To read this content please select one of the options below:

Dynamic Pressure Feedback: Controlled Damping by Use of the Dowty Moog Valve

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 1 June 1960

127

Abstract

Electrohydraulic servos have been widely applied to the task of precisely positioning heavy loads. Common examples from the military field are radar antenna and rocket engine swivelling drives. In the commercial area large machine tool position controls are a prime example. Even with relatively substantial driving linkages, the inertia of these loads frequently results in low natural frequency of the output load‐driver structure. Very commonly this is combined with extremely small natural damping forces. Natural frequencies from 5 to 20 c.p.s. with damping ratios in the oder of 0·05 critical are typical. This combination of resonance with low damping creates a severe stability and performance problem for the electrohydraulic servo drive. Efforts to deal with this problem have centred on introducing artificial damping. In the past this has been done either by use of a controlled piston by‐pass leakage path or by use of a load force feedback path. The former technique is simple but wasteful with respect to power and inherently involves serious performance compromises. The latter technique can be arranged to be unassailable on theoretical grounds. However, it leads to severe system complication and large incremental hardware requirements. Questions of a reliability penalty are raised. A new technique has been developed which possesses all the performance advantages of load feedback without serious increase in complexity. Called Dynamic Pressure Feedback, this technique involves only a modification of servo valve component. It utilizes for feedback purposes the inherently high load forces developed as piston differential pressures, insuring reliable operation. The pressures needed are already available at the valve. No new hydraulic or electrical connexions are added. The performance advantages adduced for the Dynamic Pressure Feedback Servo Valve have been confirmed in carefully controlled comparative tests on a typical load system. Correspondence of test data with analytical prediction is good. A sufficient number of Dynamic Pressure Feedback Servo Valves have been produced on a pilot production line and installed in several applications in the field to insure producibility and design reliability.

Citation

(1960), "Dynamic Pressure Feedback: Controlled Damping by Use of the Dowty Moog Valve", Aircraft Engineering and Aerospace Technology, Vol. 32 No. 6, pp. 171-176. https://doi.org/10.1108/eb033264

Publisher

:

MCB UP Ltd

Copyright © 1960, MCB UP Limited

Related articles