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ABSTRACT

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.
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1 INTRODUCTION

The business cycle accounting (BCA) procedure developed by Chari et al. (2007) and recently revived by Brinca, Chari, Kehoe, and McGrattan (2016) has sparked great interest among quantitative and theoretical economists. This tool allows to look the data through the lens of a standard business cycle model and, most importantly, to detect and quantitatively assess to which extent and in which equilibrium conditions the model performs better or worse. The so-called ‘wedges’ – which in practical terms are whatever makes the equilibrium conditions not hold – can be mapped into frictions of richer models and vice versa. In this context, the BCA exercise can thus be thought of as some ex ante diagnosis tool for researchers to know in which broad classes of models it is worth or not worth investing time if one wants to explain fluctuations in macroeconomic aggregates such as GDP, investment and working hours during a particular economic episode.

BCA has become a standard tool of business cycle analysis and, since its inception, literally hundreds of applications of the original methodology, have been performed.

Examples can be found in Kobayashi and Inaba (2006) for Japan, Simonovska and Söderling (2008) for Chile and Lama (2009) for Argentina, Mexico and Brazil. The results seem to conclude, much in line with Chari et al. (2007), that total factor productivity and distortions to the labour choice are relevant, whereas distortions to the savings decision are considerably less important. Some authors focus their analysis to one type of distortions as in Restrepo-Echavarria and Cheremukhin (2010) or Cociuba and Ueberfedt (2010), where the focus is on the labour-leisure margin, or other numerous studies which deal with total factor productivity, such as Islam, Dai, and Sakamoto (2006). Another line of work looks into a selected sample of countries and a specific periods of fluctuations such as output drops (see, e.g., Dooyeon & Doblas-Madrid, 2012). Brinca (2014) instead provides a comprehensive exercise for 22 OECD countries covering the period from 1970 to 2012. It looks at the quantitative relevance of each distortion over the whole business cycle and not just booms or busts. The results confirm the findings of Chari et al. (2007) regarding the Great Depression and the 1981 recession in the United States, while stressing the relevance of the international channels of transmission of these distortions.

In terms of methodological departures, Otsu (2009) extends the methodology to a two-country setting. Šustek (2011) includes a Taylor-type nominal interest rate setting rule and an extra asset, government bonds, to study the behaviour of nominal variables such as the nominal interest rate on bonds and the inflation rate, and gives it the name of monetary business cycle accounting (MBCA). These departures have also been explored. For instance, Brinca (2013) applies Šustek (2011) model to perform a MBCA exercise for Sweden, comparing the 1990s crisis with the period of the Great Recession.

While much attention has been devoted to the BCA methodology, no efforts have been made in investigating whether the parameter estimation procedure associated with this tool is affected by identification deficiencies. The question of identifiability in dynamic stochastic general equilibrium (DSGE) is an important one as it might jeopardize the consistency and adversely affect the precision of parameter estimates. This issue becomes even more important in light of the fact that, in the past years, DSGE models have become a standard and important asset within the toolkit of economic policy-makers to make quantitative statements about real and nominal variables. When these models are brought to the data researchers should be cautious in taking for granted the empirical credibility of their estimated parameters and, thus, of the economic implications that the latter entail. Indeed, due to identifiability issues inherent to DSGE models, it is far from obvious that parameters can be inferred successfully even when one has an infinite sample of observed data and when full-information methods such as maximum likelihood (ML) are employed in estimation. Most importantly, as pointed out by Canova and Sala (2009), in some cases these identification deficiencies can result in significantly different economic inference from the theoretical models of interest. To the extent that the BCA exercises by Chari et al. (2007) and Šustek (2011) draw quantitative conclusions from their respective DSGE models of reference it is of outmost importance that their identification potential is carefully analyzed.

This chapter builds up on the literature which studies local sample and population identification issues specific to linearized DSGE models. Our methodological approach to the analysis of such issues is closely related to the work by Canova and Sala (2009) whose contribution was to provide: (i) a working language which allows researchers to classify identification problems; (ii) formal graphical inspection tools to detect those problems; and (iii) possible ways to obviate them. Due to the high number of parameters to be estimated in both models graphical inspection quickly becomes unmanageable and dispersive. This leads us to bring into our toolkit the formal identification tests developed by Komunjer and Ng (2011) and Iskrev (2010).

The results presented in this chapter suggest that the standard and MBCA model do not suffer from strict identification failures when estimation is restricted to the parameters governing the law of motion of the latent variables and that this is not true anymore once one extends the estimation to the deep parameters of the model. We show that restricting estimation of some deep parameters can obviate these strict identification failures. We also find that both models are affected by weak identification deficiencies and that these are induced by several parameters of the model not exerting a distinct effect on our objective function of interest, namely the likelihood function of the model. Finally, we explore to which extent this type of identification failure affects the main conclusions to be drawn from (M)BCA exercises. We find that the main takeaways from a standard BCA exercise are not overturned when one explicitly takes into account the weak identifiability of the model’s parameters. We are still investigating whether this result holds through in the MBCA framework.

Finally, we analyze how overall identification strength of the estimated parameter vector varies across sample sizes. To do so, we compute empirical distance measures as in Qu and Tkachenko (2017). We find that in both models the parameter set is overall well identified even if a practitioner is faced with a data set of only 20 data points per observable.

This chapter is organized as follows. Section 2 presents the prototype MBCA economy. The methodology to run the identification tests is illustrated in Section 3. Their results are reported in Section 4 while Section 5 discusses their economic relevance. In Section 6, we present statistics of interest to practitioners and then conclude in Section 7.




2 THE PROTOTYPE (M)BCA ECONOMY

We start by introducing the MBCA prototype economy as in Šustek (2011), which is an extension of the prototype economy in Chari et al. (2007), a neoclassical growth model with labour-leisure choice. The extension consists in allowing for an extra asset (government bonds) and introducing a nominal interest rate setting rule.


2.1 Description of the Economy

There is an infinitely lived representative agent that maximizes expected discounted utility and a representative firm, both price-takers in all markets. The economy experiences one of finitely many events st, where st = (s0,…, st) is the history of events up to period t which occur with probability πt(st). There are six exogenous stochastic variables which are all function of the random variable st. Four of them are the same as in Chari et al. (2007). These are the efficiency wedge Zt(st), the labour wedge 1 − τl,t(st), the investment wedge 1/[1 + τx,t(st)] and the government wedge gt(st). With the Šustek (2011) extension, two more stochastic variables are added: an asset market wedge 1/[1 + τb,t(st)] and a monetary policy wedge [image: image]


The representative household chooses how much to consume ct(st) and how much labour to supply lt(st). Given the discount factor β it solves the following maximization problem:

[image: image]

subject to the budget constraint:

[image: image]

where xt(st) is investment, gn the population growth rate, bt(st) are bond holdings paying a net nominal rate of return Rt(st) in all states of the world, pt(st) is the nominal price of goods in terms of a numeraire, wt(st) the wage rate, rt(st) the real rental rate of return on capital kt(st) held at the beginning of period and Tt(st) lump-sum transfers from the government. Capital accumulation follows:

[image: image]

where δ is capital’s depreciation rate. The production function for the representative firm is given by

[image: image]

which is assumed to exhibit constant returns to scale (CRS). The aggregate resource constraint is then given by

[image: image]

There is a monetary authority who reacts to deviations from steady-state output y and inflation π by setting the nominal interest rate Rt(st) according to:

[image: image]

where ρR ∈ [0,1) and πt(st) ≡ ln pt(st) − ln pt − 1(st − 1) is the inflation rate. In addition, it is assumed that ωπ > 1, thus eliminating explosive paths for inflation.

Just like in Chari et al. (2007) it is assumed that the state st follows a Makov process of the type

[image: image]

where εs,t+1 ∼ N(0,I). Moreover, the mapping between this process of the underlying event [image: image]
 and the wedges [image: image]
 is one-to-one and onto. This setup is equivalent to assuming that agents use only past realizations of wedges to forecast future ones. Note that in the case where the matrix P is diagonal then, irrespectively of whether the covariance matrix QQ′ is diagonal or not (i.e. whether the shocks are allowed to be correlated or not), the MBCA model is block-recursive in the sense that shocks to the wedges of the standard BCA setup only affect real variables while leaving the model’s nominal variables – interest rate Rt and inflation rate πt– unaffected. In this sense, we can think of the MBCA theoretical framework as nesting the plain-vanilla BCA one. This is why we avoid a detailed exposition of the latter.




2.2 Equilibrium Conditions

Equilibrium allocations are pinned down by the production function in (2.4), the aggregate resource constraint in (2.5) and the first-order conditions with respect to labour, capital and bond holdings below:
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In Appendix B, we derive these conditions and present the full-fledged model.

The notation [image: image]
 refers to model variables Vt which are not only expressed in per-capita terms vt but also detrended [image: image]





2.3 Operational Model

In the operational version of the model which we bring to the data we consider quantities which are not only expressed in per-capita terms but also detrended (see Appendix B.5 for derivations). To highlight the differences between this model’s and the previous model’s variables we introduce the notation [image: image]


The model is given by the CRS Production Function:

[image: image]

the aggregate resource constraint:

[image: image]

the capital accumulation law:

[image: image]

the Taylor rule:

[image: image]

the F.O.C. for labour:

[image: image]

the F.O.C. for capital:

[image: image]

and the F.O.C. Bonds:

[image: image]

where [image: image]


Notice that the operational model the efficiency wedge is thus given by [image: image]
 and the government wedge by [image: image]


The structural parameters of the BCA model are: (i) gn, population growth rate of labour-augmenting technological process; (ii) gz, growth rate of labour-augmenting technological process; (iii) α, parameter which determines the share of (and weight on) net capital stock in the Cobb-Douglas CRS production function; (iv) β, subjective discount factor, reflecting the time preference of the household; (v) δ, depreciation rate of net capital stock; and (vi) ψ, Frisch elasticity of labour supply. In the MBCA model the deep parameters also include (vii) ρR, weight on lagged nominal interest rate in the Taylor rule (extent of ‘interest rate smoothing’); (viii) ωπ, coefficient on deviations of inflation from its steady-state value in Taylor rule; (ix) ωy, coefficient on deviations of output from its steady-state value in Taylor rule; and (x) πss, steady-state inflation.






3 METHODOLOGY

The problem of identification emerges when a researcher seeks to infer the parameters of his theoretical model from a sample of observed data. In general and loosely speaking, the requirements for ‘successful estimation’ are that (i) the objective function (e.g. the log-likelihood function) has a unique maximum; (ii) the Hessian at the mode is negative definite and has full rank; and that (iii) the objective function exhibits ‘sufficient’ curvature. Local identifiability is crucial as it guarantees consistent parameter estimation and that the estimator has the usual asymptotic properties, where by ‘local’ we mean that the maximum in condition (i) above is at least locally unique. It is thus of outmost importance to investigate thoroughly whether the conditions for local identifiability are satisfied within the standard and MBCA framework.

In this analysis, we employ strict and weak identification tests. Both are performed in population, that is, given a theoretical sample of infinite length. The former provides a yes or no answer to the question whether a parameter is identifiable or not and, thus, whether condition (ii) above is satisfied or not. The latter investigates condition (iii) above and is thus informative about whether the likelihood exhibits small curvature, where small is in relation to an economically relevant parameter range. The weak identification test also instructs about whether the small curvature is due to the fact that the parameters have no effect on the objective function or to the fact that the variation which they induce on the objective function is not distinct enough from other parameters which are being estimated.

As to the strict identification tests in population, consider the case where the researcher has a sample of length T generated by (3.4) with θ = θ0. In this context, one can ask the following question: If the sample was infinitely large, that is, T → ∞, under which conditions would it be possible to uncover the value θ0 and the model that generated the data? Problems specific to the dynamic nature of DSGE models make it difficult to test whether the conditions for local identifiability mentioned above hold given a sample of data. Indeed, as pointed out by Canova and Sala (2009), the mapping from the structural parameters to the solution coefficients is typically unknown and the latter, in turn, usually appear in a non-linear way in the objective function. These are some of the reasons why the rank and order conditions of Rothenberg (1971) derived for simultaneous system of equations cannot be applied. As pointed out by Komunjer and Ng (2011) other reasons are that classical conditions: (i) are derived for static models whose reduced-form errors are orthogonal to the regressors, an assumption which is implausible for DSGE models given that they are dynamic; (ii) do not recognize the fact that reduced-form parameters themselves can be not identifiable unless all state variables are observed: and (iii) are for simultaneous system of equations which is not the form of DSGE model solutions.

Alternative rank and order conditions for strict identification are derived by Komunjer and Ng (2011) using the spectral density matrix and by Iskrev (2010) using the likelihood function of the DSGE model. Both tests treat parameter identification as a property of the underlying structural model. This is motivated by the fact that DSGE models completely characterize the data generating process. This is in contrast with other types of models where the mapping from the model to the data is only partially known. Therefore, the economic model is the origin of identification problems which appear in a particular data set. It is then straightforward to see that identification problems may occur as an intrinsic property of the model when, for instance, the restrictions that the model imposes on the joint distribution of the observed variables do not contain sufficient information about some parameters of interest. It is important to recognize the fact that, in general, these restrictions are a function of the parameters. Hence, also the data crucially contributes to identify those parameter values for which the model can account well for the movements in the data.

An advantage of the Iskrev (2010) approach over Komunjer and Ng (2011) is that key objects of interest are obtained analytically rather than numerically. Furthermore, it can detect not only strict but also weak identification problems. A central tool in his analysis is the expected Fisher information matrix, as first suggested by Rothenberg (1971). It is intuitive to understand why this matrix comes handy to study identification problems. The information matrix measures the curvature of the expected log-likelihood surface and, as pointed out by Rothenberg (1971), it is informative about the (degree of) informational content available in the sample about the unknown parameters. For instance, one should expect identification deficiencies to arise when the log-likelihood surface is flat or nearly flat with respect to the parameters to be estimated. The degree of ‘flatness’ can be detected and quantified via the information matrix.

There are two main reasons why parameters might be unidentifiable or just weakly identifiable; they can be broadly classified as a ‘sensitivity’ and a ‘collinearity’ factor. They originate from the fact that the economic features which operate via the problematic parameters may be nearly or completely irrelevant with respect to the variables of the model used in estimation. The ‘sensitivity’ factor signals that the identification problem occurs because the features are inherently unimportant while the ‘collinearity’ factor attributes it to the nearly redundant nature of these features given others present in the model. The information matrix can be used to assess the importance of the two factors via a simple decomposition. This analysis thus allows not only to flag problematic parameters but also to quantify the strength and discern the nature of their identification deficiencies.


3.1 State Space Form

Following Chari et al. (2007) the state space form of the model is given by:

[image: image]

where, in the standard BCA model, the vectors of state variables and the vector of observables are, respectively, given by [image: image]
 [image: image]
 whereas in the MBCA model [image: image]
 [image: image]

The parameters of the model are collected in a vector θ and belong to a set [image: image]
 The matrices [image: image]
 are, respectively, the ones describing: (i) the transition of the states; (ii) the variance covariance matrix of the shocks to the wedges ut ≡ B(θ)εt given by Ω ≡ BB′ since it is assumed that [image: image]
 (iii) the mapping from the states to the observables; and (iv) the serial correlation of the measurement errors (set to 0 here).

For both models, the state space matrices A(θ) and B(θ) are obtained by solving the rational expectations systems using the Gensys algorithm developed by Sims (2002) (see Appendix C for more details).

Let us assume that [image: image]
 and [image: image]
 for all periods t and s. Next, define [image: image]
 Then we can rewrite (3.1) as

[image: image]

where [image: image]


Stacking the vector of innovations and measurement errors into a nϵ × 1 vector [image: image]
 yields the following representation:

[image: image]

In all periods and all identification tests we set the measurement errors equal to 0 so that [image: image]
 and

[image: image]

where [image: image]
 and [image: image]





3.2 Estimated Parameters

The estimated parameters are those governing the stochastic process:

[image: image]

underlying the wedges and are thus the ones appearing in the matrices P0, P and Q. More specifically, for the standard BCA model the stochastic process of the wedge shocks takes the form:

[image: image]

The estimated steady-state vector of wedge shocks [image: image]
 are given by [image: image]
 which we define as [image: image]
 for convenience.

In the MBCA model the stochastic process of the wedge shocks takes the form:

[image: image]

The estimated steady-state vector of wedge shocks [image: image]
 is given by [image: image]
 which, again for convenience, we define as [image: image]
 Šustek (2011) imposes τbss = 0 and [image: image]
 in estimation. In the identification tests we explore, inter alia, the case where these two parameters are estimated as well.

In Section 4, we also present results for the case where the structural parameters of the respective models are included in the identification analysis.




3.3 Komunjer and Ng (2011) Test for Strict Identification

In a DSGE model two parameter vectors θ0 and θ1 are observationally equivalent if the spectral density matrix evaluated at θ0 is equal to the spectral density matrix evaluated at θ1. A parameter set θ0 ∈ Θ is defined to be locally identifiable from the autocovariances of Yt if there exists an open neighboorhood of θ0 such that θ0 and θ1 being observationally equivalent necessarily implies θ1 = θ0.

Formally, Komunjer and Ng (2011) state that two triples (θ0, InX, Inε) and (θ1, T, U) are observationally equivalent if

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

where A(·), B(·), C(·), D(·) and Σ(·) are the matrices of the state space model described in (3.4) with T and U being full rank matrices.

A necessary sufficient condition for identification is thus checking that the mapping

[image: image]

has full rank. The rank condition for local identification at θ0 when the state space system is square (i.e. nε = nY) is thus given by

[image: image]

where

[image: image]

They also establish the following necessary order condition for identification:

[image: image]

It requires the number of equations defined by δS to be at least as large as the number of unknowns in those equations and can be rewritten as:

[image: image]

Minimality and left-invertibility of the state space system are maintained assumptions of these conditions and we thus verify that they hold in our analysis. The first condition gets fulfilled by rewriting (3.4) in the particular form:

[image: image]

[image: image]

so that

[image: image]

[image: image]

Left-invertibility is ensured by the following assumption: For every θ ∈ Θ, [image: image]
 where [image: image]





3.4 Iskrev (2010) Test for Strict and Weak Identification

In the following exposition, we closely follow Iskrev (2010).


3.4.1 Preliminaries

The log-likelihood function of a sample [image: image]
 of data can be obtained using the sequence of one-step ahead prediction errors [image: image]
 The latter can be easily constructed using the one-step ahead forecasts of the state vector [image: image]
 returned by the Kalman filter. Assuming that the structural shocks are Gaussian implies that the conditional distribution of et|t−1 is Gaussian as well, with mean 0 and covariance matrix [image: image]
 where [image: image]
 can also be obtained from the Kalman filter recursions and is the covariance matrix of the one-step ahead forecasts conditional on information up to time t − 1. The log-likelihood of the sample is then given by

[image: image]

Under some regularity conditions the ML estimator [image: image]
 is consistent, asymptotically efficient and asymptotically normally distributed with

[image: image]

where [image: image]
 is the asymptotic Fisher information matrix evaluated at the true value of θ. More formally,

[image: image]

where [image: image]
 is the finite sample Fisher information matrix given by

[image: image]




3.4.2 General Principles of Identification Analysis

Suppose that inference about the parameters of the model collected in the vector θ is made using a sample with T observations of a random vector Y with a known probability density function [image: image]
 where [image: image]
 The latter, when considered as a function of θ, contains all available sample information about θ associated with the observed data. It is then straightforward to see that a prerequisite for successful inference about θ is that its values imply distinct values of the density function [image: image]
 More formally, a point θ0 ∈ Θ is said to be identified if:

[image: image]

That is, if the density function yields the same value when evaluated at θ and at θ0 this implies that θ is equal to θ0. It is possible to rewrite this condition in terms of the log-likelihood function [image: image]


[image: image]

This follows from Jensen’s inequality, see Rao (1971), and the logarithmic function being concave. It implies that the function [image: image]
 achieves a maximum at θ = θ0, and that θ0 is identified if and only if the maximum is unique. The conditions for local uniqueness of a maximum at θ0 are that (i) [image: image]
 and (ii) [image: image]
 is negative definite. If the maximum at θ0 is locally unique then θ0 is locally identified, that is, there exists an open neighborhood of θ0 where (3.26) holds ∀θ.1 One can show that, see Bowden (1973), the condition in (i) is always fulfilled and that the Hessian matrix in (ii) is equal to the negative of the Fisher information matrix. This leads to the following result by Rothenberg (1971): Let θ0 be a regular point2 of the information matrix [image: image]
 Then θ0 is locally identifiable if and only if [image: image]
 is non-singular.

In general, non-singularity of the Fisher information matrix is both necessary and sufficient for local identification.3 The information matrix is singular whenever the expected log-likelihood function is flat at θ0. In this case, due to the lack of the variability induced by the parameters on the log-likelihood function, it is impossible to make inference about the parameters even with an infinite sample of data. There are two reasons why this might occur, following Iskrev (2010) we call them the ‘sensitivity’ and ‘collinearity’ factors. Either the parameters have no effect on the expected log-likelihood (‘lack of sensitivity’), or different parameter values induce the same changes in the expected log-likelihood (‘perfect collinearity’). It is thus useful to formalize ideas in order to investigate to which extent the two channels are at work. This can be done by using the fact that the information matrix is equal to the covariance matrix of the scores and can thus be expressed as:

[image: image]

where [image: image]
 is a diagonal matrix containing the variances of the elements of the score vector, and [image: image]
 is the correlation matrix of the score vector. Thus a parameter θi ∈ θ is locally unidentifiable if:

(I) Lack of sensitivity: The expected log-likelihood is not affected by small changes in θi, that is,

[image: image]

(II) Perfect collinearity: The effect of small changes in θi on the expected log-likelihood can be offset by varying other parameters, that is,

[image: image]

where [image: image]
 is the ith diagonal element of the inverse of [image: image]
 As Iskrev (2010) puts its

[t]he intution about the meaning of ϱi comes from a well-known property of the correlation matrix Tucker, Cooper, and Meredith (1972), which implies that ϱi is the coefficient of multiple correlation between the partial derivative of the log-likelihood with respect to θi and the partial derivatives of the log-likelihood with respect to the other elements of θ.

Conditions (I) and (II) characterize the case in which the expected log-likelihood is completely flat and the parameters are thus not identifiable in a strict sense. The case of weak identification, on the other hand, arises when the expected log-likelihood features little curvature with respect to some parameters. We delve further into this issue next.




3.4.3 Identification Strength

Local identifiability guarantees, in general, consistent estimation of θ. The precision with which θ is estimated is governed by the curvature of the expected log-likelihood function in the neighborhood of θ0, of which the rank conditions above are not informative. Identification is weak whenever small changes in θ do not induce sufficiently large changes in lT(θ) or, equivalently, when small changes in lT(θ) are associated with large changes in θ. By weak we mean that the estimates are prone to be imprecisely estimated even in the presence of an infinitely large sample of data. The degree of ‘weakness’ is thus related to the degree of precision. The latter is not an absolute but rather a relative concept which varies according to the application at hand.

We already saw that a central tool when investigating whether a parameter is locally identifiable or not is the Fisher information matrix. This is because, as shown in Rothenberg (1971), the latter is indicative of the degree of curvature of the expected log-likelihood function. To understand the next logical step in the analysis, namely the relationship between the curvature and the precision of the ML estimator [image: image]
 it is useful to recall its asymptotic distribution described in (3.23). It is then straightforward to see that [image: image]
 is the sample counterpart of the covariance matrix of [image: image]
 and, analogously, [image: image]
 is the sample counterpart of the variance of [image: image]


Asymptotic efficiency of ML estimation implies that [image: image]
 has the smallest asymptotic covariance matrix within the class of consistent estimators. This follows directly from the fact that, according to the Cramér-Rao theorem, the lower bound of the asymptotic covariance of any consistent estimator θ is given by the inverse of its asymptotic information matrix [image: image]
 Concurrently, the covariance matrix of any unbiased estimator is bounded below by the inverse of the sample information matrix [image: image]
 so that [image: image]
 represents the lower bound on the variance of any unbiased estimator θi. To measure identification strength we can thus construct bounds on 1 standard deviation intervals for the individual parameters.

As shown in Iskrev (2010), it is possible to relate the size of the bounds to the potential roots of identification deficiencies. Indeed, using the decomposition of [image: image]
 in (3.25) and the properties of the correlation matrix one obtains:

[image: image]

When can one ascribe the identification problem to the ‘sensitivity’ or ‘correlation’ factor? In the first case, we know that the parameter does exert an irrelevant or weak effect on the likelihood, in which case Δi ≈ 0. In the second case, the effects induced on the likelihood by one parameter are compensated, and thus made redundant, by changes in other parameters, in which case ρi ≈ 1. In both cases, the sources of weak identification lead to a large bi and make inference about a parameter value challenging at best.

Notice that the sensitivity factor alone cannot guarantee successful parameter identification. Indeed, even if Δi is large, nearly perfect collinear effects of a parameter θi with respect to the other parameters θ−i lead to values of ρi close to 1, in which case identification remains weak. This example illustrates well the difference between the information about θi contained in the likelihood when the other parameters are known, see Δi, and when they are not known, see bi. This second source of information is smaller and the difference is increasing in the ‘correlation’ factor, see ϱi.








4 RESULTS

In this section, we report results for the tests by Komunjer and Ng (2011) and Iskrev (2010). Results for the case where investment adjustment costs are introduced can be found in Appendix A. In the BCA and MBCA models, strict and local identifications are checked at the parameter set estimated (or fixed, as it is the case for the deep parameters) in Chari et al. (2007) and Šustek (2011), respectively.


4.1 Komunjer and Ng (2011)

We explore whether a parameter is identifiable in a strict sense. To answer this question in population we show results of the test by Komunjer and Ng (2011) first. Since this test requires computing the rank of the matrix ΔS(θ0) in (3.15) to check whether the rank condition for strict identification holds we report results for different tolerance levels. Indeed, the rank of a matrix is equal to the number of its non-zero eigenvalues which are found by numerical routines using a cut-off to establish whether they are sufficiently small. Matlab, for instance, uses the tolerance [image: image]
 where EPS is the float point precision of M. As pointed out by Komunjer and Ng (2011) this default tolerance does not take into account the fact that the matrix ΔS(θ0) is often sparse and can thus be misleading. Results are thus reported for 11 tolerance values ranging from a maximum tolerance of 1e−2 to a minimum of 1e−11, along with the Matlab default one.

To isolate the parameters which are not strictly identifiable even with an infinite sample of data combinations of parameters which cause full rank failures in the ΔS(θ0) are searched by inspecting its change in rank and its null space. This is first done at a high tolerance level of 1e−3 to flag the most difficult parameters to identify and then at the lowest tolerance level for which identification fails in order to find additional problematic parameters. Komunjer and Ng (2011) choose the highest tolerance level of 1e−3 ‘on the grounds that the numerical derivatives are computed using a step size of 1e−3’. In Appendix D, we report results for the case where a Matlab selected measure of the step size is being used when computing numerical derivatives. When this other measure is used the results suggest more identification power in both models.

In general, the lower the tolerance level the higher the rank of the matrix since more of the smallest eigenvalues are considered to be numerically different from 0. Then, according to the rank-nullity theorem – which states that the sum of the rank and the nullity of a matrix is equal to its number of columns – the null space will be smaller as well. This would lead to think that the set of parameters which are flagged as troublesome should be larger the lower the tolerance level. However, the way the set of problematic parameters is found by identifying the number of columns of the orthonormal basis for the null space of the matrix [image: image]
 – obtained via singular value decomposition – whose (absolute) sum of elements is greater than the tolerance value (i.e. numerically larger than 0). This is because the vectors contained in a basis must be linearly independent and a null vector would always be linearly dependent with the other vectors. Thus, the lower the tolerance level, the more columns (and associated parameters) will fall within this set, the lower is the null space of the matrix [image: image]
 and, hence, the smaller is the set of parameters which are not strictly identifiable.

Finally, we perform conditional identification tests. More specifically, when the rank condition for strict identification fails, we check which parameters, when restricted, can enable identification of the remaining parameters.


4.1.1 Chari et al. (2007) BCA Model

Table 1 reveals that the model’s parameters are strictly identifiable at Tol = 1e−11 and at the Matlab default tolerance level. When inspecting the null space of ΔS(θ0) no problematic parameters are found. This result might be explained by the fact that the lower is the tolerance level, the smaller is the set of problematic parameters, as explained above.

Moving to the case where also the deep parameters of the model are included in the identification test reveals a different picture, as reported in Table 2. Indeed, the extended parameter set does not pass the test at any tolerance value and several problematic parameters are found. At Tol = 1e−3 the latter mainly concern some steady-state values of the wedge shocks, off-diagonal elements of the matrix P and all deep parameters. Once the tolerance is further lowered to Tol = Default also several off-diagonal elements of the Q matrix are flagged as troublesome. At the default tolerance level, the model’s parameters might be strictly identifiable if at least two restrictions are imposed. Indeed, all matrices are full rank with the exception of ΛS which is short rank by 2. We thus check whether fixing some parameters alleviates the strict identification deficiencies. As emerges from Table 3 there are several sets of restricted parameter combinations which allow to do so.

Table 1.    Komunjer and Ng Test Results BCA Model.

[image: image]

Summary: nθ = 30, nX = 5, nε = 4.

Order condition: nθ = 30, nδ = 50.

Table 2.    Komunjer and Ng Test Results BCA Model (Deep Parameters Estimated).

[image: image]

Summary: nθ = 37, nX = 5, nε = 4.

Order condition: nθ = 37, nδ = 50.

Problematic parameters at Tol = 1e−3: zss, τlss, gss, ρτl,z, ρz,τl, ρτx,τl, ρg,τl, ρτl,τx, ρτl,g, q22, gn, gz, β, ψ, σ.

Problematic parameters at Tol = 5.513812e−12: zss, τlss, τxss, gss, ρz, ρτl,z, ρτx,z, ρg,z, ρz,τl, ρτl, ρτx,τl, ρg,τl, ρz,τx, ρτl,τx, ρτx, ρg,τx, ρz,g, ρτl,g, ρτx,g, ρg, q21, q31, q22, q32, q42, q33, q43, q44, gn, gz, β, δ, ψ, σ, α.
 
Table 3.    Komunjer and Ng Conditional Test Results BCA Model, Tol = 5.513812e−12.
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[image: image]

Summary: nθ = 37, nX = 5, nε = 4.

Order condition: nθ = 37, nδ = 50.


4.1.2 Šustek (2011) MBCA Model

Table 4.    Komunjer and Ng Test Results MBCA Model.

[image: image]

Summary: nθ = 61, nX = 7, nε = 6.

Order condition: nθ = 61, nδ = 105.

The results for the MBCA model by Šustek (2011) resemble the ones just reported for the standard BCA model. Indeed the MBCA model fulfils the rank condition for strict identification established by Komunjer and Ng (2011) at Tol = 1e−11 and at the Matlab default tolerance when the baseline set of estimated parameters is considered (Table 4) or when the latter contains also [image: image]
 (Table 5). This is no longer true once the deep parameters are included in estimation. Indeed, also in this case, several steady-state wedge shocks and off-diagonal elements of the P and Q matrix are not strictly identifiable, though this is only true when both [image: image]
 and the deep parameters of the model are included in estimation (Table 6). Indeed, when only the deep parameters of the model are included in estimation on top of the baseline set of parameters considered in Šustek (2011) then this is only true at a low Tol = Default since at Tol = 1e−3 only a few steady-state wedge shocks are found to not meet the requirements for strict identifiability (Table 7). A similar pattern emerges once investment adjustment costs are introduced in the model (see Appendix A).

Table 5.    Komunjer and Ng Test Results MBCA Model (τbss and [image: image]
 Estimated).

[image: image]

Summary: nθ = 63, nX = 7, nε = 6.

Order condition: nθ = 63, nδ = 105.

Problematic parameters at Tol = 1e−3: zss, gss.

[image: image]


Table 6.    Komunjer and Ng Test Results MBCA Model (τbss, [image: image]
 and Deep Parameters Estimated).

[image: image]

Summary: nθ = 74, nX = 7, nε = 6.

Order condition: nθ = 74, nδ = 105.
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Table 7.    Komunjer and Ng Test Results MBCA Model (Deep Parameters Estimated).

[image: image]

Summary: nθ = 72, nX = 7, nε = 6.

Order condition: nθ = 72, nδ = 105.
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As to the conditional identification tests, we find that when the parameter set also includes the deep parameters of the model it is possible to fix some model parameters so as to make the rest identifiable (see Table 8) only when τbss and [image: image]
 are not included in estimation. The sets which restrict the least number of parameters are two and are found at Tol = 1e−11, namely (i) {πSS, zSS} and (ii) {πSS, gSS}








4.2 Iskrev (2010)

In this subsection, we show the results of the parameter identification analysis of the baseline BCA and MBCA models. We only summarize the results on the strict identification tests and then focus on the weak identification analysis.

Table 8.    Komunjer and Ng Conditional Test Results MBCA Model, Tol = 2.330580e−11.

[image: image]

Summary: nθ = 72, nX = 7, nε = 6.

Order condition: nθ = 72, nδ = 105.

We start with the standard BCA model in the case where the deep parameters of the model are estimated on top of the ones governing the VAR(1) process of the innovations to the wedges, for a total of 37 parameters. The rank of the information matrix is 33. Using population data it is possible to obtain gn and gz can assumed to be known since in our detrending it set to a value such that average detrended output is equal to 0.4 With 35 parameters, the rank of the information matrix is still 33. By brute force, we check the rank of the information matrix for all possible combinations of 33 parameters out of the 35 (595 such combinations) being restricted and find that: (i) 21 combinations deliver a rank of 31; (ii) 355 combinations give rank of 32; and (iii) 219 combinations result in a rank of 33. Thus, we can fix 219 possible pairs of parameters and identify the ones left unrestricted in the respective cases.

As to the MBCA model, we start with 74 parameters which corresponds to the case where the deep parameter of the model as well as the steady-state innovations to the asset market and monetary policy wedge [image: image]
 are estimated on top of the ones governing the VAR(1) process. Fixing gn and gz as discussed above leaves 72 parameters and the rank of the information matrix is 68. There are 1,028,790 possible combinations of 68 out of 72 parameters which can be fixed, for 16,652 of them the resulting rank of the information matrix is 68. When all deep parameters are excluded from the analysis, and thus only the wedge parameters are considered 63 parameters are left. In this case, the rank of the information matrix is 62 and fixing any one of the following set of parameters gives a full rank of 62: [image: image]
 For instance, fixing τbss as done in Šustek (2011) gives a full rank of 62. If the non-wedge parameters are added 71 parameters are estimated and the rank of the information matrix is 68. There are 57,155 combinations of 68 out of 71 parameters and for 59 of them fixing the relevant parameters gives a rank of 68.

Next, we study whether the parameters are affected by weak identification problems. We report Cramér-Rao lower bounds (CRLBs) as a measure of parameter estimation uncertainty in absolute terms, and relative CRLBs, rCRLB(θi) = CRLB(θi)/abs(θi), as a measure of relative uncertainty. The CRLBs reflect the uncertainty which arises from both the ‘sensitivity’ and the ‘collinearity’ factors. This is because, as discussed in Section 3.4.2, the CRLB is the product of these two components. The first component concerns the sensitivity of the log-likelihood function with respect to θi, whereas the second relates to the degree of collinearity between the derivative of the likelihood with respect to θi and the derivatives of the likelihood with respect to all other free parameters θ−i.

In order to interpret them it is useful to recall the following facts. The sensitivity factor for a parameter reports the value of the conditional CRLB, that is, the lower bound of uncertainty given that all other parameters are known and no collinearity is present. As to the collinearity factor, it is indicative of the increase in the CRLB when the other parameters are unknown as well. The magnitude of the sensitivity component, unlike the collinearity one, depends on the scale of the parameters and is thus divided by the respective parameter values.


4.2.1 Chari et al. (2007) BCA Model

Table 9 deals with the standard BCA model and the case where the structural parameters are assumed to be known. The first column shows the values of the parameters governing the stochastic process of the wedges, the second one the CRLBs and the third one the relative CRLBs. The latter measure can be used to compare the relative identification strength across parameters which take different values. For instance, zss is much worse identified than gss. This is because the CRLB of zss relative to its value is 6.3701 while only 0.3617 for gss. Further examination of Table 9 suggests that the worst identified parameters, using (arbitrarily) a cut-off value of 1, are zss, ρτl,z, ρτx,z, ρg,z, ρz,τl, ρτx,τl, ρg,τl, ρz,τx, ρτl,τx, ρg,τx, ρz,g, ρτl,g, q21, q31, q41, q32, q42 and q44.

Table 9.    BCA, Parameter Identification (All Deep Parameters Fixed).

[image: image]

Table 10 considers the case where all parameters in the BCA model are estimated with the exception of four out of the seven structural parameters in the BCA model being held fixed so as to guarantee strict identification of the remaining parameters. As described above, there are many such combinations which would have guaranteed a full rank information matrix. On top of leaving out gn and gz which we can calculate using additional data we leave out β and ψ from the analysis. Not surprisingly, the relative uncertainty measures increase. Moreover, the set of worst identified parameters includes also τlss, τxss, ρτx,g and q33.

Table 10.    BCA, Parameter Identification (Some Deep Parameters Free).

[image: image]

The ‘sensitivity’ and ‘collinearity’ components of the parameters’ CRLBs for the case where the deep parameters are fixed are reported in Table 11 and labelled as ‘sens.’ and ‘coll.’. It is immediate to see that the channel which drives weak identification is the collinearity one. Indeed, while all parameters exert a strong effect on the likelihood, some of them induce a variation in the likelihood which is very similar to other parameters. For some parameters, the sensitivity factor is so strong that it outweighs the negative effect of the collinearity factor on their overall uncertainty. For others, however, the collinearity factor predominates and leads their relative uncertainty to be high. It is also interesting to take a look at the largest multiple correlation coefficients between ∂lT(θ)/∂θi and ∂lT(θ)/∂θ−i, namely ϱi(n). We report the single and pairwise correlation coefficients in the columns labelled by ϱi(1) and ϱi(2), respectively. The problematic parameters exert an effect on the likelihood which is mostly collinear with the elements of the matrices they belong to in the VAR(1) process of the innovations to the wedges (i.e. P0, P and Q). The fact that the steady-state innovations to the wedges are strongly correlated with elements of both the P0 and P matrix is due to the fact that they are obtained as (I − P)−1P0.

Table 11.    BCA, Information Matrix Decomposition (Observing 4 Standard Variables).

[image: image]

Table 12 presents the decomposition of parameter uncertainty into a sensitivity and collinearity component for the case where also some deep parameters are estimated. The conclusions drawn about identification patterns drawn above are largely unaffected. The only key difference is that steady-state parameters are mainly collinear with the deep parameters of the model and vice versa. This is due to the fact that the latter are directly informative about each other via the steady-state equations of the model.

Table 12.    BCA (Some Deep Parameters Estimated), Information Matrix Decomposition.

[image: image]

We thus conclude that weak identification can be attributed to the fact that parameters in the steady-state vector, in the autoregressive matrix and in standard deviations of the fundamental innovations have a similar effect on the likelihood as other parameters appearing within the matrices they belong to. In order to understand how this pattern comes about we perform the following experiment. First, we assume that the observed variables are not output, investment, hours and government consumption [image: image]
 but rather the four innovations to the wedges [image: image]
 Second, we assume that the parameters governing the VAR(1) process of the innovations to the wedges are estimated in isolation of the BCA model. In other words, we perform identification analysis on the parameters assuming that a VAR is run directly on the wedges, which are treated as observable in this experiment. This allows us to shed light on the question whether the weak identification patterns described above are an intrinsic property of the model or of the VAR(1) process itself. Table 13 presents the information matrix decomposition for the case just described.

Table 13.    BCA Model, Information Matrix Decomposition (Observing 4 Wedges).

[image: image]

The main takeaways are that (i) the collinearity patterns are preserved and (ii) for almost all steady-state innovations to the wedges, collinearity is higher. The intuition for result (ii) is that by fixing deep parameters the model imposes additional restrictions on the steady states of the innovations to the wedges via the steady-state equations. This results in additional information and, therefore, improved identification strength.

To further develop intuition and visualize our findings, we plot pairwise correlations coefficients between ∂lT(θ)/∂θi and ∂lT(θ)/∂θ−i across the entire parameter space in Figs. 1 and 2. Clearly, correlation coefficients between the derivatives with respect to the same parameter are equal to 1, marked as dark red squares on the main diagonal. The following results emerge. First, the figures confirm the main finding that the steady-state innovations to the wedges (I − P)−1P0, the elements of the autoregressive matrix P and the Choleski decomposition of the variance covariance matrix Q induce variation in the likelihood which is mainly similar to that generated by other parameters in the matrix they belong to. Indeed, in Fig. 2 the strongest collinearity is among elements of the same matrix and only some elements of the P and Q have a weakly collinear effect. Second, collinearity is less pervasive when innovations to the wedges are assumed to be observed and the parameters are estimated using the VAR in isolation from the model. The additional links between parameters and their likelihood introduced by the model equations are thus not sufficiently rich to let each parameter in the VAR(1) matrices P0, P and Q raise its own, distinct voice. In other words, estimating the wedge parameters within a model does not obviate the collinearity patterns which emerge in isolation from it.

[image: image]

Fig. 1.    BCA, Pairwise Correlations (Observing 4 Standard Variables).

[image: image]

Fig. 2.    BCA, Pairwise Correlations (Observing 4 Wedges).




4.2.2 Šustek (2011) MBCA Model

Table 14.    MBCA, Parameter Identification (All Deep Parameters, τbss and [image: image]
 Fixed).
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[image: image]

Tables 14 and 15 contain information about the relative CRLBs as well as about the sensitivity and collinearity components for the MBCA model wedge parameters. Using again a cut-off value of 1 the set of worst identified parameters is given by zss, [image: image]
 This amount to 39 out of 61 parameters, that is, roughly two thirds of the estimated parameters are weakly identified. As in the standard BCA model these parameters concern the steady-state innovation to the efficiency wedge zss as well as the off-diagonal elements of the P and Q matrices. Identification deficiencies can again be attributed to the strong collinearity between the effects that parameters within the same matrix exert on the likelihood. We focus on the case where some deep parameters are included in the identification analysis in Tables 16 and 17. Also in this case, we keep fixed the other deep parameters so as to guarantee a full rank information matrix. Among the many available choices we choose to leave out β, ψ as well as steady-state inflation πss and the weight on inflation in the Taylor rule ωπ. Again, relative CRLBs increase as expected. Additional parameters which are weakly identified are [image: image]
 The collinearity patterns are similar to the ones in the BCA model.

Table 15.    MBCA, Information Matrix Decomposition (Observing 6 Standard Variables).
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[image: image]

Table 16.    MBCA, Parameter Identification (Some Deep Parameters Free).
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Table 17.    MBCA (Some Deep Parameters Estimated), Information Matrix Decomposition.
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Finally, we carry out the identification analysis on the wedge parameters with the twist of treating the innovations to the wedges as observables for the MBCA model as well. We again find that (i) parameters of the same matrices having a collinear effect on the likelihood is a property of the VAR process itself (Table 18) and (ii) collinearity is less pervasive when the parameters are estimated in isolation to the model (Figs. 3 and 4).

Table 18.    MBCA Model, Information Matrix Decomposition (Observing 6 Wedges).

[image: image]
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Fig. 3.    MBCA, Pairwise Correlations (Observing 6 Standard Variables).








5 ECONOMIC RELEVANCE

To assess which wedge is most important in accounting for cyclical fluctuations in the data Brinca et al. (2016) use the statistic [image: image]
 given by:

[image: image]

where j = {z, τl, τx, g} in the BCA and [image: image]
 in the MBCA model. Yt is actual data of a given observable Y = {y,l,x} (output, labour or investment)5 and Yit is the component of observable Y due to wedge i and with [image: image]
 For instance, [image: image]
 roughly measures the fraction of movement and level in actual investment explained by wedge i. The statistic [image: image]
 ranges from 0 to 1 and is increasing in the explanatory power of a wedge. Indeed, when Yt = Yit, then [image: image]
 since [image: image]
 whereas, in the limit, [image: image]
 when the deviation of actual data from its component due to a given wedge goes to infinity. Notice that since the MSE statistic is used a model can be penalized along both the variance and the bias dimension. In other words both missing the data by a constant and missing the variation in the data is penalized.

[image: image]

Fig. 4.    MBCA, Pairwise Correlations (Observing 6 Wedges).

When simulating the observables, we follow Chari et al. (2007) and consider two classes of counterfactual economies, namely the ‘one-wedge-on’ and ‘one-wedge-off’ economies. These economies are constructed by feeding the estimated wedges back into the model either one at a time (‘one-wedge-on’) or all but one (‘one-wedge-off’). It is important to point out the fact that the wedges have both a direct and a forecasting effect on the model. In the experiments, we seek to retain the forecasting effect only. This is done by setting the inactive wedges equal to some constant value (typically their intercept) at time t while preserving the estimated stochastic process and the realization of the wedges at time t − 1 to forecast their future realizations. Notice that this procedure would not be necessary if the matrices P and Q in the VAR(1) law of motion of the wedge shocks were diagonal.

The intuition behind the ‘one-wedge-on’ and ‘one-wedge-off’ counterfactual economies is the following. On one hand, the first seeks to understand how far a single wedge channel can bring the model to replicate the movements in the data while turning off the other margins. On the other hand, the second asks how badly the model performs when freezing the same channel and while keeping the others active.


5.1 Chari et al. (2007) BCA Model

Table 19 shows the [image: image]
 statistic for different observables and counterfactual economies as well as its one standard error bands given by fi + /− Sd(fi), where the standard deviations are computed using the delta method and the parameter covariance matrix (inverse Fisher information matrix) for the case when only the wedges parameters are assumed unknown (and thus the deep parameters of the model are fixed). To calculate the statistics we focus on the 1982 recession episode as in Chari et al. (2007) and use their original data.

The one standard deviation bands around fi statistics for the one-wedge-on counterfactual economies cover an economically non-negligible range. However, these bands never overlap and are always quite far from each other. This means that if one used this statistic to measure and rank the relative importance of the wedges in replicating movements in the data, the main conclusions would not be overturned.6 Thus, the main result of Chari et al. (2007) still holds trough: the labour and the efficiency wedge play primary roles in explaining business cycle fluctuations during the period covering 1982 recession, whereas the investment and government wedge are negligible.

This is no longer true if one considers the one-wedge-off economies since the statistics exhibit such a higher level of uncertainty that the bands around them overlap. Our analysis thus discourages from using this statistic only to evaluate the relative importance of the wedges in a BCA model.

Table 19.    BCA Model, Uncertainty Around fi Statistics.

[image: image]

The intuition behind this result is that while the one-wedge-on fi statistics are a function of only one object subject to uncertainty, the one-wedge-off fi statistics are a function of three such objects. Indeed, in the one-wedge-on counterfactual economies only one wedge is active whereas in the one-wedge-off experiments this is the case for three wedges.




5.2 Brinca et al. (2016) Multi-country BCA Analysis

We now explore whether the results above for the 1982 recession in the United States, focus of the Chari et al. (2007), change if one considers multiple countries and focuses on the 2008 recession, as in Brinca et al. (2016). Tables 20 and 21, respectively, show the fi statistics for the one-wedge-on and one-wegde-off economies. Specifically, each table reports the fi statistics for each country, observable and wedge. Numbers are marked in bold only if, for a given observable and country, the most important wedge’s fi statistic is significantly different from the others (i.e. the bands do not overlap).7

Table 20.    ϕ Statistics for Observable‘s Components – Great Recession – One-Wedge-On.

[image: image]

Two results stand out from Table 20. First, across the vast majority of countries, the fi statistics for output point to the efficiency wedge being the most relevant wedge. This result can be established with precision, as the uncertainty bands around the fi statistic for [image: image]
 do not overlap with those of other wedges. In other countries, the investment wedge takes a predominant role in explaining fluctuations in output (see Iceland, Ireland and Spain) and can also be distinguished from others. Second, the fi statistics for the United States are no longer statistically different from each other, as it was the case for the 1982 recession. These two results are largely confirmed by the one-wedge-off results in Table 21, for which we again find less discriminatory power due to lower precision of the fi statistics in the case where multiple wedges are active.

Table 21.    ϕ Statistics for Observable‘s Components – Great Recession – One-Wedge-Off.

[image: image]

Notice that Chari et al. (2007) use a longer sample than Brinca et al. (2016) (specifically, 1959–2004 vs. 1980–2014) as the latter uses a balanced panel for 24 OECD countries for which the data availability is more limited. The larger uncertainty in the fi statistics thus also points to the crucial role of sample size in BCA applications, which we discuss in the next section.






6 STATISTICS FOR PRACTITIONERS

In this section, we present some statistics that might be of special interest to (monetary) BCA practitioners. We show how the size of the sample available affects the overall strength of parameter identification.


6.1 Empirical Distance Measures

While the analysis in the previous sections has been carried out in the time domain using the state space representation of the DSGE model solution the methodology proposed by Qu and Tkachenko (2012) and Qu and Tkachenko (2017) takes a frequency domain perspective to study identification issues. In particular, rank conditions for local identification of dynamic parameters are established by studying the spectral density matrix which maps the structural parameters to functions in the Banach space. Local identifiability occurs if and only if a local change in the parameter values leads to a different image. This analysis thus requires to study the Jacobian of the spectral density matrix w.r.t. the deep parameters of the model. If steady-state-related parameters are estimated as well, like in our case, it is possible to incorporate in the analysis also the first-order properties of the model by considering an extra term involving the steady-state parameters. In both cases, under some regularity conditions, the rank conditions are necessary and sufficient for local identification also in the time domain. More specifically, it can be shown that when the model is non-singular, like in our case, analyzing the rank conditions in the frequency domain is equivalent to inspecting the rank of the information matrix in the time domain. This analysis is thus expected to deliver analogous results to Iskrev (2010) and Komunjer and Ng (2011). For a more detailed comparison of these tests we refer the reader to Qu and Tkachenko (2012).

In general, the solution of a DSGE model log-linearized around its steady state can be expressed in state space form. Assuming no measurement errors, as it is the case in the BCA and MBCA model, it is given by:

[image: image]

and can be rewritten as a vector moving average (VMA) representation using:

[image: image]

where, following the exposition in Qu and Tkachenko (2012) we made explicit the dependence of Yt on θ. More generally the process can be expressed as:

[image: image]

If all eigenvalues of A(θ) then [image: image]
 It thus follows that

[image: image]

[image: image]

[image: image]

where hj(θ) (j = 0,…,∞) are nY × nε matrices and [image: image]
 the matrix of lagged polynomials.

Equation 6.5 along with some standard assumption about the process of the error term ε implies that Yt(θ) is covariance stationary and has a spectral density matrix fθ(ω) that can be represented as:

[image: image]

where X∗ denotes the conjugate transpose of a generic complex matrix X.

In some cases, like in the BCA and MBCA methodological framework, not only dynamic but also steady-state parameters are estimated. In this case, it is useful to define the augmented parameter vector as [image: image]
 and make explicit the relationship between data observables [image: image]
 model observables Yt(θ) and steady states [image: image]


[image: image]

where it is important to recall the fact that the model observables are expressed as log-deviations to form their respective steady-state values. This representation is useful in the case where steady-state parameters are estimated since considering only the second-order properties would omit the full identification potential of these parameters. This is why, in this case, the identification of [image: image]
 will be examined on the properties of [image: image]
 and [image: image]
 jointly.

Definition 6.1. The parameter vector [image: image]
 is said to be locally identifiable from the first and second order properties of [image: image]
 if there exists an open neighborhood of [image: image]
 in which [image: image]
 and [image: image]
 for all ω ∈ [−π, π] necessarily implies [image: image]


Now consider the following object:

[image: image]

Under some mild assumptions Qu and Tkachenko (2012) show that:

Theorem 6.1. [image: image]
 is locally identifiable from the first and second order properties of [image: image]
 at a point [image: image]
 if and only if [image: image]
 is nonsingular. Establishing whether the parameter set θ is identifiable thus reduces to checking that the matrix [image: image]
 is full rank.

Analogously to Komunjer and Ng (2011) the eigenvalues of [image: image]
 are obtained numerically, with the sole exception of the default Matlab tolerance level being used to determine its rank. This is due to the fact that the matrix is not as sparse as the one considered by Komunjer and Ng (2011). Also, the derivatives [image: image]
 are computed numerically as [image: image]
 where ek is a unit vector whose kth element is equal to 1 and hk is the step size. Unlike Komunjer and Ng (2011), however, the step size is not set to 1e−3 but to 1e−7.

To estimate [image: image]
 and to compute the integral in 6.9 we make use of the symmetric difference quotient and Gaussian quadrature, respectively. We find that both models are locally identifiable only when the first- and second-order properties of the data are used since we find the matrix [image: image]
 in (6.9) to be full rank but the matrix [image: image]
 to be rank deficient.

If [image: image]
 is shown to be locally unidentifiable, as it is the case here for both the BCA and MBCA models, it is possible to trace out a curve of points χ which are observationally equivalent to [image: image]
 in a local neighborhood of the latter. Indeed Qu and Tkachenko (2012), following Rothenberg (1971), show that this curve can be defined using the function θ(v) such that:

[image: image]

where [image: image]
 is the eigenvector which corresponds to the smallest eigenvalue of [image: image]
 is a scalar which varies in a neighborhood of 0 such that [image: image]
8

As shown by Qu and Tkachenko (2012), along the non-identification curve χ the parameter set [image: image]
 is not identified at [image: image]
 since [image: image]
 and thus [image: image]
 which implies:

[image: image]

for all ω ∈ [−π, π].

The curve can be traced out recursively using the Euler method such that [image: image]
 where h is the step size (fixed at 1e−04).

We apply two methods (the first due to Qu & Tkachenko, 2012 and the latter due to Qu & Tkachenko, 2017) can be used to robustify conclusions on both local and global identifications success or failure.

The first method recognizes the fact that it is important to make sure that the points on the curve result in identical spectral densities. It thus computes the maximum absolute and relative deviations of [image: image]
 from [image: image]
 across the frequencies: [image: image]
9 and [image: image]
 where [image: image]
 denotes the (h, l) element of the spectral density matrix given the parameter set θ and is evaluated at the same frequency and element of [image: image]
 that maximizes the numerator. In the BCA model we find that at norm [image: image]
 the maximum absolute deviation on the curve is 0.0015 whereas the maximum relative deviation in relative form is 1.3811e−04. When norm [image: image]
 the two measures are 0.0083 and 7.5130e−04, respectively. As to the MBCA model, when norm [image: image]
 the maximum absolute deviation on the curve is 1.0226e−04 and the maximum relative deviation in relative form is 3.2755e−05. When norm [image: image]
 the two measures are 2.3858e−04 and 7.4645e−05, respectively. In both models, the points on the curve [image: image]
 for the smallest norm are chosen such that at least the absolute measure is bigger than the numerical errors associated with the Euler method, which Qu and Tkachenko (2017) say should remain near or below 1.0E−04.

The second method computes a so-called ‘empirical distance between DSGE models’ using a range of sample sizes. It is equal to the testing power of the likelihood ratio test of the null hypothesis that [image: image]
 is the true spectral density against the alternative hypothesis that hϕ0(ω) is the true spectral density. In the context of our analysis, hϕ0(ω) is taken to be [image: image]
 but the test is general enough to accommodate different parameter vectors as well as different model structures. The empirical distance measure has the following properties. First, its value is between 0 and 1 for any sample size T and significance level α. A higher value thus means that it is easier to distinguish between the spectral densities implied by the two parameter vectors [image: image]
 and [image: image]
 and thus argues in favour of stronger identification. Second, consider what Qu and Tkachenko (2017) refer to as the ‘Kullback–Leibler (KL) distance between two DSGE models (and, more generally, between two vector linear processes) with spectral densities [image: image]
 and [image: image]
 It is given by

[image: image]

Where

[image: image]

To provide intuition, let [image: image]
 denote the frequency domain approximate likelihood (or the time domain Gaussian likelihood) based on [image: image]
 Then, [image: image]
 If the Kullback–Leibler distance [image: image]
 is non-zero its value increase consistently with T and approaches 1 as T → ∞. As becomes evident from Tables 22 and 23 all empirical distance measures (p-values of the likelihood ratio tests) are well above the 5% significance level for all sample sizes considered, even for a small sample size of just T = 20, that is, five years of observations, and for the smallest normed differences between the points on the identification curve and the points at which local identification is checked in the respective models. This is reassuring evidence for practitioners since even with a relatively small sample size the overall identification strength is sufficiently high.

Table 22.    BCA Model, Wedges Parameters, Empirical Distance Measures.

[image: image]

Table 23.    MBCA Model, Wedges Parameters (no τbss, [image: image]
), Empirical Distance Measures.

[image: image]






7 CONCLUSION

In the past years, BCA exercises have sparked great interest among theoretical and applied macroeconomists insofar as they can shed light on which classes of models are able to explain fluctuations in macroeconomic aggregates during a particular economic episode. These exercises involve ML estimation of the stochastic process governing the latent variables. Even though they have been extensively performed, the methodology has yet to be properly scrutinized in terms of identification deficiencies. Given that quantitative recommendations are made the statistical and economic relevance of potential identification issues of the methodology is of the utmost importance.

In this chapter, we take seriously the notes of caution raised by the literature which investigates identification issues in DSGE models. Indeed, we first perform strict and weak local identification tests as theorized by Komunjer and Ng (2011) and Iskrev (2010) on the parameters vectors estimated in Chari et al. (2007) and Šustek (2011). We find that in both the standard and MBCA frameworks the model parameters are strictly identifiable. This is no longer true once one extends the estimation to the deep parameters of the model. In these cases, we show how to obviate such failures by imposing restrictions on the space of estimated parameters. Our analysis also points out that both models are affected by weak identification problems and thus suffer from a low degree of estimation precision. In particular, we find that the elements which suffer from weak identification are the off-diagonal elements of the VAR(1) law of motion of the latent variables. This is due to the fact that while these parameters do affect the likelihood, the effect which they exert on the latter is strongly collinear. We find that this is an inherent property of the VAR(1) process evaluated at the estimated parameter vectors. Indeed, we show that when innovations to the wedges are assumed to be observed and the parameters are estimated using the VAR in isolation from the model it is the off-diagonal elements which have a strongly collinear effect on the likelihood. Second, we investigate the economic severity of these identification problems by computing the uncertainty around a statistic which is used to rank which classes of models best explain business cycle fluctuations. We find that the main conclusion is not overturned for the standard BCA model. We are currently investigating whether this result also holds for the MBCA framework. Finally, we investigate a question of interest to practitioners, namely how identification strength varies across sample sizes. We show that even in small samples the parameter sets in both frameworks are overall well identified by computing empirical distance measures as in Qu and Tkachenko (2017).




NOTES

1. Global identification would extend the uniqueness requirement to the whole parameter space.

2. A point is regular if it belongs to an open neighborhood where the rank of the matrix does not vary.

3. Please refer to Iskrev (2010) for further details.

4. This detrending method is used in Brinca et al. (2016) and is found to make the ML estimation procedure very robust across a large set of OECD countries.

5. We use Chari et al. (2007) actual data for the study of the 1982 recession.

6. Testing that the fi statistics are not significantly different from each other would be the most rigorous way of answering this question.

7. In cases where the upper bound and the lower bound only overlapped at a given number (e.g. fi statistic of wedge 1 UB = 0.02 and fi statistic of wedge 2 LB = 0.02), we still counted them as the fi statistic overlapping and so the number would not be reported in bold.

8. As pointed out by Qu and Tkachenko (2012) it is usually the case that [image: image]
 is unknown and, thus, so is the domain of the curve. This is why in constructing the non-identification curve first a wide support is considered, the model solved and the spectrum computed. The resulting curve is then truncated so as to exclude points which (i) are associated with indeterminacy, (ii) violate the natural bounds of the parameters and (iii) yield [image: image]
 different from [image: image]


9. There is no need to consider ω ∈ [−π, 0] because [image: image]
 is equal to the conjugate of [image: image]
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A. APPENDIX – BCA AND MBCA MODEL WITH INVESTMENT ADJUSTMENT COSTS


A.1. Komunjer and Ng (2011)


A.1.1 Chari et al. (2007) BCA Model

We introduce the version of the BCA model by Chari et al. (2007) which allows for investment adjustment costs calibrated at the ‘normal’ intensity used by Bernanke et al. (1999), see Appendix C.2. The results are similar to the baseline case with the default parameters being strictly identifiable and several steady-state wedge shocks, off-diagonal elements of the P and Q matrix as well as deep parameters not being identifiable once the set of estimated parameters is extended to the latter (Tables A-1 and A-2).

In line with the analysis carried out for the baseline model, we check which restricted parameter combinations would allow the other parameters to be strictly identifiable. As reported in Table A-3 we find three such sets at the lowest tolerance level for which identification fails in A-2, mostly consisting of three parameters each. These sets are (i) {a, ρg}, (ii) {b, ρg} and (iii) {a, ψ} and thus involve the parameters governing the degree of investment adjustment costs (a and b), the autocorrelation of the government wedge and the inverse of the constant Frisch elasticity of labour supply ψ.

Table A-1.    Komunjer and Ng Test Results BCA Model With Normal Adjustment Costs.

[image: image]

Summary: nθ = 30, nX = 5, nε = 4.

Order condition: nθ = 30, nδ = 50.

Table A-2.    Komunjer and Ng Test Results BCA Model With Normal Adjustment Costs (Deep Parameters Estimated).

[image: image]

Summary: nθ = 39, nX = 5, nε = 4.

Order condition: nθ = 39, nδ = 50.

Problematic parameters at Tol = 1e−3: zss, τlss, τxss, gss, ρτl,z, ρτx,z, ρg,z, ρz,τl, ρτx,τl, ρg,τl, ρz,τx, ρτl,τx, ρg,τx, ρτl,g, ρτx,g, q21, q22, q32, q42, q33, q43, β, ψ, σ, a, b.

Problematic parameters at Tol = 1.378453e−12: zss, τlss, τxss, gss, ρz, ρτl,z, ρτx,z, ρg,z, ρz,τl, ρτl, ρτx,τl, ρg,τl, ρz,τx, ρτl,τx, ρτx, ρg,τx, ρz,g, ρτl,g, ρτx,g, ρg, q21, q31, q22, q32, q42, q33, q43, q44, gn, gz, β, δ, ψ, σ, α, a, b.

Table A-3.    Komunjer and Ng Conditional Test Results BCA Model With Normal Adjustment Costs, Tol = 1.378453e−12.

[image: image]

Summary: nθ = 39, nX = 5, nε = 4.

Order condition: nθ = 39, nδ = 50.






A.1.2 Šustek (2011) MBCA Model

An analogous pattern to the one found in the baseline MBCA model and reported in Section 4 emerges once investment adjustment costs are introduced in the model (see Tables A-4 and A-7).

As to the conditional identification tests, we find that only for the MBCA model with normal adjustment costs where τbss and [image: image]
 not included in estimation it is possible to reparameterize the model in a way which makes the other parameters identifiable. We find 27 parameter combinations which restrict only four parameters at the lowest tolerance level for which identification fails in A-6 (see Table A-8). These sets mainly feature the steady-state innovations to the efficiency and government wedge (zss and gss) as well as steady-state inflation πss and some deep parameters. The parameter b which governs, with a, the degree of investment adjustment costs also shows up prominently in these sets. This is because this parameter is a function of other deep parameters and fixing it thus provides an additional restriction which can help to identify the latter.

Table A-4.    Komunjer and Ng Test Results MBCA Model With Normal Adjustment Costs.

[image: image]

Summary: nθ = 61, nX = 7, nε = 6.

Order condition: nθ = 61, nδ = 105.

Table A-5.    Komunjer and Ng Test Results MBCA Model with Normal Adjustment Costs (τbss and [image: image]
 Estimated).

[image: image]

Summary: nθ = 63, nX = 7, nε = 6.

Order condition: nθ = 63, nδ = 105.

Problematic parameters at Tol = 1e−3: zss, gss.

[image: image]


Table A-6.    Komunjer and Ng Test Results MBCA Model With Normal Adjustment Costs (Deep Parameters Estimated).

[image: image]

Summary: nθ = 74, nX = 7, nε = 6.

Order condition: nθ = 74, nδ = 105.

[image: image]


[image: image]


Table A-7.    Komunjer and Ng Test Results MBCA Model with Normal Adjustment Costs (τbss, [image: image]
 and Deep Parameters Estimated).

[image: image]

Summary: nθ = 76, nX = 7, nε = 6.

Order condition: nθ = 76, nδ = 105.

[image: image]


[image: image]


Table A-8.    Komunjer and Ng Conditional Test Results MBCA Model with Normal Adjustment Costs, Tol = 2.330580e−11.

[image: image]

Summary: nθ = 74, nX = 7, nε = 6.

Order condition: nθ = 74, nδ = 105.




A.2 Iskrev (2010)


A.2.1 Chari et al. (2007) BCA Model

We first study strict identification in the standard BCA model featuring investment adjustment costs of normal intensity. We start with the 38 parameters case (only a is considered in estimation since b is de facto a function of other structural parameters). Fixing gn and gz in the standard BCA case discussed above leaves 36 parameters and the rank of the information matrix is found to be 33. There are 7,140 combinations of 33 parameters out of 36 and as many as 2,406 combinations of parameters which, when fixed, deliver a rank of 33 and thus enable identification of the ones left unrestricted.

Table A-9.    BCA Model with Normal Adjustment Costs, Parameter Identification (All Deep Parameters Fixed).

[image: image]

Table A-9 is instructive about weak identification problems. Interestingly, relative uncertainty decreases such that q31 and q44 no longer feature among the set of worst identified parameters. This is no longer true for q31 once also the deep parameters of the model are considered in the identification analysis (see Tables A-10 and A-11). The same results of the no adjustment costs counterpart hold through, with the exception of α also being one of the most badly identified parameters.

Table A-10.    BCA Model with Normal Adjustment Costs, Wedges Parameter Identification.

[image: image]

Table A-11.    BCA Model with Normal Adjustment Costs (Deep Parameters Estimated), Information Matrix Decomposition.

[image: image]








B. APPENDIX – MODEL DERIVATIONS


B.1. Representative Consumer


B.1.1. Optimization Problem of the Household

Suppose households own the capital stock and rent it out at rate rt. They also work for wages at rate wt per unit of labour input and pay takes on labour, investment and bond holdings. Then, the optimization problem for the household looks as follows:

Objective function:

[image: image]

where ct(st), xt(st) ≥ 0, ∀st, t.

Let xt(st) be any random variable. The expectation over the discounted sum of future possible realizations can be written as:

[image: image]

The second sum expresses that the expectation is a probability weighted average of the different possible realizations of the variable. We can thus rewrite the objective function as follows:

[image: image]

Budget constraint:

[image: image]

Capital accumulation law:

[image: image]




B.1.2. Lagrangian Function

Given that there is one budget constraint for each realization of st in each time period t one can write the Lagrangian function in the following way:

[image: image]

Making use of expression (B-1) for investment and recalling that the expectation is a probability weighted sum of the possible realizations, one can integrate the budget constraints into the first part of the function one obtains:

[image: image]




B.1.3. First-order Necessary Conditions

Differentiating the Lagrangian with respect to the choice variables of the household, one obtains the following first-order necessary conditions which hold ∀st, t:

For each state of the world, st, and each point of time t it holds that:

[image: image]

[image: image]

The intratemporal optimality condition is then given by:

[image: image]

When differentiating the Lagrangian with respect to capital kt+1(st), one has to note that at time t + 1 the net capital stock of the previous period, kt(st−1), becomes kt+1(st), which leads to an additional component in the derivative.

[image: image]

where in the third step we used [image: image]
 and equation (B-2).

When differentiating the Lagrangian with respect to bonds, one has to note that at time t + 1 the bonds of the previous period, bt−1(st−1), become bt(st), which leads to an additional component in the derivative.

[image: image]

where in the fourth step we used [image: image]
 and equation (B-2).






B.2. Representative Producer

The representative producer operates an aggregate CRS production function:

[image: image]

where F(.,.) has the standard properties and [image: image]



B.2.1. Optimization Problem of the Firm

The producer maximizes profits:

[image: image]

by setting:

[image: image]

[image: image]

[image: image]






B.3. Additional Model Equations

The aggregate resource constraint is given by:

[image: image]

Monetary policy is assumed to set the interest rate according to a Taylor rule of the following type:

[image: image]

where ρR ∈ [0, 1), πt(st) ≡ ln pt(st) − ln pt−1(st−1) is the inflation rate and a variable’s symbol without a time subscript denotes the variable’s steady-state (or balanced growth path) value. In addition, it is assumed that ωπ > 1, thus eliminating explosive paths.




B.4. Functional Forms and Auxiliary Assumptions

From here on, we make the following functional form assumptions:

[image: image]

It is assumed that the state st follows a Markov process of the form μ(st|st−1) and that the wedges in period t can be used to uncover the event st uniquely, in the sense that the mapping from the event st to the wedges [image: image]
 is one-to-one and onto. Given this assumption, without loss of generality, let the underlying event [image: image]
 and let [image: image]
 Given the unique mapping between st and the wedges we make following auxiliary choices:

[image: image]

Note that we have effectively assumed that agents use only past wedges to forecast future wedges and that the wedges in period t are sufficient statistics for the event in period t. More precisely, the VAR representation of the underlying state st is modelled as follows

[image: image]




B.5. Operational Model

In the operational model, we consider quantities which are not only expressed in per-capita terms but also detrended. To highlight the differences between this model’s and the previous model’s variables we introduce the notation [image: image]
 The model is then given by:

• CRS production function:

[image: image]

• Aggregate resource constraint:

[image: image]

• Capital accumulation law:

[image: image]

• Taylor rule:

[image: image]

• F.O.C. labour:

[image: image]

• F.O.C. capital:

[image: image]

where [image: image]


• F.O.C. bonds:

[image: image]

where [image: image]





B.6. Steady State

The model in steady state is given by:

• CRS production function:

[image: image]

• Aggregate resource constraint:

[image: image]

• Capital accumulation law:

[image: image]

• Taylor rule:

[image: image]

• F.O.C. labour:

[image: image]

• F.O.C. capital:

[image: image]

• F.O.C. bonds:

[image: image]

where we used that [image: image]


To solve for the steady state of real variables, we start by solving (B-26) w.r.t. [image: image]


[image: image]

Plugging this expression for [image: image]
 in equation (B-25) yields:

[image: image]

Inserting (B-28), (B-29) and (B-23) into the aggregate resource constraint leads to:

[image: image]

[image: image]

Using (B-31) in (B-28) one obtains:

[image: image]




B.7. Definitions

Below we define the notation used for the model’s variables and parameters.


B.7.1. Variables

Lower-case variables define quantities in per-capita terms as follows:

(a) Z: Labour-augmenting technical change [image: image]


(b) b: One period, nominal risk-free bonds; purchased in period t, pay off in period t + 1.

(c) c: Consumption.

(d) g: Government consumption.

(e) k: Net capital stock.

(f) l: Labour.

(g) N: Population [image: image]


(h) r: Rental rate on capital.

(i) R: Nominal interest rate.

(j) t: Time period.

(k) w: Wage rate.

(l) x: Investment.

(m) y: Output.

(n) s: State of the world at time t.

(o) π: Inflation rate.

(p) τl: Labour tax.

(q) τx: Tax on investment.

(r) τb: Tax on bond holdings.






B.7.2. Parameters

The following parameters appear in the model:

(a) gn: Population growth rate of labour-augmenting technological process.

(b) gz: Growth rate of labour-augmenting technological process.

(c) α: Parameter which determines the share of (and weight on) net capital stock in the Cobb-Douglas CRS production function.

(d) β: Subjective discount factor, reflecting the time preference of the household.

(e) δ: Depreciation rate of net capital stock.

(f) ψ: Frisch elasticity of labour supply.

(g) ρR: Weight on lagges nominal interest rate in Taylor rule (extent of ‘interest rate smoothing’).

(h) ωπ: Coefficient on deviations of inflation from its steady-state value in Taylor’s rule.

(i) ωy: Coefficient on deviations of output from its steady-state value in Taylor’s rule.






C. APPENDIX – GENSYS STATE SPACE


C.1. Log-linearized Equilibrium Conditions

We start by writing the system of equations in terms of k and s. This is done by replacing r, w, [image: image]
 and [image: image]
 in the first-order conditions with functions of the states.

Thus, we start with:

[image: image]

[image: image]

[image: image]

where ψ = λ/(1−λ) and which can be reduced to the following:

[image: image]

Next, we compute the steady state of the system for constant values for z, the taxes and government spending:

[image: image]

where the last two equations imply [image: image]


The log-linearization is done around these steady-state values. Detrended consumption is obtained via (C-1) and given approximately by:

[image: image]

The labour input is then derived from the static first-order condition (C-2):

[image: image]

which we write succinctly as

[image: image]

Using this equation for logl, we use the other static first-order conditions to write [image: image]
 and [image: image]
 as follows:

[image: image]

where the ϕ ’s are known functions of the parameters.

Capital is derived from the dynamic first-order condition (C-4):

[image: image]

which simplifies to:

[image: image]

where [image: image]
 and can be rewritten as:

[image: image]




C.2. Allowing for Adjustment Costs

To do log-linear computation (as in the baseline economy) in the case with adjustment costs and τct = τkt = 0, we start with:

[image: image]

where,

[image: image]

and b is set equal to the investment-capital trend rate (i.e. b = (1+gz)(1+gn)−1+δ). To allow for different intensities of adjustment costs, a is raised from 0 (no adjustment costs) to 12.88 (the level used by Bernanke, Gertler, and Gilchrist (1999), the normal adjustment costs BGG level) to 4*12.88 (extreme adjustment costs).

Assuming [image: image]
 the log-linearization of these equations yields the same results as in the benchmark with the exception of the intertemporal condition:

[image: image]

where [image: image]
 and the term in red is what is added to the baseline log-linearized dynamic equilibrium condition due to the presence of adjustment costs. This system can be rewritten as

[image: image]

and differs from its baseline counterpart (C-4) by the terms in red.




C.3. Extension to MBCA – Šustek (2011)

The MBCA model features also bonds and prices. We thus have two additional equations which describe the dynamics of the nominal interest rate and inflation. The Taylor rule takes the form:

[image: image]

whereas the first-order condition for bonds is given by

[image: image]

We follow the lines of Chari, Kehoe and McGrattan (2007) for the log-linearization of the F.O.C. for bonds and obtain

[image: image]

which simplifies to:

[image: image]

and can be rewritten as:

[image: image]




C.4. Gensys State Space Representation


C.4.1. BCA – Chari et al. (2007)

The models we are interested in can be cast in the form:

[image: image]

t = 1,…,T, where C is a vector of constants, ∈t is an exogenously evolving, possibly serially correlated, random disturbance and ηt is an expectational error, satisfying Etηt+1 = 0, all t. The ηt terms are not given exogenously, but instead are treated as determined as part of the model solution.

Within the context of the BCA model, the matrices Γ0yt, Γ1yt−1, C, Ψϵt, Πηt are given by:

[image: image]
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C.4.2. MBCA – Šustek (2011)

Within the context of the MBCA model, the matrices Γ0yt, Γ1yt−1, C, Ψϵt, Πηt are given by:

[image: image]
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C.4.3. BCA – Chari et al. (2007) With Adjustment Costs

Allowing for adjustment costs in the standard BCA model requires modifying the state vector y(t) and the matrices Γ0yt, Γ1yt−1, C, Ψϵt, Πηt in the following way:
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C.4.4. MBCA – Šustek (2011) with Adjustment Costs

Allowing for adjustment costs in the standard BCA model requires modifying the state vector y(t) and the matrices Γ0yt, Γ1yt−1, C, Ψϵt, Πηt in the following way:
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D. APPENDIX – DERIVATIVES WITH ALTERNATIVE STEPSIZE

We here report the results for the case where the stepsize used to compute the numerical derivatives is not set to 1e−3 like in Komunjer and Ng (2011) but rather automatically selected by Matlab using the function nuderst. The returned step size is the maximum of 1e−4 times the absolute value of the current parameter and 1e−7.

The main results of the previous analysis hold through with two notable exceptions. Fist, as becomes evident from Tables D-1 and D-2, both the baseline BCA and MBCA model are strictly identifiable already at a tolerance level of 1e−9 (vs. 1e−11). Second, the BCA model is strictly identifiable even when the deep parameters are estimated at a tolerance level of 1e−10, as reported in Table D-3. This is not the case for the MBCA model (see Table D-5). A few things:

Table D-4 (D-6) reports results for when τbss and [image: image]
 (and deep parameters) are estimated.

Table D-1.    Komunjer and Ng Test Results BCA Model.

[image: image]

Summary: nθ = 30, nX = 5, nε = 4.

Order condition: nθ = 30, nδ = 50.

Table D-2.    Komunjer and Ng Test Results BCA Model (Deep Parameters Estimated).

[image: image]

Summary: nθ = 37, nX = 5, nε = 4.

Order condition: nθ = 37, nδ = 50.

Table D-3.    Komunjer and Ng Test Results MBCA Model.

[image: image]

Summary: nθ = 61, nX = 7, nε = 6.

Order condition: nθ = 61, nδ = 105.

Table D-4.    Komunjer and Ng Test Results MBCA Model (τbss and [image: image]
 Estimated).

[image: image]

Summary: nθ = 63, nX = 7, nε = 6.

Order condition: nθ = 63, nδ = 105.

[image: image]


[image: image]


Table D-5.    Komunjer and Ng Test Results MBCA Model (Deep Parameters Estimated).

[image: image]

Summary: nθ = 72, nX = 7, nε = 6.

Order condition: nθ = 72, nδ = 105.

[image: image]
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Table D-6.    Komunjer and Ng Test Results MBCA Model (τbss, [image: image]
 and Deep Parameters Estimated).

[image: image]

Summary: nθ = 74, nX = 7, nε = 6.

Order condition: nθ = 74, nδ = 105.

[image: image]
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