Accumulation (ACC), 68, 84 Additive scaling parameter, 15 Aggregation, 26, 28	Board of directors (BOD), 114 Bukit Matuh (BM), 92
Agricultural indicator, 113–114, 118	Campus university, 130
Agricultural lands, 183	Chemical pollution, 174
American Standard Code for	Chiku sub-catchment, 183
Information Interchange	Climate analytics-as-a-service
format (ASCII format), 40,	(CAaaS), 143
156	Climate change, 66
Anak Galas river, 183	data collection, 67–68
Ant colony algorithm, 88	methodology, 66-70
ArcGIS Server platform, 35–36, 38	result, 71–75
Artificial neural networks (ANNs),	RRI model, 69–71
88, 143 (see also Cuckoo	statistical bias correction method,
search optimisation neural	68–69
network (CSONN))	study area, 66–67
	Climate data, 142
Backpropagation (BP), 88	Coefficient of correlation, 93
Below detection limit (BDL), 180	Coefficient of efficiency, 93
Best Management Practices (BMPs), 55	Communal irrigation systems (CIS),
Beta function, 29	113
Bias correction method, evaluation	Composite indicator, 26, 28
of, 71	Contamination, 152
Big data (see also Hydrological big	Control system, 78
data)	Copula models, 46
approach, 142	Cost analysis, 127, 129–130
global case studies on big data	Cropping intensity (CI), 114–115
applications in water	for CISs, 121
resource engineering,	for Padada RIS, 122
142–146	Cuckoo search algorithm (CS
limitations and disadvantages, 146	algorithm), 88–90
potential of big data applications	Cuckoo search optimisation algorithm
for managing water	(CSO algorithm), 88–89
resources in Malaysia,	Cuckoo search optimisation neural
144–146	network (CSONN), 89–91
theoretical considerations, 144	CSONND1 model, 93
Black box model, 88	CSONND2 model, 93

CSONND3 model, 93	Digital terrain model (DTM), 101
CSONND4 model, 93	Direction (DIR), 68
CSONND5 model, 93	Discrete flow data, 48
methodology, 92–94	Discriminant function analysis (DFA),
results, 94–96	176, 180–181
study area, 91–92	Double-porosity media, 152–153,
Cuculus canorus, 89	162–163
Cumulative distribution functions	Drain bed slope, 55–57
(CDFs), 68	Drain flow depth, 58–59
Cut-off points, 29	Drain maintenance, 78
1	Drain spacing, 56–57
Dam, 34	Drain-widening projects, 78
break, 34, 39–40	Drought-tolerant maize varieties
failure and impact, 34–35	(DT maize varieties), 143
GIS application in dam break	(,,
study, 35–36	Earthquake vibration, 152
methodology, 36–40	Economic indicator, 114
research procedure and data	Equal weighting method, 28
collection, 37–38	Expected annual damage (EAD), 16, 21
results, 40–42	Exposure, 26
Damage factor, 15–16	Exposure index (EI), 28
Damage to physical assets (DPA), 34	2p court matri (22), 20
risk classification for, 40	Faulty or missing data, detection and
Data	restoration of, 145
analysis, 143	Field offices/IAs, interview with, 114
procurement, 142	Financial stability, 117
standardisation, 144–145	First flush device, 126
Deep big networks (DBNs), 143	Flash floods, 54
Delineation of risk zones, 41	Flood Hazard Map, 41
Department of Irrigation and Drainage	Flood hydrograph, 46
(DID), 14–15, 67, 70	results, 48–51
depth–damage relationships, 15	smoothing functional data, 46–48
multiple regression function, 18	visualisation and outlier
Department of Statistics Malaysia	identification, 48
(DOSM), 142	Flood vulnerability, 26
Department of Survey and Mapping	classification, 30
Malaysia (JUPEM), 6	decomposition, 30
Depth–damage equation, 18	indicators, 27
Depth–damage function, 20	methodology, 26–29
Depth–damage relationship, 14–15, 17	results, 29–30
Differential evolution (DE), 88	Flood vulnerability index (FVI), 26,
Digital elevation model (DEM), 68,	28
70, 144	Flood(ing), 4, 14
Digital image processing technique	arrival time, 35
(DIPT), 163	depth, 15, 17, 35
(211 1), 103	acpui, 10, 17, 50

Index 189

duration, 15	'Grid overlay' method, 35
duration, 35	Groundwater, 152–154, 162
hazard, 5	contamination, 152
hazard to price valuation model,	flow, 88
6–7	groundwater-surface traces, 35
literature review, 4–5	pollution, 152, 162
in Malaysia, 4–5	
methodology, 5–6	Hazard, 5, 14, 16
risk assessment, 14, 16–17, 40	HAZUS-MH flood model, 36
velocity, 35	Heaviside function, 89
Floodplain, 105, 107	Hedonic function, 6
effect, 100	Hidden neurons (HNs), 90
impact, 4	High-density rainbow box plot
information, 101	(HDR), 48, 50
Flow control structure, 78–79, 84	Houses, 4–5, 8, 15
Flow rate distribution, 57–58	Hue saturation intensity (HSI), 156,
Flow regulator gate, 78–79	165
Flush wave, 78	Hydrass gate, 78
Flushing device, 78	Hydrocarbons, 152
Flushing gate, 78–79	Hydrodynamic approach, 100
Functional data analysis (FDA), 46	Hydrodynamic models, 35
Functional hydrograph, 48	Hydrological big data
Functional outliers, 51	integration of hydrological big
Functional principal component	data with GIS and remote
analysis (FPCA), 47	sensing, 143–144
Functional relationship, 26	sharing platforms, 142–143
Functionality status, 114, 116–117	Hydrological data, 142, 145
	Hydrological model integration,
Galas catchment system, 175–177	144–145
Garden watering, water demand for,	Hydrological simulation, 71–75
127	HydroSHEDS, 68
General circulation model (GCM), 66,	•
68, 71	Image analysis processing method,
Generalised extreme value (GEV),	153
16–17, 20, 68	Infiltrated sustainable urban drainage
Genetic algorithm (GA), 88	system, 55
Genetic programming (GP), 144	methodology, 55-56
Geographical information system	results, 56–60
(GIS), 142	Infiltration, 54–56
application in dam break study,	Information of Technology (IoT), 141
35–36	Intact double-porosity, 154, 158
modelling, 35–36	Interferometric Synthetic Aperture
Global Forest Watch (GFW), 183	Radar (IFSAR), 101
Global warming, 66	Irrigation Management Office (IMO),
Gouhou dam, 35	113

Irrigation management transfer	Market, 6, 11, 55
(IMT), 112	Mass-balance approach, 127
methodology, 113-114	Mean curve, 47
results, 114–117	Median, 47
study area, 113	Metaheuristic algorithm, 88
Irrigation service fee performance	Micro-scale flood risk assessment
(ISF), 114	case study area, 17
Irrigators associations (IAs), 113	methodology, 15–17
	results, 17–21
Joint bivariate distributions, 46	Minimum night flow (MNF), 135, 137 Min–max normalisation, 26
Kampung Tunku, 79–81	Mode, 47
Kaolin soil, 153	Monthly average yield per hectare,
Kelantan River, 17	114–116
Kruskal–Wallis <i>H</i> test, 177	Multidimensional risk, 31
Triusian vanis ii test, i v	Multilayer perception-whale
Landscape data, 142	algorithm model (MLP-WA
Landslide Hazard Zonation map	model), 144
(LHZ map), 35–36	Multivariate techniques, 46
Langat River Basin, 66–68, 71	1 ,
Langat River flood area, 5–7	Nash-Sutcliffe efficiency (NSE), 71,
Large catchment, 101	73
Laterite soil properties, 165	National Irrigation Administration
Learning rate (LR), 92	(NIA), 113, 117
Levenberg-Marquardt (LM), 88	National irrigation systems, 113
Lévy flights, 88–90	National Property Information Centre
Light non-aqueous phase liquid	(NAPIC), 6
penetrations (LNAPL	Neural networks (NNs), 89
penetrations), 163 (see also	Ninth Malaysian Plan, 134
Non-aqueous phase liquids	Non-aqueous phase liquids (NAPLs),
(NAPLs))	152
materials and methods, 163-165	materials and methods, 153-156
results, 165–169	migration, 154–156
Linear programming and dynamic	results, 156–159
programming (LP-DP), 142	Non-point sources, 162
Linear regression function, 17	material and methods, 175–177
Local government units (LGUs), 117	results, 177–183
Local random walk, 89	Non-revenue water (NRW), 134
	Normalisation, 26–28
Machine leaning (ML), 144	North-east monsoon (NEM), 67
Malaysia, 142–143	
floods in, 5	Objective weighting method, 28
Malaysia-led flood damage	On-Site Detention (OSD), 55
assessment, 14	One-dimensional (1D), 101
Manual Saliran Mesra Alam	modelling techniques, 101
(MSMA), 78	stage-discharge relationship, 17

Index 191

Open storm water system, 78	Rainfall-runoff inundation-graphical
Organic contaminants, 162	user interface (RRI-GUI),
Outlier detection methods, 50	69
Outlier identification, 48	Rainwater harvesting system (RWHS), 126
Padada RIS, 113-114, 122-123	cost analysis, 129-130
Particle swarm optimisation (PSO), 88	design, 126–127
Pattern, 163, 165	performance, 127
Payback period, 127	preliminary analysis, 127–128
Penetration, 163–166	results, 127–130
Per cent bias (PBIAS), 71	secondary analysis, 128–129
Performance evaluation, 112	study area, 126
Pergau river, 182	Real-time clock module (RTC
Philippine Crop Insurance	module), 78
Corporation (PCIC), 117	Realistic flood and drought forecasting
Point sources, 162	and management, 145
Post-storm flash floods, 55	Red-green-blue (RGB), 156, 165
Precipitation, 88	Reliability, 127
Price, 4–5	Reservoir, 34
Price valuation model, flood hazard	Resilience, 26
to, 6–7	Resilience index (RI), 28
PrimeLog+, 135	Review, 36, 142
PrimeWorks®, 135	Risk, 16
Probability weighted damage (PWD),	assessment and classification, 41
21	classification for DPA, 40
Probable maximum floods (PMFs), 35	flood, 84
Property	River flows, 46
industry, 4	River Irrigation System (RIS), 112
investment decision-making	Root mean square error (RMSE), 71,
process, 4	73
price, 3	Runoff, 78–79, 88
•	Rural/urban strata, 15
Quantification of possible water	
harvested, 126	Scaled conjugate gradient (SCG), 88
Quantile Mapping, 68	Scan electron microscopy (SEM), 165
	Sediment fingerprinting findings,
R studio programming software, 17	177–183
Radial basis function (RBF), 144	Sediment source fingerprinting
Rainbow plot, 48	approach, 174–175
Rainfall, 88	Semuja Nonok (SN), 92
rainfall-runoff model, 103	Sg Lebir river system, 101
Rainfall-runoff inundation model	Sg Relai river system, 101
(RRI model), 66, 69–71	Shuttle Radar Topography Mission
Rainfall-runoff inundation-command	(SRTM), 68
user interface (RRI-CUI),	Simulated annealing (SA), 88
69	Sluice gate, 78

Smoothing functional data, 46–48	software selection, 101
Soaking process of water, 54	study area, 101
Social indicator, 114	sub-catchment, 105
Sources, 162	Tipping flushing gate, 78–79
South-west monsoon (SWM), 67	Toilet flushing, water demand for, 126
Spatial data, 142	Total Landslide Susceptibility Index,
Stage–damage relationship, 14, 16	36
Statistical beta distribution, 28	Trace elements, 177
Statistical bias correction method,	Transfer functions, 17, 68
68–69	Trend analysis, 66
Storm water control, 54	Two-dimensional modelling
Storm water management model	techniques (2D modelling
(SWMM), 80	techniques), 101
flow control structure and flushing	teeninques), 101
gate, 78–79	Ultrasonic sensor, 78
methodology, 80–82	Universiti Kebangsaan Malaysia
rationale of study, 79–80	(UKM), 134
results, 82–84	water consumption data collection.
Streamflow	135
data, 46	water consumption data
stations, 67	interpretation, 135–138
Sultan Abu Bakar Dam (SAB Dam),	Universiti Teknologi Malaysia
34	(UTM), 55
Sungai Bedup Basin, 91–92	University of Nottingham Malaysia,
Sungai Busit (SB), 92	126
Sungai Merang (SM), 92	Unmanned aerial vehicle (UAV), 37
Sungai Teb (ST), 92	Urban Storm Water Management
Surfer Software, 165	Manual (MSMA), 55
Susceptibility, 26	, , , , , , , , , , , , , , , , , , , ,
Susceptibility index (SI), 28	Vacuum flushing, 78
Sustainable Urban Drainage System	Vajont Dam, 34–35
(SUDS), 55	Value, 4, 9, 15, 26, 71, 144
Synthetic flood damage curves, 14	Varimax rotation, 48
,	Velocity profiles, 59
Tabu search, 88	Vibration, 152–154, 163
Tenaga Nasional Berhad (TNB), 37	Visualisation, 48
Teton Dam, 34–35	Volume, velocity, variety, value,
Three-dimensional diagram (3D	veracity (5Vs), 144
diagram), 153	Vulnerability, 14, 26–27
Time of concentration, 100	curve, 14–15
data collection, 101–102	relative classification, 28–29
formulas, 100	10144110 0146611044110111, 20 25
methodology, 101	Water, 134
modelling processes, 103–104	balance simulation, 127
rainfall, 105	loss in distribution networks, 134
results, 105–107	metre, 135
,,	

Index 193

resource engineering, global Water distribution system (WDS), 143 case studies on big data Wave propagation, 101 applications in, 142-146 Weighted probability damage, 16 scarcity, 134 Weighting, 28 Whale algorithm model (WA model), security, 135 supply, 135 Water consumption World Health Organization (WHO), 135 data collection, 135 data interpretation, 135–138 X-ray fluorescence (XRF), 176 Water demand for garden watering, 127 Yield after spillage (YAS), 127 for toilet flushing, 126 Yield before spillage (YBS), 127