To read this content please select one of the options below:

Beyond green façades: active air-cooling vertical gardens

Michael Maks Davis (Department of Architecture, Design and Arts, Pontificia Universidad Católica of Ecuador, Quito, Ecuador) (Evolution Engineering, Design and Energy Systems Ltd, Exeter, UK)
Andrea Lorena Vallejo Espinosa (Department of Architecture, Design and Arts, Pontificia Universidad Católica of Ecuador, Quito, Ecuador)
Francisco Rene Ramirez (Department of Architecture, Design and Arts, Pontificia Universidad Católica of Ecuador, Quito, Ecuador)

Smart and Sustainable Built Environment

ISSN: 2046-6099

Article publication date: 3 April 2019

Issue publication date: 24 May 2019

472

Abstract

Purpose

Vertical gardens offer multiple benefits in urban environments, including passive cooling services. Previous research explored the use of “active vertical gardens” as potential evaporative air-cooling units by developing a mathematical model based on the FAO-56 Penman Monteith equation. Further research showed that active vertical gardens function best by creating an airflow in the cavity behind the garden such that air is cooled by flowing over the water-saturated garden substrate. The purpose of this paper is to improve the quantification of active vertical garden performance.

Design/methodology/approach

A building-incorporated vertical garden was built in Quito, Ecuador, with an air inlet at the top of the garden, an air cavity behind the garden and where air was expelled from the base. Measurements were made of air temperature, humidity and velocity at the air inlet and outlet.

Findings

The active vertical garden cooled the air by an average of 8.1 °C with an average cooling capacity of 682.8 W. Including the effects of pre-cooling at the garden inlet, the garden cooled the air by an average of 14.3 °C with an average cooling capacity of 1,203.2 W.

Originality/value

The results are promising and support the potential for active vertical gardens to be incorporated into building services and climate control.

Keywords

Acknowledgements

The work of Mariana Liebman-Pelaez was invaluable in bringing the publication to press. Andrea Cristina Cordova’s input on infographics for the paper was also highly valued.

Citation

Davis, M.M., Vallejo Espinosa, A.L. and Ramirez, F.R. (2019), "Beyond green façades: active air-cooling vertical gardens", Smart and Sustainable Built Environment, Vol. 8 No. 3, pp. 243-252. https://doi.org/10.1108/SASBE-05-2018-0026

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles