age/gender/income from the fourth quarter of 1979 through the fourth quarter of 2017. *** indicates significance at the 1% level.




4.2. University of Michigan Survey of Consumers

To gain further insight into heterogeneous idiosyncratic errors, we conduct a separate experiment using data from the University of Michigan Survey of Consumers (MSC). We choose the Michigan survey since household expectations in this survey are often used in the macroeconomics literature; see, for example, Carroll (2003), Ang, Bekaert, and Wei (2007), and Coibion and Gorodnichenko (2015). Each month households give their forecasts of price changes over the next 12 months.11 In order to build a balanced panel, we followed Deaton (1985) to convert the repeated cross-sections MSC data to a pseudo panel. Thus, we classify each household into different cohorts according to their age (at five-year intervals), gender (male vs female) and income (quartiles). Souleles (2004), Bruine de Bruin, Manski, Topa, and van der Klaauw (2011), and Lahiri and Zhao (2016) provide mounting evidence on the heterogeneity in the household price expectations along these dimensions. Then we construct a pseudo-balanced panel of 104 forecasters, with each of them calculated as the average inflation forecast in the corresponding age/gender/income cohort. To increase the number of observations for each cohort, we pool monthly observations for each quarter. The sample in this study comprises 153 quarterly surveys from the fourth quarter of 1979 through the fourth quarter of 2017. There are about 1,400 participants in each year/quarter and 13 participants in each cohort, on average.12 For our purpose, the structure of heterogeneity should be maintained in the pseudo panel. Indeed, the correlation between disagreement from the pseudo panel and from the entire sample is about 0.79.

To further explore the heterogeneity across cohorts, in Table 5 we report the RMSE and test statistics. For both the whole sample period and various subsamples, we see substantial differences between RMSERT and RMSELPS, and these differences are statistically significant at the 1% level. Depending on the sample period, RMSERT underestimates the correct benchmark uncertainty by 2%–14%. One potential concern with the above analysis is that there are not enough participants for each cohort for valid asymptotic inference. To address this issue, we drop the gender category and form cohorts by only age and income categories. Also, we now construct 6 age cohorts by ages 18–30, 31–40, 41–50, 51–60, 61–70, 71 and above. Thus, we now have 24 cohorts ( = 6 age cohorts × 4 income cohorts) in this alternative dataset, and there are about 58 participants in each cohort on average. Table 6 reports the RMSE and test statistics, and the results based on 24 cohorts are qualitatively the same as those based on 104 cohorts. This simple experiment confirms our conjecture that there exists substantial differences in the idiosyncratic forecast variances among households, and suggests the need to construct the correct benchmark uncertainty by incorporating heterogeneous individual error variances.

Table 6.    Measures of Historical Uncertainty in MSC Inflation Forecasts from 24 Cohorts.

[image: image]

Notes: See Table 5. The pseudo-balanced panel includes 24 forecasters by dividing the survey participants into 24 cohorts by their age/income from the fourth quarter of 1979 through the fourth quarter of 2017. *** indicates significance at the 1% level.






5. CONCLUDING REMARKS

A number of surveys of professional forecasters and households are regularly conducted in many countries around the world, and a widespread interest in these surveys suggests that the aggregate macroeconomic forecasts reported by these organizations are considered useful by policy makers, investors and other stakeholders. Even though it is now recognized in the forecasting profession that a point forecast by itself is of limited use and should be reported with an indication of the associated uncertainty, currently the consensus forecasts from these surveys are not reported with uncertainty bands.

The dominant methodology of forecast combination in econometrics is due to Bates and Granger (1969) whose basic criterion for optimal combination is based on minimizing the mean squared error of combined forecasts that rule out any consideration of the cross-sectional distribution of forecasts. From the standpoint of a policy maker who has access to a number of expert forecasts, the uncertainty of a combined or ensemble forecast should be interpreted as that of a typical forecaster randomly drawn from the pool. This uncertainty formula should incorporate forecaster discord, as justified by (i) disagreement as a component of combined forecast uncertainty, (ii) the model averaging literature, and (iii) central banks’ communication of uncertainty via fan charts. This is not entirely a new idea, but the asymptotic results that we have provided in this paper will help crystallize the role of forecaster disagreement in measuring uncertainty of combined forecast from the standpoint of a policy maker.

We have identified two layers of heterogeneity in individual forecast errors, arising from (i) systematic individual biases and (ii) random individual errors with heteroskedasticity. We develop two new statistics to test the heterogeneity of idiosyncratic errors under the joint limits with both n and T approaching infinity simultaneously. We find significant heterogeneity in professional forecasters, which is due primarily to the heterogeneity in individual error variances. However, for this set of professional forecasters, the observed heterogeneity does not translate into a significant underestimation of true uncertainty if one uses the benchmark uncertainty formula suggested by Reifschneider and Tulip (2019). However, when we implement our test on the household inflation expectations, the cross-sectional heterogeneity is found to be considerable, and perhaps not surprisingly, the RT formula significantly underestimates the theoretical value by as much as 10% for one-year ahead forecasts.

One potential concern in incorporating disagreement as part of aggregate uncertainty is that the prediction intervals will get wider, making inter-temporal movements in consensus forecasts less meaningful. Why would practitioners opt for enlarged confidence bands when they are less likely to obtain news-worthy results? The simple answer is that in the long run the reported forecasts will be more credible and the uncertainty measures better calibrated. As aptly put by Draper (1995) in his concluding remark, “which is worse – widening the bands now or missing the truth later?”




NOTES

1. Granger and Jeon (2004) call this approach of making inference based on combined outputs from alternative models as “thick modeling.”

2. The superior performance of the consensus forecast relative to individual forecasts follows from Jensen’s inequality, which states that with convex loss functions, the loss associated with the mean forecast is generally less than the mean loss of individual forecasts, cf. Manski (2011). See also Granger (1989), Makridakis (1989), Diebold and Lopez (1996), Newbold and Harvey (2001), and Hendry and Clements (2004) for discussing why combining is beneficial due to unobserved information sets, diversification gains, insurance against structural breaks and misspecifications.

3. See, for example, Lahiri and Sheng (2008), Patton and Timmermann (2010), and Andrade, Crump, Eusepi, and Moench (2016). Pesaran and Weale (2006) report an early elaboration of many of these issues.

4. Reifschneider and Tulip (2019) report the biases to be transitory. See also Clark, McCracken, and Mertens (2020) who make a similar assumption. Note that our bias condition allows for heterogenous rates of individual biases approaching zero.

5. For example, some residual group-wide influences, resulting from the facts that groups of forecasters may adopt similar models, loss functions, judgments of interpretations under certain circumstances, may not be strong enough or explicit enough to be embodied in specific common factors.

6. Indeed, it would be enough to test the null hypothesis that [image: image]
 for our purpose. But [image: image]
 does not depend on T by Assumption 3. So a natural choice for the null would then be [image: image]
 for all i.

7. We also consider the following data generating process eith = μith + λth + εith with μith = O((nT)− 1/2). We find that the size and power of our tests are almost identical to those of the process eith = λth + εith, implying that the impact of μith on our tests are insignificant and thus can be safely ignored.

8. Following Davies and Lahiri (1999), we also experimented with a number of alternative imputation schemes including using known lagged actuals and aggregate forecast revisions from last forecasts. But these variables were found to be redundant in specification (10).

9. We did 100 imputations for each data set using packages pan and mitml in R (version 3.6.0). Specifically, the calculated 100 test statistics [image: image]
 and [image: image]
 from the imputed data sets are combined in such a way that they reflect the variabilities due to both within and between imputations, see Little and Rubin (2002, pp. 86–87). For asymptotically valid inference in this context, one needs the assumption that the missingness mechanism is ignorable or missing at random (MAR). The MAR assumption merely means that the mechanism generating missing values can be ignored while preforming statistical inference. Identifying the mechanism generating attrition is difficult in our case because we have very little information on the forecasters except for their past forecast performance and the number of quarters they have been responding. Capistrán and Timmermann (2009), Genre et al. (2013), and Lahiri et al. (2017) found little association between participation and performance. While the assumption of MAR is almost impossible to test, it does not seem to be unreasonable in this example, see Yucel (2011).

10. Clark et al. (2020) have compared the RT approach based on past errors with a stochastic multi-horizon volatility model of nowcasts and successive forecast updates, and found that the former yields incorrect coverage rates. However, with smaller rolling window sizes around 40 quarters, the two approaches gave comparable results. That said, RT measure was proposed not as a stand-alone measure of uncertainty, but rather as a historical benchmark against which the FOMC participants would form their own forward-looking evaluations and downside risks.

11. Specifically, households are first asked, “During the next 12 months, do you think that prices in general will go up, or go down, or stay where they are now?” If the respondent answers “go up” or “go down,” point forecasts are requested: “By about what percent do you expect prices to go up/down on the average, during the next 12 months?”

12. For 204 cohorts (accounting for about 1% of all cohorts) where there are no participants, we replace the missing value by the corresponding mean forecast across all participants in that year/quarter.
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